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Abstract

Unlike the coercive field Hc of a bulk ferrimagnet, which diverges at the compensation temperature T comp, the coercive field of a

polycrystalline ferrimagnet with uni-axial anisotropy is shown to have a minimum at T comp. Despite this behavior, the field required for

domain-wall motion still diverges at the compensation temperature. These ideas are used to treat a ferrimagnetic class of molecule-based

magnets, the bimetallic oxalates, that exhibit a minimum coercivity at T comp.

r 2008 Elsevier B.V. All rights reserved.
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Till recently, the coercive field Hc of every known bulk
ferrimagnet was found to diverge at its magnetic compen-
sation temperature T comp, where the magnetic moments of
the two or more sublattices cancel each other [1]. This
effect has widespread technological applications and is
easily explained by a simple calculation of the domain-wall
energy [2], which predicts that Hc is inversely proportional
to the net ferrimagnetic moment Ms. However, recent
measurements of the coercive field of a polycrystalline
organic ferrimagnet [3] reveal a minimum rather than a
maximum at the compensation temperature. The only
other known materials where the coercivity is predicted [4]
and observed [5] to exhibit a minimum at Tcomp are
ferrimagnetically coupled multilayers. In this paper, we
demonstrate that the coercivity of a polycrystalline ferri-
magnet with uni-axial anisotropy should likewise have a
minimum at T comp. After sketching a very basic derivation
of the coercive field for a polycrystalline ferrimagnet with
uni-axial anisotropy, we evaluate the coercivity of the
polycrystalline, molecule-based magnet studied in Ref. [3].

Consider a single-crystal ferrimagnet with uni-axial
anisotropy along z-axis. If this ferrimagnet is fully
magnetized with M ¼ �Msz, then the condition for
domain-wall motion in a magnetic field H is given by
Hz ¼ H cos yXH ð0Þc , where H ð0Þc is the coercive field along
- see front matter r 2008 Elsevier B.V. All rights reserved.
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z-axis and fy;fg are the spherical angles of H with respect
to that axis. Due to the components of H perpendicular to
the ferrimagnetic moments, there will also be an induced
moment w?H sin y in the xy plane. So the total moment can
be written

Mðy;fÞ ¼ �Mszþ 2MszYðH cos y�H ð0Þc Þ

þHw? sin yðcosfxþ sinfyÞ, (1)

where YðxÞ ¼ 1 if x40 and 0 otherwise. After integrating
over all angles with 0pypp=2, we find that the average
magnetization along the field direction of a collection of
particles, all fully magnetized in the southern hemisphere,
is

M ¼Ms �
1

2
þ 1�

H ð0Þc
H

� �2
 !

YðH �H ð0Þc Þ

( )
þ 2

3
Hw?.

(2)

This expression gives a remanent magnetization of �Ms=2
in zero field. Notice that the slope of MðHÞ for fields
HbH ð0Þc is ~w? ¼ 2w?=3. Unlike in an antiferromagnet, ~w?
is weakly temperature dependent due to the different
moments on the two or more sublattices of the ferrimagnet.
The coercive field Hc of a polycrystal is defined as the

field where M ¼ 0. As implied by Eq. (2), Hc depends on
whether a �Ms=ð2H ð0Þc ~w?Þ is larger or smaller than 1. For
Ms small enough that ao1, h � Hc=H ð0Þc ¼ a. But for a
larger magnetization with a41, h must be solved from the

www.elsevier.com/locate/jmmm
dx.doi.org/10.1016/j.jmmm.2008.01.040
mailto:fishmanrs@ornl.gov


ARTICLE IN PRESS
R.S. Fishman, F.A. Reboredo / Journal of Magnetism and Magnetic Materials 320 (2008) 1700–1704 1701
cubic equation

hþ að1� 2=h2
Þ ¼ 0 (3)

which is satisfied by h ¼ 1 when a ¼ 1. The hysterisis loops
in these two regimes are plotted in Fig. 1. Notice that h41
only when a41. So the coercive field is large enough to
move the domain walls only when Ms42H ð0Þc ~w?. In the
vicinity of Tcomp with ao1, the perpendicular susceptibility
determines the coercive field Hc ¼Ms=ð2~w?Þ. A similar
mechanism is responsible for the minimum coercive field at
T comp in ferrimagnetic multilayers [4].

Irreversible domain-wall motion only occurs along the
curved portions of the hysterisis loops in Fig. 1 with
jHj4H ð0Þc . The hysterisis loops are reversible along the
straight-line paths in Fig. 1, where the particles are
magnetized perpendicular to their local z-axis. So with
M ¼ �Ms=2 in zero field, the magnetization can be
reversed up to fields much larger than Hc in the vicinity
of T comp.

All of the moments oriented along the local z-axis of
each particle will contribute to w?. But due to disorder,
only a fraction xd will contribute to the ferrimagnetic
moment MsðTÞ. So we write MsðTÞ ¼ xdM0ðTÞ, where
M0ðTÞ is the net ferrimagnetic moment for a perfect single
crystal at temperature T. The maximum coercive field
below T comp is given by the conditions Hc ¼ H ð0Þc and a ¼ 1
so that Hmax

c � xdM0=ð2~w?Þ.
To demonstrate these ideas, we now consider the class of

layered molecule-based magnets that were found to exhibit
a minimum coercivity at Tcomp in Ref. [3]. Bimetallic
oxalates [6] are salts with the chemical formula
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Fig. 1. The magnetization versus field loops for a above and below 1. The

coercive field is given by Hc=H ð0Þc ¼ 0:5 for a ¼ 0:5 (dashed) and 1.13 for

a ¼ 2 (solid).
A½MðIIÞM0ðIIIÞðoxÞ3�, where A is an organic cation that
separates the negatively charged metallic layers. Each of
the metallic layers contains two different metal atoms in an
alternating honeycomb structure. Neighboring metal
atoms M(II) with valence +2 and M0ðIIIÞ with valence
+3 are bridged by the oxalate molecule ox ¼ C2O4 with
valence �2. Most commonly, MðIIÞ ¼Mn, Ni, Fe, Co, Cu,
or Zn and M0ðIIIÞ ¼ Cr, Ru, or Fe. Depending on the
metal atoms, a single bimetallic layer can be either
ferromagnetic or ferrimagnetic (M(II) and M0ðIIIÞ mo-
ments parallel or anti-parallel) with magnetic moments
pointing out of the plane. While it does not change the sign
of the exchange coupling, the organic cation A does affect
the overall behavior of the system. With the appropriate
cation, bimetallic oxalates can be optically activated [7],
metallic [8], or disordered [9,10].
In Ref. [3], Coronado et al. studied an Fe(II)Fe(III)

bimetallic oxalate with A ¼ NBu4. Depending on the
cation, some Fe(II)Fe(III) compounds exhibit magnetic
compensation due to the cancellation of the moments on
the S ¼ 2 Fe(II) and S0 ¼ 5

2
Fe(III) sublattices [11]. The

compound studied by Coronado et al. has a transition
temperature of about 45K and a compensation tempera-
ture of about 30K.
The degree of disorder in the Fe(II)Fe(III) bimetallic

oxalates is rather high. With jhLzij � 0:23 on the Fe(II)
sites (see below), a low-temperature moment M0ð0Þ ¼
2mBðS

0 � S � jhLzij=2Þ � 0:77mB per formula unit (fmu)
would be expected for a single crystal. But measurements
on polycrystals [12–14] indicate that Msð0Þ=2 lies between
0.07 and 0:08mB=fmu, corresponding to Msð0Þ between
0.14 and 0:16 mB=fmu. Coronado et al. obtained a remanent
magnetization less than 0:03mB at 2K, corresponding to
Msð0Þo0:06mB. These results suggest an approximate
value of xd � 0:1 for the disorder in an Fe(II)Fe(III)
polycrystal. Such strong disorder may be produced by
noncrystallinity or by a deficiency of Fe and the charge-
compensating oxidation process FeðIIÞ ! FeðIIIÞ [11,12].
We recently proposed a theory [15] for the magnetic

order in the Fe(II)Fe(III) bimetallic oxalates based on the
spin–orbit coupling of the Fe(II) moments within each
bimetallic plane. Our model posited a hierarchy of three
energy scales. The Hund’s coupling that fixes the spins S ¼

2 and S0 ¼ 5
2 on the Fe(II) ð3d6Þ and Fe(III) ð3d5Þ sites is the

dominant energy. Next in importance is the C3-symmetric
crystal-field potential produced by the 6 oxygen atoms that
surround each Fe atom. Finally, the contributions to
the crystal-field potential that violate C3 symmetry, the
antiferromagnetic exchange coupling JcS � S

0 between the
Fe(II) and Fe(III) spins, and the spin–orbit coupling lL � S
on the Fe(II) site are all considered to lie in the lowest-
energy scale.
The C3-symmetric crystal field on the Fe(II) sites splits

the 5-fold degenerate L ¼ 2 level into two doublets and one
singlet. The expectation value of the orbital angular
momentum in the lowest-energy doublet is given by �Lcf

z ,
where Lcf

z lies between 0 and 2, depending on the
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components of the crystal field. For jlj=Jc � 27, magnetic
compensation occurs when Lcf�

z oLcf
z o1. By displacing the

Fe(II) ions with respect to the oxalate molecules, the cation
can shift the value of Lcf

z above or below the threshold
Lcf�

z � 0:23 [15].
This model is now used to evaluate the ‘‘bare’’ coercive

field H ð0Þc for a single-crystal. Our argument follows the
same lines as in Ref. [2] except that the anisotropy is now
produced by the spin–orbit coupling to a nonquenched
orbital angular momentum hLi. Consider the domain wall
of width d ¼ Na lying between x ¼ �Na=2 and Na=2
sketched in Fig. 2. Here a is the distance between Fe(II)
ions along x direction. Because the direction of the
magnetic polarization within the domain wall departs from
the axis of C3 symmetry, hLi will be reduced over the whole
range Na. Of course, hLi must identically vanish at the
center of the domain wall. Hence, the cost of the domain
wall in anisotropy energy per unit area is proportional to
jljNhSzihLzi=a2. Note that hM0i ¼ 2mBhSþ S0 þ L=2i will
change in magnitude very slightly within the domain wall
compared to its bulk value due to the suppression of the
orbital contribution. Since the magnetic moment hM0i

rotates through an angle f ¼ p=N for each increment
Dx ¼ a, the exchange-energy cost of the domain wall per
unit area is proportional to �JchSzihS

0
zip

2=a2N40. Keep
in mind that hSi and hS0i point in opposite directions.

Therefore, the total energy of the domain wall per unit
area can be written

g �
A

a2N
þ

KN

a2
, (4)

where A / �JchSzihS
0
zi is the exchange energy and K /

jljhSzihLzi is the anisotropy energy. While the exchange
energy favors a more gradual change in magnetization and
a wider domain wall, the anisotropy energy favors a
sharper change in magnetization and a narrower wall.
Minimizing g with respect to N, we find that N ¼

ffiffiffiffiffiffiffiffiffiffi
A=K

p
and g ¼ 2

ffiffiffiffiffiffiffiffi
AK
p

=a2, which are identical to the expressions
derived in Ref. [2] when the anisotropy K arises from a
single-ion anisotropy term �D

P
iS

2
iz rather than from a

nonquenched orbital angular momentum.
The domain-wall energy gðxÞ depends on position x due

to strain that locally perturbs the C3-symmetric crystal
field, thereby reducing the value of Lcf

z ðxÞ. If the strain field
is written as s ¼ s0 cosð2px=lÞ, then Lcf

z ðxÞ and KðxÞ are
δ = Na

a

<M0>

<L>

z

x

Fig. 2. A domain wall of width d ¼ Na, showing that the orbital angular

momentum hLi becomes very small as the magnetization hM0i of the single

crystal rotates by 1801. As discussed in Ref. [15], hM0i is opposite hLi

below Tcomp.
lowered quadratically as

Lcf
z ðxÞ ¼ Lcfð0Þ

z � bs20 cos
2ð2px=lÞ, (5)

KðxÞ ¼ K ð0Þ 1�
bs20

Lcfð0Þ
z

cos2ð2px=lÞ

( )
, (6)

where b40. For a field applied along z direction, the
instability condition for domain-wall motion is H ð0Þc ¼

a3ðqg=qxÞmax=2M0 or

H ð0Þc ¼
pDK

M0
, (7)

where D ¼ ðbs20=Lcfð0Þ
z Þðd=lÞ [16]. Since bs20 is the maximum

variation in Lcf
z , the first factor in D is the relative variation

in the orbital angular momentum of the doublet. The
second factor, d=l, gives the ratio of the domain-wall width
to the range l of the spatial variation of the strain.
Using jlj=Jc � 27 and Lcf

z � 0:26, we estimate that the
domain-wall width d in the Fe(II)Fe(III) bimetallic
oxalates is between 1 and 2 lattice constants. Because the
domain wall is so narrow, we anticipate that d5l and
D51. Due to the reduced cost in anisotropy energy,
domain walls prefer to sit on top of impurities that would
otherwise break the local C3 symmetry. Notice that H ð0Þc !

0 at T c because K vanishes like the square of the Fe(II)
moment. As expected, H ð0Þc diverges at the compensation
temperature because M0 ! 0, whereas K remains nonzero
at Tcomp.
We now estimate w? by assuming that only the Fe(III)

moments (with no spin–orbit coupling) respond to a
perpendicular magnetic field. Because the Hamiltonian on
the Fe(III) sites is given by

HIII ¼ 3JchSziS
0
z þ 2mBHS0x, (8)

we obtain

w? ¼
2mBhS

0
xi

H
¼ �

4m2BhS
0
zi

3JchSzi
. (9)

Due to the different temperature dependences of the
spins hSzi and hS

0
zi on the Fe(II) and Fe(III) sites, w?

depends weakly on temperature. At low temperatures,
~w? � 10m2B=9Jc, which is about 75% larger than the
measured susceptibility [3] if Jc ¼ 0:45meV is estimated
using mean-field theory [15]. Since mean-field theory
will tend to underestimate Jc, this discrepancy is easily
explained.
The coercive field of a polycrystalline sample is evaluated

using the formalism of Ref. [15] to obtain hS0zi, hSzi, and
hLzi as functions of temperature. With the experimentally
measured ~w? and xd ¼ 0:1 for the disorder, we obtain D �
2:3	 10�4 by fitting the low-temperature coercive field
Hc � 0:13T measured in Ref. [3]. For Lcf

z ¼ 0:26 above the
threshold value Lcf�

z � 0:23 required for magnetic compen-
sation, the coercive field in Fig. 3 vanishes at Tcomp �

0:67Tc and has a maximum at roughly 0:6T comp,
in agreement with observations of an Fe(II)Fe(III) poly-
crystal. Since the ‘‘bare’’ coercive field H ð0Þc required for
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Fig. 3. The coercive field Hc for a polycrystalline bimetallic oxalate with

Lcf
z ¼ 0:26 (solid) or 0.20 (dashed). The dash-dot curve is the coercive field

H ð0Þc for a single particle with Lcf
z ¼ 0:26 and Tcomp=T c � 0:67. Other

parameters are jlj=Jc ¼ 27, xd ¼ 0:1, and D ¼ 2:3	 10�4.
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domain-wall motion still diverges at T comp, the vanishing of
Hc at Tcomp does not imply that domain walls are
displaced. In agreement with the general arguments given
above, the maximum coercive field satisfies the condition
Hmax

c ¼ H ð0Þc .
For Lcf

z ¼ 0:20oLcf�
z , magnetic compensation is absent.

As observed in a Fe(II)Fe(III)0.9Cr(III)0.1 polycrystal [3]
and shown in Fig. 3, Hmax

c is reduced and shifted to larger
temperatures. Each Cr(III) impurity locally breaks the C3

symmetry about the three neighboring Fe(II) moments.
A small number of Cr impurities may actually enhance the
coercivity by acting as pinning centers where the domain
walls can lower their energy. But a larger fraction of Cr
impurities will suppress the coercive field by reducing the
overall values of Lcf

z and K.
The maximum coercive field Hmax

c � 0:23T predicted
by Fig. 3 is only about 35% of the observed value [3].
This difference probably arises from our over-simplified
treatment of the domain-wall energy, which assumed
that d=ab1. The narrow domain wall and strong
anisotropy may produce stronger pinning at impurities
than our arguments would suggest. In a more realistic
description of the polycrystal, the variation in particle sizes
will produce distributions in Lcf

z and D, smoothing the
cusp at Hmax

c and supporting a nonzero minimum
coercivity at T comp.

A test of our model would be to verify that the
magnetization is reversible along the straight-line paths in
the hysterisis loops of Fig. 1, where the polycrystal is being
magnetized perpendicular to the local z-axis of each
particle but the domain walls do not actually move. Close
to T comp, the hysterisis loops should be reversible up to
large fields.
Polycrystals of other ferrimagnetic materials can poten-

tially also exhibit the predicted behavior. Although an
exhaustive search of all candidate materials is beyond our
reach, the requirement for both uniaxial anisotropy and
magnetic compensation eliminates promising ferrimagnets
like the cobaltites [17] (uniaxial anisotropy but no magnetic
compensation) and ferrites [18] or rare-earth/transition-
metal alloys [19] (magnetic compensation but cubic
anisotropy). Materials with a minimum magnetization
MsðTÞ but no magnetic compensation may not exhibit a
minimum coercive field because aðTÞ �MsðTÞ=ð2H ð0Þc
ðTÞ~w?Þ is always greater than 1. So the bimetallic oxalates
may provide one of the few examples of this type of
behavior.
To conclude, we have shown quite generally that the

coercive field of a polycrystalline ferrimagnet with uni-axial
anisotropy will be a minimum at the compensation
temperature. Those ideas were subsequently applied to
the bimetallic oxalates, where such a minimum has been
observed [3].
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