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Abstract
This work develops a generalized technique for determining the static and dynamic properties of
any non-collinear magnetic system. By rotating the spin operators into the local spin reference
frame, we evaluate the zeroth, first, and second order terms in a Holstein–Primakoff expansion,
and through a Green’s functions approach, we determine the structure factor intensities for the
spin-wave frequencies. To demonstrate this technique, we examine the spin-wave dynamics of
the generalized Villain model with a varying interchain interaction. The new interchain
coupling expands the overall phase diagram with the realization of two non-equivalent canted
spin configurations. The rotational Holstein–Primakoff expansion provides both analytical and
numerical results for the spin dynamics and intensities of these phases.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Disordered and frustrated magnetic systems have provided
condensed-matter physics with a range of complicated
problems [1]. Magnetic frustration is typically induced
by competing nearest-neighbor and next-nearest-neighbor
antiferromagnetic (AF) interactions [1, 2]. To minimize
the energy, the local moments frequently rotate into a non-
collinear ground-state configuration [2, 3]. Theoretical and
experimental efforts have worked to identify and characterize
non-collinear magnetic systems. Quantum Monte Carlo
and Hartree–Fock calculations have been used to describe
canted antiferromagnetic (CAF) phases in double quantum
dots and bi-layer quantum Hall systems [4, 5], while ab initio
methods have been used to examine non-collinearity in
magnetic atomic chains [6]. Through neutron-diffraction
studies, layered borocarbide systems RB2C (R = Dy, Ho,
and Er) have demonstrated conventional and unconventional
magnetic correlations [7]. Other systems such as the cuprate,
ruthenate, and manganite systems (where the competition
between AF and ferromagnetic (FM) order have been
examined in great depth [13–15]) also display non-collinear
characteristics [8–15]. To help understand collinear and non-
collinear magnetic systems, we present a general rotational
technique for modeling the static and dynamic properties of
canted local moments in any periodic system.

This technique employs a rotation of the spin operators in
the local reference frame using two angle rotations (θ and ψ)
at each site. After this rotation, we use a Holstein–Primakoff
(HP) expansion to determine the classical spin energy and
the spin-wave (SW) frequencies. By solving the equations-
of-motion for coupled Green’s functions, we determine the
structure factor (SF) intensities for any eigenfrequency of
the system. This type of rotational technique has been
employed before in many systems ranging from finite cluster
models [16] to the SW modes of spin glasses and other non-
collinear magnetic systems [17–22]. Walker and Walstedt
investigated the dynamics of multiple spin glass ground states
by numerical analysis and simulation [20, 21]. The SWs
for non-collinear helical phases were examined by Rastelli
et al incorporating one canting angle and applying it to
multiple lattices [22]. While these techniques are similar,
we introduce a fully generalized model designed to easily
describe the SW and SF intensities in any magnetic system
regardless of rotation, arbitrary exchange coupling, and single-
ion anisotropy. Here, the inputs into this method are simply the
interaction parameters and moment angles; the outputs are the
SW frequencies and intensities.

To demonstrate this general technique, we investigate
the generalized Villain model with an added interchain
coupling. In recent years, the generalized Villain model
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Figure 1. (a) The generalized Villain model (GVM′) with Heisenberg interactions J , γ J , and −ηJ . (b) The GVM′ with anti-parallel spin
configuration (SC1), where the local moments of sites a and b reside in the xz-plane and are described by the angles (θa, θb). (c) The GVM′
with parallel spin configuration (SC2), where the local moments of sites a and b reside in the xz-plane and are canted by the angle α. Note
that SC2 with α = π/2 is rotationally equivalent to SC1 with (0, π).

(GVM) has been frequently used to test approaches to study
magnetically frustrated systems and to help understand more
complicated magnetic systems similar to those mentioned
above [18, 23–25]. In the GVM, chains of FM interactions J
and AF interactions −ηJ along the x-axis are coupled together
in the y direction by J [18, 23–25], as illustrated in figure 1(a).
The original Villain model assumed that η = 1, which denotes
full frustration [2]. This model was generalized to η �= 1 by
Berge et al [3], accounting for coupling of different magnitudes
within the FM and AF chains. Within the GVM, a CAF phase
is stabilized for η > ηc. The critical value increases with
applied magnetic field from a value of ηc = 1/3 in zero field.
In 1992, Saslow and Erwin [18] employed a HP expansion
to numerically examine the SW and SF intensities for this
generalized model.

In this paper, the GVM is extended further by introducing
a variable y-axis coupling γ J , as shown in figure 1(a). We
call this model the GVM′. Therefore, the GVM′ with γ = 1
reduces to the GVM discussed previously [18, 23–25]. As in
the GVM, all interactions are confined to the xy plane but the
magnetic is applied along the z-axis. Through an examination
of the classical energies, we demonstrate that there exists two
separate canted spin configurations throughout {η, γ } phase
space. Figures 1(b) and (c) show the possible canted spin
configurations within the GVM′. In figure 1(b), the local
moments are canted in the xz-plane by angles θa and θb. In
this configuration, the spins projected onto the xy plane are
anti-parallel on sites a1 and a2 as well as on sites b1 and
b2 [18, 23–25]. This canted spin configuration occurs in the
GVM with γ = 1. With the introduction of the variable γ ,
a new spin configuration arises: the corresponding projected
moments are parallel with moment angles (α), as shown in
figure 1(c). For notational convenience, we call these SC1 (spin
configuration 1) for the anti-parallel case (figure 1(b)) and SC2
(spin configuration 2) for the parallel case (figure 1(c)).

Through an examination of the classical limit, we
determine the phase diagram within the parameter space
{η, γ }. The GVM′ is found to support three phases (FM, SC1,
and SC2). Using the rotational Holstein–Primakoff expansion,
the SW frequencies are determined analytically for all phases.
The SF intensities for the FM and zero-field SC2 phases are
determined exactly; the rest are solved numerically.

2. The general rotation model

As described in [24], the Hamiltonian for canted magnetic
systems can be simplified by rotating into the reference frame
for each moment: S̄i = U i Si , where U i is the unitary rotation
matrix for site i (discussed in appendix A). In the classical
limit, S̄i points along its local z-axis. The general Hamiltonian
is given by

H = − 1
2

∑

i �= j

Ji j Si · S j −
∑

i

Di S2
i z − B

∑

i

Si z

= − 1
2

∑

i �= j

Ji j S̄i · U iU
−1
j S̄ j −

∑

i

Di (U
−1
i S̄i )

2
z

− B
∑

i

(U−1
i S̄i )z, (1)

where Si are the local moments for site i , Ji j is the interaction
between sites i and j , Di is the single-ion anisotropy, and
B is the applied magnetic field. It should be noted that U i
only depends on the moment angles of the spins at site i .
The canting of a local moment can be described as a rotation
by θ in the xz-plane, with another rotation by ψ in the xy-
plane. Therefore, each local moment can be described by the
Euler angles θ and ψ [26]. The Hamiltonian is expanded
in powers of 1/

√
S about the classical or high-spin limit:

H = E0 + H1 + H2 + · · ·. Within the HP formalism, the spin
operators in the local reference frames become: S̄iz = S−a†

i ai ,
S̄i+ = √

2Sai and S̄i− = √
2Sa†

i [1]. The zeroth order E0 term
corresponds to the classical energy and the second order term
H2 describes the dynamics of non-interacting SWs. The first
order term H1 vanishes when the local moments minimize the
classical energy E0 for a specific interaction pair η and γ . Each
term, up to second order, is discussed further below. Higher
order terms correspond to SW interactions that are unimportant
at low temperatures and for small 1/S.

2.1. Zeroth order: classical energy

From the above Hamiltonian, the zeroth order terms describe
the classical energy and can be written as

E0 = − 1
2

∑

i, j

Ji j Si S j Fi j
zz −

∑

i

Di S2
i cos(θi)

2

− B ′ ∑

i

S2
i cos(θi), (2)
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where Si is the moment magnitude for site i , B ′ ≡ B/J S,
and Fi j

zz is a rotation coefficient given by the angle rotation
matrix in appendix A. It only depends on the angles of the
spins on sites i and j . From an examination of the global
minima, the appropriate spin configuration can be determined
by minimizing this classical energy.

2.2. First order: linear terms

The HP expansion produces terms that are linear with respect
to the creation and annihilation operators. Therefore, the first
order Hamiltonian is given by

H1 = −
∑

i, j

Si S j√
2

Ji j

×
( 1√

Si
(Fi j

1 a†
i + Fi j∗

1 ai)+ 1√
Sj
(Fi j

2 a†
j + Fi j∗

2 a j)
)

+
∑

i

√
S3

i

2

(
B + Di sin(2θi)

)
(a†

i + ai), (3)

where Fi j
1 = Fi j

xz + iFi j
yz and Fi j

2 = Fi j
zx + iFi j

zy . Here, Fi j
xz ,

Fi j
zx , Fi j

yz , and Fi j
zy are rotation coefficients that depend only on

the moment angles for the interacting spins on sites i and j
(described in appendix A). The linear terms correspond to the
creation and annihilation of SW’s from the vacuum. Assuming
the system is in a proper ground state with the angles that
minimize the energy, the nonphysical first order coefficients
of ai and a†

i must vanish for each spin site.

2.3. Second order: spin dynamics and structure factor
intensities

The second order terms in the HP expansion describe the spin
dynamics. We Fourier transform the spin operators by: a(r)k =
1/N

∑(r)
i e−ik·Ri ai and a(r)†k = 1/N

∑(r)
i eik·Ri a†

i , where the
sums are restricted to sub-lattice (SL) r . For each SL of the
system, the moment angles are the same. The second order
terms of the generalized Hamiltonian can then be written as

H2 =
∑

r,s

∑

u,k

z(u)rs J (u)rs

√
Sr Ss

×
{
�

rs(u)
k

(
Grs

1 a(r)†k a(s)k + Grs
2 a(r)k a(s)−k

)

+ �
rs(u)∗
k

(
Grs∗

1 a(r)k a(s)†k + Grs∗
2 a(r)†k a(s)†−k

)

+ Frs
zz

(
a(r)†k a(r)k + a(s)†k a(s)k

)}
− 1

2

∑

r,k

Dr Sr

{
sin(θr )

2

×
(

a(r)†k a(r)†−k + a(r)k a(r)−k + a(r)k a(r)†k + a(r)†k a(r)k

)

− 4 cos(θr )
2a(r)†k a(r)k

}
− B ′ ∑

r,k

Sr cos(θr )a
(r)†
k a(r)k , (4)

where k is the momentum vector. Here, z(u)rs is the number
of SL s sites coupled by the interaction J (u)rs to a site on SL
r , and u denotes the multiple possible interactions from SL r
to SL s. For example, a FM with a single SL can have both
nearest-neighbor and next-nearest-neighbor interactions with
u = 1 and 2. We have also defined �rs(u)

k = 1/z(u)rs

∑
d e−ik·d(u)

with d(u) = R j − Ri where Ri on SL r and R j on SL s

are coupled by the exchange J (u)rs . Note that �rs(u)
k=0 = 1 and

�
rs(u)
k = �

rs(u)∗
−k = �

sr(u)∗
k . Finally, Grs

1 and Grs
2 are rotation

coefficients that depend only on the moment angles for the
specific SL (described in appendix A).

To determine the SW frequencies ωk, we solve the
equation-of-motion for the vectors vk = [a(1)k , a(1)†k , a(2)k , a(2)†k ,

. . . , a(st)
k , a(st)†

k ], which may be written in terms of the 2st ×2st

matrix M(k) as

idvk/dt = −[
H 2, vk

] = M(k)vk, (5)

where st is the number of spin SLs. The SW frequencies are
then determined from the condition Det[M(k) − ωk I ] = 0,
where only positive frequencies are retained.

The structure factor in a magnetic system describes
the intensity expected from experiment for SW modes with
resolution-limited width [27]. In the case of a standard
FM with identical nearest-neighbor interactions, the structure
factor is constant throughout k-space. However, as the spins
cant, the wavevector dependence becomes important.

Local stability in a magnetic system requires two
conditions: (1) all SW frequencies must be real for every k
and (2) the SW weights W (t)

k must be positive. The weights are
given by the coefficients of the delta functions in the spin–spin
correlation function

S(k, ω) = 1
2

[
S+,−(k, ω)+ S−,+(k, ω)

]
+ Sz,z(k, ω)

=
∑

t

W (t)
k δ(ω − ω

(t)
k ), (6)

where ω is the eigenfrequency for the spin-wave [27, 28] and
the sum over t means a sum over all SW modes. The total
number of transverse or longitudinal SW modes in the first
Brillouin zone equals the number of magnetic SLs st .

Generally, the spin–spin correlation function is

Sα,β (k, ω) = 1

N

∫
dte−iωt

∑

i, j

eik·(R j −Ri)
〈
Sαi (0)S

β

j (t)
〉
, (7)

where α, β = +,−, and z [27, 28]. The transverse terms
(α, β = +,−) correspond to S+,−(k, ω) and S−,+(k, ω) in
S(k, ω), while the longitudinal term Sz,z(k, ω) with α =
β = z is only nonzero when the system is canted. Here,
〈Sαi (0)Sβj (t)〉 = 〈(U −1

i S̄i (0))α(U
−1
j S̄ j (t))β 〉 is rotated from

the local-moment frame to the global frame. It should be noted
that a SW mode may be purely longitudinal or transverse, with
weight in the 〈zz〉 or 〈±∓〉 channel exclusively. Alternatively,
a SW mode may contain weight in both channels. We
provide examples of both possibilities in our discussion of the
generalized Villain model in section 3.

By expanding and solving for the spin Green’s functions,
we can write Sα,β (k, ω) as

Sα,β (k, ω) = − 4

π
lim
δ→0

Im
(

Tr
(

G(k, ω + iδ)Cαβ

))
, (8)

where

G(k, ω + iδ) =
∫ 1/T

0
dτ eiωlτ gk(τ )

∣∣∣
iωl →ω+iδ

, (9)
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ωl = 2lπT , and Cnm
αβ are the rotational coefficients for the

canted moments, which depend only on the angles θ and ψ
(described in appendix A). Here n = 2r − 1, 2r for SL r and

gk
nm(τ ) = −〈

Tτvnk(τ )vmk
〉
, (10)

where vnk(τ ) = eH2τ vnke−H2τ . Using the equations-of-motion
of vnk(τ ), the Green’s function matrix can be solved as

Gnm(k, ω + iδ) =
[ −1

(ω + iδ)I − M(k)
N

]

nm

, (11)

where I is an 2st × 2st identity matrix and N is an
2st × 2st matrix defining the commutation relations such that
[vn,k, vm,k] = Nnm .

From the commutation relation, [S+
i , S−

j ] = 2Szδi j , one
can determine the net magnetic moment from the sum rule

〈
Sz

〉 =
∫ ∞

−∞
dωSz(k, ω), (12)

where Sz(k, ω) = 1
2 (S

+−(k, ω) − S−+(k, ω)). Note
that Sz(k, ω) is not the same as the longitudinal spin–spin
correlation function, Sz,z(k, ω). Since 〈Sz〉 does not depend
on k, neither does the right-hand side of equation (12).

3. The generalized Villain model: classical energy
and phase boundaries

To demonstrate the rotational technique described above, we
examine the GVM′ described in figure 1. This model neglects
anisotropy, but includes an applied magnetic field. The
introduction of γ into the GVM′ expands the overall interaction
phase space, which can illuminate some of the interesting
phenomena seen within the cuprate and manganite systems.
An overall analysis of the numerical and analytical results will
provide detailed information about the GVM′, as well as a
unique look at the nature of the spin phases as one moves
through the interaction phase space.

While the general rotational Hamiltonian describes
interactions between spin sites with moment rotations in both
the xz (θ ) and xy (ψ) planes, the GVM′ constrains the moment
angles to rotations in the xz-plane, which greatly simplifies the
technique. Therefore, spin–spin interactions can be denoted
as angle pairs (θa, θb). This constraint also allows the SW
frequencies for the GVM′ to be determined analytically.

Through an examination of the classical energy, we
determine the energy boundaries for each spin configuration.
From equation (2), the classical energy of SC1 is

E (SC1)
0 = J S2

2

(
ηcos(2θb)− cos(2θa)− 2γ cos(θa − θb)

− B ′(cos(θa)+ cos(θb))
)
. (13)

Minimizing E (SC1)
0 with respect to θa and θb yields the relations

sin(2θa)+ γ sin(θa − θb)+ 1
2 B ′sin(θa) = 0,

ηsin(2θb)+ γ sin(θa − θb)− 1
2 B ′sin(θb) = 0.

(14)

Assuming that (θa, θb) satisfy these criteria, the first order
terms from the Hamiltonian H (SC1)

1 will vanish. At zero field

Figure 2. (a) The phase diagram for the GVM′ at B = 0 in the
interaction space of γ and η. The green dash-dotted line indicates the
phase boundary between SC1 and SC2 and the blue dashed line
shows the sub-space of the GVM′ (γ = 1). (b)–(d) Pictorial
representations of the (b) (π/2, π/2) and (c) (−π/2, π/2) limit
regions (black dash-dotted line in (a)) of the SC1 phase, and (d) the
SC2 phase at zero field.

and in the limit of large η, the local moments cant toward
the angles (tan−1(γ /

√
4 − γ 2), π/2). In the limit γ → 1,

equations (13) and (14) agree with the results of [24], where θa

and θb approach angles smaller than π/6 and π/2, respectively.
With increasing η and |γ |, the zero-field SC1 phase approaches
one of the planar phases shown in figures 2(b) and (c).

By linearizing equation (14), we obtain the phase
boundary between the SC1 and FM phases:

B ′ = 2
(
η − γ − 1 ±

√
γ 2 + (η + 1)2

)
. (15)

In the limit γ → 1, this gives the relation obtained by
Gabay et al [29]. Solving equation (15) for γ , we find the
phase boundaries

γ = ± (4 + B ′)(4η − B ′)
4(2 − 2η + B ′)

. (16)

Figure 2(a) shows the phase diagram for the zero-field
GVM′. Here, the blue dotted line goes along γ = 1, where the
critical value, ηc = 1/3, is consistent with previous work [3].

In zero field, SC1 with angles (0, π ) is equivalent to SC2
with α = π/2. However, due to the absences of anisotropy
in the GVM′, a magnetic field in the z direction immediately
produces a spin flop into the xy plane with the spins canted
towards the z-axis. This configuration corresponds to SC2 with
α < π/2. Figure 2(d) shows the SC2 phase at zero field, where
α = π/2 throughout the region. Equation (16) gives the field
dependence of the SC1/FM boundary.
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Figure 3. Phase diagram for the GVM′ at B ′ = B/J S = 5 in the
interaction space of γ and η. The green dash-dotted line indicates the
phase boundary between SC1 and SC2. The blue dashed line shows
the sub-space of the GVM′ where γ = 1.

To find the field-dependent boundaries for the SC2 phase,
we examine the classical energy

E (SC2)
0 = J S2

2

(
η − 1 − 2γ cos(2α)− 2B ′cos(α)

)
. (17)

At zero field, SC2 has the same energy as SC1. However,
SC2 has the lower energy when a magnetic field is applied,
so it does not follow the same field dependence as SC1. By
minimizing the energy, we obtain the SC2 angle

cos(α) = − B ′

4γ
, (18)

which depends only on B ′ and γ . Consequently, the SC2/FM
phase boundary is given by B ′ = −4γ and the SC1/SC2 phase
boundary is given by

γ = − 2η

(η − 1)
, (19)

which is shown by the green dash-dotted line in figures 2(a)
and 3. This reveals that the SC1/SC2 boundary does not
depend on field. As the magnetic field increases, the FM
phase expands along this boundary, creating a triple point at
η = B ′/(B ′ + 8) and γ = −B ′/4. The expansion of the FM
phase space with field is clearly illustrated in figure 3, where
B ′ = 5.

4. Generalized Villain model: spin-waves and
structure factors

Using the methods described in section 2, we apply this new
technique to the spin dynamics of the GVM′ in the three
regions of the phase diagram (FM, SC1, and SC2). Since
the environments surrounding the moments at sites a1 and a2

are equivalent, they can be considered part of the same sub-
lattice. Similarly, for sites b1 and b2. The SW frequencies can
be determined analytically for all phases. The SF intensities

will be obtained for a more complete picture of the system. In
the FM and zero-field SC2 phases, we solve the SF intensities
analytically. However, due to the added complexity of the
nonzero-field SC2 and SC1 phases, those intensities must be
determined numerically.

The second order GVM′ Hamiltonian can be written as

H2 = J S
∑

k,r,s

(
a(r)†k a(s)k A(r,s)k + (a(r)−ka(s)k + a(r)†−k a(s)†k )B(r,s)

k

)
,

(20)
where A(r,s)k and B(r,s)

k are coefficients that describe the
interactions while r , s = a or b represent the two SLs [24]. The
resulting SW frequencies can be expressed analytically using
the modified coefficients for the different spin configurations,
with expressions given in appendix B.

4.1. The FM phase

Both the SW frequencies and SF intensities of the FM phase
can be obtained analytically. The SW frequencies are described
by

ω±
k = B + J S

(
2 γ + (η − 1) (cos(kx)− 1)±R1k

)
, (21)

where

R1k =
√
(η + 1)2(1 − cos(kx))2 + 4γ 2 cos(ky)2 (22)

and the lattice constant a has been set to 1. In the limit kx = 0,
ωk = B + 2γ J S(1 ± cos(ky)) only depends on γ J , which is
consistent with previous results [18, 23–25]. As a function of
γ , η, and k, the SF intensities are given by

W±
k = R1k∓2γ cos(ky)

R1k
. (23)

This describes the SF intensities for both the high (+) and low
(−) frequency SW.

Figure 4 shows W±(kx, η) with γ = 3 and ky = 0 for
the high (a) and low (b) SW modes of the FM phase. If γ is
held constant, the plot forms a saddle, where the intensity at
η = −1 is the maximum throughout kx/π . If γ � 1, then
this maximum is constant over kx , which is consistent with the
standard two-dimensional FM. When γ > 1, the maximum
displays non-linear behavior as kx goes to π . The sharpness
of the saddle depends on γ . As γ approaches 0, the saddle
sharpens to a delta function at η = −1, while increasing γ
flattens the saddle. The mode with the maximum intensity
is also determined by γ . If γ > 0, then the low-frequency
mode dominates the intensity. The opposite is true for negative
γ . As η departs from −1 the SF intensity becomes more
dependent on kx/π and the intensity decreases. Therefore,
even though the system is a two-dimensional FM, the non-
equivalent interactions create a unique intensity pattern. When
the intensities are summed over the high and low frequencies,
the total intensity is constant throughout k. This demonstrates
that the complex interactions distribute the intensity between
the two SW branches, but the total intensity still remains
constant as in the standard ferromagnet.
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Figure 4. W (kx , η) for the (a) high- and (b) low-frequency modes of the FM state with γ = 3 and ky = 0. This shows the full spectrum from
η = −5, . . . , 0.

4.2. The SC1 phase

The SC1 region is described by angles (θa, θb) that are given
by equation (14). The SW frequency coefficients for the GVM
are given by equation (B.1) in appendix B. In this section,
we present the SW frequencies and SF intensities for varying
γ , η, and B ′ to give a representative cross-section of the CAF
region. Due to the complexity of the SF intensities, they have
been determined numerically.

The region γ = 1 has been examined in great detail in [18]
and [24], where the SW intensities increase dramatically as
(kx/π, ky/π ) approaches (1, 0). A more moderate shift in
the intensity is seen along (0, ky/π ). As shown below, similar
features are observed as γ is increased.

Figure 5 shows the longitudinal and transverse compo-
nents for the high and low SW frequencies and SF intensities

at zero field with η = 4 and γ = 1, . . . , 4. The higher-
frequency modes have a lower intensity at (1, 0) and higher
intensity at (0, 1) with exception for transverse component of
γ = 1 at (0, 1). The lower SW frequencies tend to decrease in
the (kx/π, 0) direction and increase in the (0, ky/π ) direction.
This difference arise because the exchange γ J is along the y
direction. As γ increases, the shift in the intensities along the
(0, ky/π ) direction become more pronounced. As γ decreases,
the SW intensity along the (0, ky/π ) direction disappears as
the FM and AF chains become decoupled.

As shown in figure 2(a), the corners of the zero-field phase
diagram consist of two planar regions sketched in figures 2(b)
and (c). A magnetic field causes the spins in both regions to
cant. In figure 5, we investigate the transition from the SC1
phase into this planar regime. While the SW frequencies do
not show much overall difference, the SF intensities do show a

Figure 5. (a) The transverse component high- and low-frequency SW modes at B ′ = 0 and η = 4 for γ = 1, . . . , 4 as function of
(kx/π, ky/π). Their corresponding SF intensities over the same values are shown below. (b) The longitudinal component high- and
low-frequency SW modes and intensities that are activated by the canting of the local moment. The higher-frequency modes have a lower
intensity at (1, 0) and higher intensity at (0, 1) with the exception for the transverse component of γ = 1 at (0, 1).
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Figure 6. (a) The transverse component to the high- and low-frequency SW modes for B ′ = 0, . . . , 2 with η = γ = 4 as function of
(kx/π, ky/π). The corresponding SF intensities over the same values are shown below. (b) Longitudinal component to the high- and
low-frequency SW modes that are activated by the canting of the local moments. The higher-frequency modes have a lower intensity at (1, 0)
and higher intensity at (0, 1).

distinct change that would help distinguish between the canted
SC1 phase and its planar limit. The change seen in figure 5
clearly shows the loss of intensity for the SW modes at (0,
0) after entering the planar region with γ > 8/3. Note that
the transverse and longitudinal components become identical
in the planar phase having equal weight, but for γ > 8/3 in
the canted phase the SW modes are either purely transverse or
longitudinal. An overall frequency spectra is a superposition
of both modes, where the intensities for the transverse terms
correspond to S+,−(k, ω) and S−,+(k, ω) and the longitudinal
term is Sz,z(k, ω). They are displayed separately to illustrate
the individual components.

Once a magnetic field is applied, the SW frequencies
increase due to the enhanced stiffness of the local moment.
Figure 6 shows the progression of the high and low SW
frequencies and their corresponding SF intensities as the
applied magnetic field increases from B ′ = 0, . . . , 2 with
η = γ = 4. This transition is clearly evident in the low-
frequency intensity at (0, 0), which becomes nonzero as the
field increases and the spins cant towards the z-axis.

4.3. The SC2 phase

The angle α was given in terms of the field and γ by
equation (18). Although α does not depend on η, changing
η does modify the SW frequencies and SF intensities. The SW
frequencies for this phase can be determined analytically by the
equation given by Fishman [24] assuming different coefficients
(equations (B.2) and (B.3) in appendix B). As with the SC1,
the SF intensities must be determined numerically. However,
as for the FM phase, the zero-field intensities of the SC2 phase
with α = π/2 can be solved analytically.

In zero field, the SW frequencies are

ω±
k =

√
R+

2k R−
2k ± (η + 1)(1 − cos(kx)), (24)

where

R±
2k = (η − 1)(cos(kx)− 1)+ 2γ (−1 ± cos(ky)). (25)

The SF intensities are given analytically by

Wk =
√

R+
2k

R−
2k

. (26)

Even though the angles of the local moments do not
change throughout the zero-field phase, the SW frequencies
and SF intensities depend on the interaction parameters, γ
and η, where the zero-field intensity for each branch in
equation (24) is the same.

Figure 7 shows the SW frequencies and SF intensities
for the SC2 phase with γ = η = −2 as the applied field
increases from 0, . . . , 10 in steps of 4. This figure helps further
investigate the field-induced canting in this phase, where it is
demonstrated that the transition from the planar SC2 phase into
a field-induced canted phase and then finally into the FM phase
as α goes from π/2 to 0. Once in the FM phase, the SW modes
increase linearly with field while the SF intensity remains the
same. Each mode of the SC2 phase has both longitudinal and
transverse components. This is different from the SC1 phase,
where the longitudinal modes are separate from the transverse.

5. Conclusion

In an attempt to understand the nature of competing FM and
AF interactions and canted spin moments, we presented a

7
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Figure 7. High- and low-frequency SW modes for B ′ = 0, . . . , 10 with η = γ = −2 as function of (kx/π, ky/π). Corresponding SF
intensities over the same values. The higher-frequency modes have a lower intensity at (1, 0) and (0, 1).

spin rotation technique for the determination of the static and
dynamic properties for any periodic magnetic spin system.
Using Euler angles, we determined the interactions within
the local frame of reference for each spin, and applied these
rotations to a Holstein–Primakoff expansion to determine the
classical energy and SW frequencies. A Green’s function
technique was used to determine the SF intensities for any
eigenfrequency of the system.

This technique was then applied to the generalized
Villain model (GVM), which has been further generalized
by introducing a varying interchain coupling. By studying
the affects of this new interaction, we hope to gain a deeper
understanding of frustrated magnetic systems. To obtain the
phase boundaries and dynamics throughout the GVM′, we
introduced two spin configurations: SC1 and SC2.

With the phase space established, the SW frequencies
and SF intensities for the different phases were determined.
The SW frequencies were determined analytically through the
whole phase space. In most cases, the SF intensities were
determined numerically. However, we were able to provide
an analytical equation for the FM and zero-field SC2 phase
that showed how the SF intensity depends on the interactions.
Using these quantities, we presented a cross-section of the
phase space to give an overall picture of the GVM′.

We hope that this technique will prove useful in
the understanding of many different non-collinear magnetic
systems. Magnetic heterostructures as well as frustrated AFs
such as CuFeO2 are some of the systems that may be studied
with this technique.
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Appendix A. Rotation coefficients

Using Euler rotations with angles (θ and ψ) [26], each spin Si

is rotated into its local frame of reference using S̄i = U i Si ,
where the rotation matrix, U i , is given by

U i =
∣∣∣∣∣

cos(θi) cos(ψi ) cos(θi) sin(ψi ) − sin(θi)

− sin(ψi) cos(ψi ) 0
sin(θi) cos(ψi ) sin(θi) sin(ψi ) cos(θi)

∣∣∣∣∣ . (A.1)

When examining the interaction between two spin operators,
the overall rotation from one reference frame to another is

U i U
−1
j =

∣∣∣∣∣∣

Fi j
xx Fi j

xy Fi j
xz

Fi j
yx Fi j

yy Fi j
yz

Fi j
zx Fi j

zy Fi j
zz

∣∣∣∣∣∣
, (A.2)

where Fi j
αβ can be obtained from equation (A.1). It should be

noted that there are st different unitary matrices, one for each
magnetic SL r . The rotation coefficients for the generalized
second order Hamiltonian (equation (4)) are

Grs
1 = − 1

2 (F
rs
xx + Frs

yy − i(Frs
xy − Frs

yx))

Grs
2 = − 1

2 (F
rs
xx − Frs

yy − i(Frs
xy + Frs

yx)).
(A.3)

When calculating the SW intensities, one needs to
multiply each element in the spin Green’s function matrix
by a rotation coefficient that describes the transverse and
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longitudinal contributions to the SF. The rotational coefficients
of the transverse components 〈S±

r (0)S
∓
s (t)〉 are given by

2C2s−1,2r−1
±,∓ = Crs

xx,xx + Crs
yx,yx − (Crs

xy,xy + Crs
yy,yy)

∓ (Crs
xx,yy − Crs

yx,xy)∓ (Crs
xy,xy − Crs

yy,xx)

+ i
( ∓ (Crs

xx,yx − Crs
yx,xx )± (Crs

xy,yy − Crs
yy,xy)

− (Crs
xx,xy + Crs

yx,yy)− (Crs
xy,xx + Crs

yy,yx)
)

2C2s,2r−1
±,∓ = Crs

xx,xx + Crs
yx,yx − (Crs

xy,xy + Crs
yy,yy)

± (Crs
xx,yy − Crs

yx,xy)± (Crs
xy,xy − Crs

yy,xx)

+ i
( ∓ (Crs

xx,yx − Crs
yx,xx )± (Crs

xy,yy − Crs
yy,xy)

+ (Crs
xx,xy + Crs

yx,yy)+ (Crs
xy,xx + Crs

yy,yx)
)

2C2s−1,2r
±,∓ = Crs

xx,xx + Crs
yx,yx + (Crs

xy,xy + Crs
yy,yy)

∓ (Crs
xx,yy − Crs

yx,xy)± (Crs
xy,xy − Crs

yy,xx)

+ i
( ∓ (Crs

xx,yx − Crs
yx,xx )∓ (Crs

xy,yy − Crs
yy,xy)

− (Crs
xx,xy + Crs

yx,yy)+ (Crs
xy,xx + Crs

yy,yx)
)

2C2s,2r
±,∓ = Crs

xx,xx + Crs
yx,yx + (Crs

xy,xy + Crs
yy,yy)

± (Crs
xx,yy − Crs

yx,xy)∓ (Crs
xy,xy − Crs

yy,xx)

+ i
( ∓ (Crs

xx,yx − Crs
yx,xx )∓ (Crs

xy,yy − Crs
yy,xy)

+ (Crs
xx,xy + Crs

yx,yy)− (Crs
xy,xx + Crs

yy,yx)
)
,

(A.4)

where Crs
ab,cd ≡ U−1r

ab U−1s
cd is defined in terms of the inverse of

the rotation matrix elements. Note that r and s denote a specific
SL dependent on angles θ and ψ . The rotational coefficients
for the longitudinal component 〈Sz

r (0)S
z
s(t)〉 are given by

2C2s−1,2r−1
z,z = Crs

zx,zx − Crs
zy,zy − i(Crs

zx,zy + Crs
zy,zx)

2C2s,2r−1
z,z = Crs

zx,zx + Crs
zy,zy + i(Crs

zx,zy + Crs
zy,zx)

2C2s−1,2r
z,z = Crs

zx,zx + Crs
zy,zy − i(Crs

zx,zy + Crs
zy,zx)

2C2s,2r
z,z = Crs

zx,zx − Crs
zy,zy + i(Crs

zx,zy + Crs
zy,zx).

(A.5)

Appendix B. Spin-wave frequency coefficients

When γ = 1, the second order Hamiltonian (equation (20))
and SW frequencies were determined analytically by Fishman
in [24]. For the GVM′ Hamiltonian with general γ , the
coefficients for SC1 are

A(a,a)k = 2 cos(2θa)+ 2γ cos(θa − θb)− 2 cos2(θa) cos(kx)

+ B ′ cos(θa)

A(a,b)k = A(b,a)k = −2γ cos2((θa − θb)/2) cos(ky)

A(b,b)k = 2γ cos(θa − θb)− 2η cos(2θb)

+ 2η cos2(θb) cos(kx)+ B ′ cos(θb)

B(a,a)
k = sin2(θa) cos(kx)

B(a,b)
k = B(b,a)

k = −2γ sin2((θa − θb)/2) cos(ky)

B(b,b)
k = −η cos2(θb) cos(kx),

(B.1)

while the coefficients for SC2 are given by

A(a,a)k = 2(1 + γ cos(θa − θb)− cos(kx))+ B ′ cos(θa)

A(a,b)k = A(b,a)k = −2γ cos2((θa − θb)/2) cos(ky)

A(b,b)k = 2(γ cos(θa − θb)− η + η cos(kx))+ B ′ cos(θb)

B(a,a)
k = 0

B(a,b)
k = B(b,a)

k = −2γ sin2((θa − θb)/2) cos(ky)

B(b,b)
k = 0.

(B.2)
The SW frequencies are given in terms of A(r,s)k and B(r,s)

k ,
where r, s = a or b. The frequencies for the transverse modes
are given as

ωk = J S√
2

{
A(a,a)2k + A(b,b)2k + 2

(
A(a,b)2k − B(a,b)2

k

)

− 4
(

B(a,a)2
k + B(b,b)2

k

)
± R3k

}−1/2
, (B.3)

where

R2
3k = 4

(
A(a,a)2k + A(b,b)2k − 4

(
B(a,a)2

k + B(b,b)2
k

))

× (
A(a,b)2k − B(a,b)2

k

) + (
A(a,a)2k − A(b,b)2k

− 4
(
B(a,a)2

k − B(b,b)2
k

))2+8
(
A(a,a)k A(b,b)k + 4B(a,a)

k B(b,b)
k

)

× (
A(a,b)2k + B(a,b)2

k

) − 32A(a,b)k B(a,b)
k

× (
A(a,a)k B(b,b)

k + A(b,b)k B(a,a)
k

)
, (B.4)

and ± denote the higher-and lower-frequency modes. The
longitudinal mode frequencies for SC1 are obtained from these
expressions by kx → kx + π .
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