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Due to the lack of suitable single crystals, the average g-factor of anisotropic polycrystalline samples are
commonly estimated from either the Curie-Weiss susceptibility or the saturation magnetization. We show
that the average g-factor obtained from the Curie constant is always greater than or equal to the average
g-factor obtained from the saturation magnetization. The average g-factors are equal only for a single crystal
or an isotropic polycrystal. We review experimental results for several compounds containing the anisotropic
cation [Fe(C5Me5)2]+ and propose an experiment to test this inequality using a compound with a spinless
anion.

I. Introduction

Many orbitally nondegenerate magnetic molecules are highly
anisotropic with different g-factors parallel and perpendicular
to some local axis.1 The g-factors of an anisotropic molecule
can be measured by performing electron paramagnetic resonance2,3

on an oriented single crystal. However, suitable single crystals
of anisotropic materials are frequently unavailable. Conse-
quently, the average g-factors of polycrystalline materials are
commonly estimated from either the Curie-Weiss (CW)
susceptibility or the saturation magnetization. In this paper, we
demonstrate that the average g-factors gav

CW and gav
sat obtained by

these two techniques are different.

We show that gav
CW g gav

sat, where the equality only holds for
single crystals or isotropic polycrystals. Depending on the
distribution of polycrystalline axis, gav

sat/gav
CW can be substantially

smaller than 1. For polycrystalline samples that favor alignment
along one axis, gav

CW will typically overestimate the degree of
alignment along that axis compared to gav

sat. In practice, our results
apply either to spin-1/2 molecules or to higher-spin molecules
with single-ion anisotropy that is not too strong.

This paper is divided into five sections. Results for the average
g-factors are derived in section II. Section III demonstrates the
inequality gav

CW g gav
sat by using two simple distribution functions

for the polycrystalline axis with a simplified g-tensor. Section
IV reviews experimental results for several compounds contain-
ing the highly anisotropic cation [Fe(C5Me5)2]+. Section V
proposes an experiment to rigorously test the inequality gav

CW g
gav

sat and contains a brief summary.

II. Average g-Factors

In a magnetic field H along the n direction, the effective
Hamiltonian of an anisotropic molecule with spin S and an
orbitally nondegenerate ground state (so that the expectation
value of the orbital angular momentum vanishes) is given by4

where µB is the Bohr magneton, D is the single-ion anisotropy,
and gµν ) (gb)µν are the components of the g-tensor, which is
real and symmetric. The quantization axis m is introduced by
rewriting µBHΣµ,νgµνnµSν ) Km ·S, where

defines both the unit vector m and the constant K.
With energy Eeff ) 〈Heff〉, the magnetization M per ion is

obtained from

The thermal expectation values of the spin components are
defined by

where Tr is a trace over all diagonal matrix elements. Although
〈S〉 is always parallel to the quantization axis m, M is not
generally parallel to 〈S〉 due to the anisotropic g-tensor.

From this point on, we shall neglect the single-ion anisotropy
energy D. Of course, D has no effect for spin-1/2 molecules
because Sx

2 ) Sy
2 ) Sz

2 ) 1/4. For higher-spin molecules, D
can be neglected at very high temperatures kBT . DS2 or in
very high fields µBH . DS. Since measurements of the CW
susceptibility typically range in temperature from 50 to 300 K,
our theory applies to higher-spin molecules with DS2 , 5 meV.
By contrast, the restriction to high fields can be ignored because
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Heff ) µBH ∑
µ,ν

gµνnµSν + DSz
2 (1)

Kmµ ) µBH ∑
ν

gµνnν (2)

Mν ) -
∂Eeff

∂Hν
) -µB ∑

µ
gµν〈Sµ〉 (3)

〈SR〉 ) 1
Z

Tr{SR exp(-Heff/kBT)} (4)

Z ) Tr{exp(-Heff/kBT)} (5)
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single-ion anisotropy always lowers the estimated value of the
saturation magnetization, leaving the inequality gav

CW g gav
sat

unaffected.
When kBT is much larger than the exchange interactions, the

Curie constant C sums the contributions from each magnetic
ion. Expanding the exponentials in eqs 4 and 5 for high
temperatures, we obtain the spin and magnetization components

The generalized susceptibility is then given by

which utilizes the symmetry of the g-tensor.
For a partially aligned polycrystalline sample, F(cos θ, φ) is

the distribution function of the anisotropy axis z of the
crystallites with respect to the direction

of the magnetic field. Integrated over all solid angles, F(cos θ, φ)
is normalized to 1

For a single crystal oriented along the field direction, n ) z
and F(cos θ, φ) ) δ(cos θ - 1). For a nonaligned polycrystalline
sample, F(cos θ, φ) ) 1 for all values of φ and for cos θ between
1 (crystal axis along the field direction) and 0 (crystal axis
perpendicular to the field direction). As a polycrystal becomes
progressively more aligned parallel to the field, F(cos θ, φ)
becomes more heavily weighted toward cos θ ) 1. For the
purposes of this paper, many “single crystals” behave like
polycrystals due to the misalignment of the anisotropy axis for
the individual magnetic ions.

The average magnetic susceptibility of a polycrystalline
sample is obtained by integrating the projection of the magne-
tization M along the field direction n over all solid angles:

where

Defining the average Curie constant by �av ≡ Cav/kBT with
Cav ) (µBgav

CW)2S(S + 1)/3, we obtain the average g-factor

For a nonaligned polycrystalline sample with a diagonal
g-tensor gµν ) δµνgµµ, this reduces to the well-known result1,5

gav
CW ) (gxx

2/3 + gyy
2/3 + gzz

2/3)1/2.
To evaluate the saturation magnetization Msat, we must keep

in mind that Msat is not parallel to 〈S〉. For large fields, eqs 4
and 5 imply that

Combining this relation with eq 2 yields

Since the projection of Msat along n is given by

is the average g-factor obtained from the average saturation
magnetization Mav

sat.
Comparing eqs 14 and 18, we obtain the ratio

The Appendix provides a proof that gav
CW g gav

sat for any
distribution F(cos θ, φ) of crystal axis and for any magnitude
of the anisotropy. The equality gav

CW ) gav
sat holds under one

of two conditions: for an anisotropic single crystal with F(cos
θ, φ) ) δ(cos θ - cos θ0)δ(φ - φ0) or for an isotropic
polycrystal with [nTgb

2n] equal to a constant independent of
angle.

III. Polycrystalline Distribution Functions

In order to simplify the following discussion, we consider
the common case where the g-tensor is diagonal with perpen-
dicular gxx ) gyy ) g⊥ and parallel gzz ) g| components. In
terms of the ratio r ≡ g⊥/g|,

is independent of φ. Two simple distribution functions F(cos θ)
(both independent of φ) will be used to demonstrate our results.

〈SR〉 ) -S(S + 1)
3kBT

µBH ∑
ν

gRνnν (6)

MR ) S(S + 1)
3kBT

µB
2H ∑

µ,γ
gµRgµγnR (7)

�µν )
∂Mµ

∂Hν
)

µB
2S(S + 1)

3kBT (gb2)µν (8)

n ) (sin θ cos φ, sin θ sin φ, cos θ) (9)

∫ dΩ
4π

F(cos θ, φ) ≡∫0

2π dφ

2π ∫0

1
d(cos θ) F(cos θ, φ) ) 1

(10)

M ·n )
µB

2H

3kBT
S(S + 1)[nTgb

2n] (11)

�aV )
µB

2

3kBT
S(S + 1)∫ dΩ

4π
F(cos θ, φ)[nTgb

2n] (12)

[nTgb
2n] ≡ ∑

µ,γ,ν
nµgµγgγνnν (13)

gav
CW ) (∫ dΩ

4π
F(cos θ, φ)[nTgb

2n])1/2
(14)

〈SR〉 ) -SmR ) -
SµBH

K ∑
ν

gRνnν (15)

K ) µBH ∑
µ,ν

mµgµνnν ) µBH√[nTgb
2n] (16)

Msat ·n )
HSµB

2

K
[nTgb

2n] ) µBS√[nTgb
2n] (17)

gav
sat ≡

Mav
sat

µBS
) ∫ dΩ

4π
F(cos θ, φ)√[nTgb

2n] (18)

gav
CW

gav
sat

)
(∫ dΩ

4π
F(cos θ,φ)[nTgb

2n])1/2

∫ dΩ
4π

F(cos θ,φ)√[nTgb
2n]

(19)

[nTgb
2n] ) g|

2((1 - r2)cos2 θ + r2) (20)
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Figure 1 uses the bimodal distribution function

where x ≡ cos θ. This distribution describes a polycrystalline
sample with fraction c aligned along the field direction and
fraction 1 - c aligned perpendicular to the field. For c ) 0,
gav

CW ) gav
sat ) g⊥ and for c ) 1, gav

CW ) gav
sat ) g|. For 0 < c < 1,

gav
sat/gav

CW < 1. In the limit c f 0 for r ) 0, gav
sat/gav

CW f 0 because
gav

sat ∝ c while gav
CW ∝ �c. Results for 1/r ) g|/g⊥ (Figure 1a)

can be mapped onto the results for r ) g⊥/g| (Figure 1b) with
c f 1 - c.

Figure 2 uses a step-function distribution with F(cos θ)
constant for θ < θ0 and 0 otherwise so that the crystal axis form
a cone around the field direction. The distribution with θ0 <
π/2 may describe a sample that was partially aligned in an
eicosane matrix by a high magnetic field. With θ0 ) π/2 and
F(cos θ) ) 1, this distribution describes a nonaligned polycrys-
talline sample, in which case gav

sat/gav
CW f �3/2 ≈ 0.866 as r f

0. Results for 1/r e 1 and r e 1 are not simply related.
Clearly, the ratio gav

sat/gav
CW can be smaller for the bimodal than

for the conical distribution. Since the actual distribution of
polycrystalline axis may differ from one sample to another of
the same compound, it is not possible to provide a definitive
estimate for the ratio gav

sat/gav
CW. This type of variation can be seen

in Table 1, where different groups obtain different estimates of
gav

CW and gav
sat for the same compound.

As mentioned in section II, incomplete saturation of the
magnetization will not affect the inequality gav

CW > gav
sat for a

polycrystalline sample. But there are several experimental factors
that can lead to its violation. The strong magnetic field applied

to obtain the saturation magnetization may also partially align
the polycrystalline axis, thereby enhancing Mav

sat and gav
sat. The

magnetic susceptibility may not be measured at a sufficiently
high temperature to eliminate the coupling between the magnetic
constituents. This will depress gav

CW for antiferromagnetic
coupling and enhance gav

CW for ferromagnetic coupling. Also keep
in mind that gav

CW and gav
sat must be evaluated for the same

polycrystalline sample with the same distribution of polycrys-
talline axis in order for the inequality gav

CW > gav
sat to hold.

IV. Experimental Results for a Highly Anisotropic
Cation

To apply these ideas, we consider one of the most anisotropic
classes of molecule-based magnets: quasi-one-dimensional
electron-transfer salts with the S ) 1/2 cation [Fe(C5Me5)2]+.
Sketched in Figure 3 this cation is characterized by strong
anisotropy with g⊥ ≈ 1.25 and g| ≈ 4.4 so that the Fe spin

Figure 1. Ratio of average g-factors gav
sat/gav

CW with (a) 1/r and (b) r
between 1 and 0 in increments of 0.1 for a bimodal distribution
F(cos(θ)) of crystal axis with fraction c aligned along the z axis (parallel
to the field) and fraction 1 - c aligned in the xy plane.

F(x) ) cδ(x - 1) + (1 - c)δ(x) (21)

Figure 2. Ratio of average g-factors for a conical distribution F(cos(θ))
of crystal axis that is uniform between 1 (θ ) 0) and cos(θ0) with (a)
1/r and (b) r between 0 and 1 in increments of 0.1. The end point θ0

) π/2 describes a nonaligned polycrystalline sample.

TABLE 1: Average g-Factors Obtained from the CW
Susceptibility and the Saturation Magnetization for Eight
Compounds with the Anisotropic Cation [Fe(C5Me5)2]+ a

anion gav
CW gav

sat gav
sat/gav

CW ref

HDDQ- 3.83 3.96 1.03 5
[HFeW12O40]-4 2.65 2.54 0.96 7
TCNE- (poly) 2.97 1.94 0.65 8
TCNE- (|) 4.07 3.87 0.95 9
TCNE- (⊥) 1.25 1.15 0.92 9
TCNQ- (1FO) 3.07 2.15 0.70 10
TCNQ- (1FO) 3.64 3.99 1.10 11
[C4(CN)6]- 4.61 4.34 0.94 12 and 13

a The contributions of the anion to the g-factors have been
removed.
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preferentially aligns along the chain axis perpendicular to the
C5Me5 pentagons.3 But g⊥ and g| may vary slightly from one
compound to another due to the distortion of the cation induced
by the neighboring anions.

For this spin-1/2 cation, the single-ion anisotropy D neglected
in our earlier derivation has no effect. The intrachain exchange
interaction in quasi-one-dimensional compounds with magnetic
anions is of order 6 meV or 60 K.6 Hence, measurements of
the magnetic susceptibility at room temperature should provide
fairly good estimates for the average g-factor gav

CW of the
[Fe(C5Me5)2]+ cation. Because the strong intrachain interactions
can only suppress the estimated values of Mav

sat and gav
sat, they

will not affect the inequality gav
CW g gav

sat.
In order to isolate the contribution of the anisotropic cation,

we subtract the contribution of the anion, if any. For the average
Curie constant and saturation magnetization

where the anion is assumed to be isotropic. Recall that
Cav(cation) ∝ (gav

CW)2 and Mav
sat(cation) ∝ gav

sat, where gav
CW and gav

sat

are the cation contributions to the average g-factors.
Table 1 compares gav

CW and gav
sat for several [Fe(C5Me5)2]-based

compounds with different anions or distributions F(x). The inequal-
ity gav

CW > gav
sat is satisfied in six of eight cases, including for the

three-dimensional compound [Fe(C5Me5)2]4[HFeW12O40].7 Notice
that gav

sat/gav
CW lies between 0.92 and 0.95 for two polycrystalline

samples containing the spin-1/2 TCNE- anion,9 one primarily
aligned along the field direction and the other primarily aligned in
the plane perpendicular to the field.

There are two puzzling exceptions where gav
sat > gav

CW, most
notably for a sample containing the spinless HDDQ- anion.5

Although the absence of intrachain exchange interactions for
the [Fe(C5Me5)2]HDDQ compound would seem to increase the
reliability of both susceptibility and saturation measurements,
the measured value for the ratio gav

sat/gav
CW is slightly greater than

1. While the ferromagnetic (1FO) phase of the second compound
with the spin-1/2 TCNQ- anion11 also fails to satisfy the
inequality gav

sat < gav
CW, the estimated value for the ratio gav

sat/gav
CW

) 1.10 may contain an experimental error greater than 10%.

V. Conclusion

One way of testing the inequality gav
CW g gav

sat would be to
prepare a polycrystalline HDDQ- compound in an eicosane
matrix11 that fixes the polycrystalline axis. The high magnetic
fields used to evaluate the saturation magnetization would not
disturb the distribution F(x) of polycrystalline axis and exchange
within each chain would not contaminate the high-temperature
magnetic susceptibility.

To summarize, this paper has demonstrated a systematic
difference between the average g-factors evaluated from the Curie
constant and saturation magnetization. Due to the general inequality
gav

CWg gav
sat, the saturation magnetization and CW susceptibility will

provide different estimates for the anisotropy and alignment of a
polycrystalline sample. For a diagonal g-tensor with g| > g⊥, gav

CW

will overestimate the degree of alignment along the easy axis
compared to gav

sat. The inequality proven in this paper can be used
to check experimental results and to guide estimates for the
alignment of polycrystalline samples.
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Appendix: Proof of Inequality

This appendix demonstrates the inequality

where F(y) g 0 and f(y) g 0 for any y and F(y) is normalized
to 1. It is easily shown that

Since both sides of eq A1 are positive, the desired inequality
follows. By converting the integral over y into a double integral
over solid angles, this proof is readily generalized to show that
gav

CW g gav
sat.
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Figure 3. [Fe(C5Me5)2]+ cation showing two pentagons of carbon
atoms, each with five methyl (Me) groups, above and below a Fe(III)
ion in a low-spin S ) 1/2 state with anisotropic g-factors g⊥ and g|.

Cav ) C(anion) + Cav(cation) (22)

Mav
sat ) Msat(anion) + Mav

sat(cation) (23)

(∫0

1
dy F(y) f(y))1/2

g ∫0

1
dy F(y) √f(y) (A1)

F ≡ ∫0

1
dy F(y) f(y) - (∫0

1
dy F(y) √f(y))2

) ∫0

1
dy F(y) {√f(y) - ∫0

1
dz F(z) √f(z)} 2

g 0
(A2)
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