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The dynamical properties of a recently introduced phenomenological model for high-temperature supercon-
ductors are investigated. In the clean limit, it was observed that none of the homogeneous or striped states that
are induced by the model at low temperatures can reproduce the recent angle-resolved photoemission results
for La2−xSrxCuO4 �Yoshida et al., Phys. Rev. Lett. 91, 027001 �2003��, which show a signal with two branches
in the underdoped regime. On the other hand, upon including quenched disorder in the model and breaking the
homogeneous state into “patches” that are locally either superconducting or antiferromagnetic, the two-branch
spectra can be reproduced. In this picture, the nodal regions are caused by d-wave superconducting clusters.
Studying the density of states �DOS�, a pseudogap is observed, caused by the mixture of the gapped antifer-
romagnetic state and a d-wave superconductor. The local DOS can be interpreted using a mixed-phase picture,
similar to what is observed in tunneling experiments. It is concluded that a simple phenomenological model for
cuprates can capture several of the one-particle features observed in the underdoped regime of these materials.
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I. INTRODUCTION

Since the discovery of the high-Tc cuprates it has been
widely suspected that key information for the understanding
of superconductivity lies in the curious regime located be-
tween the insulating �antiferromagnetic, AF� and metallic
�superconducting, SC� phases.1 Whereas these two phases
are individually fairly well understood phenomenologically,
the intermediate regime is, even after several years of re-
search, still to a large degree mysterious. Experiments have
often only been able to decide what this state is not—for
example, it is not a simple Fermi liquid or any other clearly
defined, well-known state. This has given rise to a variety of
proposals in describing this peculiar regime, often in terms
of “exotic” order scenarios such as competing charge-density
wave2 �CDW� or pair-density wave states,3 staggered-flux
phases,4 spin-Peierls5 states and, among others, orbital
currents.6,7 The much-debated pseudogap �PG� in the density
of states �DOS� that appears in this phase may then be re-
garded as a manifestation of a hidden order. Alternatively, it
has been suggested that the strange phase interpolating be-
tween AF and SC states may be characterized by a particu-
larly strong attraction between charge carriers, strong enough
to drive Tc down, and leading to a state of preformed, but yet
uncondensed, pairs.8 In this scenario, the PG temperature
TPG signals the onset of pairing fluctuations. On the other
hand, from the experimental viewpoint the regime between
the AF and SC phases is often described as “glassy,” with
slow dynamics.9 The long discussions on these issues show
that an understanding of the low-hole-doped cuprates has not
been reached yet, and more work is needed.

In recent years, progress in both sample preparation and
measurement techniques has led to very interesting experi-
mental results for this fascinating phase. Especially impor-

tant in this context are the insights gained via angular-
resolved photoemission spectroscopy �ARPES�,10 since this
technique allows for a direct tracking of the Fermi surface
�FS�—if it exists—and therefore provides crucial informa-
tion for the evolution of the metallic phase from its insulat-
ing parent compound. Moreover, in the particular case of
La2−xSrxCuO4 �LSCO�, a relatively simple single-layer cu-
prate, those data have been obtained over the whole doping
range x, starting from the antiferromagnetic Mott insulator at
x=0 up to the “optimal” doping x=0.15.11 These results ap-
parently show that portions of a FS �nodal regions� are
present even for the smallest doping levels considered, such
as x=0.03, where the material is not superconducting.45 This
suggests that even the slightly doped Mott insulator is em-
phatically different from its half-filled parent compound, and
that it should be best understood as some sort of insulator
with coexisting �embedded� metallic regions. In fact, the
doping evolution of ARPES data12 displays two different
branches, one evolving from the insulator deep in energy and
the second created by hole doping and containing nodal qua-
siparticles. In addition, it was found that the FS fragments,
which are located around �� /2 ,� /2�, do not expand as the
hole density is increased—as one would expect for a conven-
tional metallic state—but rather acquire more spectral
weight. Only if the temperature is increased does this FS arc
widen, reminiscent of the closing of the gap in superconduct-
ors. As it will be argued in this paper, a natural explanation
for all these results is that there are already d-wave paired
quasiparticles present in the glassy phase. The simplest such
picture is one of phase separation �PS�, where the metallic
and insulating states inhabit spatially separated �nanoscale�
regions, a view recently introduced by Alvarez et al.13 This
explanation contradicts the exotic homogeneous states pro-
posed as precursors of the SC state, but nevertheless the
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reader should note that a mixture AF+SC is highly nontrivial
as well, and in many respects it is as exotic as those propos-
als. For instance, this state could have “giant” effects, as
recently discussed,13 results compatible with those found ex-
perimentally by Bozovic et al.14 and others15,16 in the context
of the giant proximity effect.

One might also note that similar concepts have been pro-
posed in the context of the metal-insulator �MI� transition in
the manganites, and have found widespread acceptance
there.17,18 For this reason, there exists a concrete possibility
to frame the MI transition in strongly correlated systems in a
unifying picture of phase separation and subsequent percola-
tion. Indeed, such a proposal has been made19 �by some of
the authors�, claiming that such a mixed-phase state is the
consequence of impurity effects acting in regions of the
phase diagram, where the AF and SC phase are very close in
energy. In fact, quenched disorder has such an extraordinary
and unusual influence because of the possible first-order na-
ture of the clean limit MI transition �which is still not experi-
mentally accessible�, and the effective low-dimensionality of
the transition-metal oxides under consideration. Note that in
some scenarios20,21 a similar sharp transition AF-SC is in-
voked, but the influence of quenched disorder has not been
explored. In our case, quenched disorder is crucial to pro-
duce the intermediate state between the AF and SC phases.

An important experimental tool in detecting coexisting
phases is scanning tunneling microscopy �STM�, which pro-
vided clear indication for mixed-phase states in manganites
some years ago.17,18 More recently, similar results have also
become available in slightly underdoped Bi2Sr2CaCu2O8+�

�BSCCO�,22 suggesting the existence of metallic and insulat-
ing phases on nanoscale �typically 2–3 nm� regions. Recent
results relate the location of these clusters with the excess of
oxygen,23 underlining the key role of quenched disorder to
understand some high-Tc properties. Unfortunately, it is not
possible to extend these measurements into the strongly un-
derdoped regime, as BSCCO becomes chemically unstable.
However, such STM results were recently reported by
Kohsaka et al.24 for Ca2−xNaxCuO2Cl2 in the neighborhood
of the superconductor-insulator transition point at x=0.08.
The compound Ca2−xNaxCuO2Cl2 is structurally closely re-
lated to LSCO, and therefore offers a unique opportunity to
compare real- and momentum-space imaging. Kohsaka et al.
identified separate metallic �i.e., SC� and insulating areas of
approximately 2 nm in diameter and demonstrated that the
two phases in question are only distinguished by a different
ratio of metallic and insulating clusters. Together with the
BSCCO data this points toward a mixed-phase description of
high-temperature superconductors. Very recently, evidence
of electronic phase separation has also been unveiled
by Oh et al.25 in the most detailed doping-controlled
superconductor-insulator transition ever reported.

It is clear that both STM and ARPES method can be chal-
lenged since they are surface probes and not bulk investiga-
tions. However, recent bulk measurements using Raman
scattering have provided results that also may best be inter-
preted in terms of mixed-phase states and have given further
support for such scenarios. Machtoub et al.26 have studied
LSCO at x=0.12 in the SC phase and in the presence of a
magnetic field. The results were interpreted in terms of an

electronically inhomogeneous state in which the field en-
hances the volume fraction of a phase with local AF order at
the expense of the SC phase. The same conclusions were
reached upon studying neutron scattering in underdoped
�x=0.10� LSCO, where it was claimed that the observed ap-
pearance of an AF phase as the SC is suppressed by an ap-
plied magnetic field points toward coexistence of those two
phases.27 Recent infrared experiments on the Josephson
plasma resonance in LSCO have also suggested a spatially
inhomogeneous SC state.28 The same conclusion was
reached in investigating a high-field magnetoresistance.29

Studies by Keren et al.30 using muon spin resonance tech-
niques have also led to microscopic phase separation, involv-
ing hole-rich and hole-poor regions. Using a combination of
dc transport and infrared spectroscopy, it was recently ob-
served in both LSCO and YBa2Cu3Oy �YBCO� that the local
environment of mobile charges in cuprates remains unaltered
upon doping, a result compatible with our model.31

Clearly, the notion of electronic phase separation32 has a
long history in the cuprate literature, going back at least to
the original proposal of the stripe state.33–36 Although stripes
as originally envisioned exist only for very specific doping
levels, but this may simply be a consequence of the approxi-
mation used and one may expect stripelike correlations or
corresponding charge fluctuations to appear for a broad array
of doping fractions. Stripes are only one possible avenue to
introduce inhomogeneous states, but they have nevertheless
attracted considerable interest. This is understandable since
in the mid-1990s experimental evidence from inelastic neu-
tron scattering seemed to demonstrate stripelike charge order
in Nd-doped LSCO at hole doping x=1/8.37 However, the
more recent investigations mentioned here suggest a broader
picture of phase separation, with nanocluster “patches” of
random sizes and scales, rather than more organized quasi-
one-dimensional stripes.

Even if a �general� mixed-phase scenario is accepted ow-
ing to experimental evidence, it is still not clear whether or
not the electronic inhomogeneity is caused by the �supposed�
inherent tendency of strongly coupled fermionic systems to
phase separate or by the imperfect screening of the dopant
ions due to the proximity of the Mott insulating phase and
concomitant strong disorder potentials. Those two scenarios
are not mutually exclusive, but put different emphasis on the
aspect of random �chemical� disorder: whereas in the latter
scenario it is thought that disorder is strong enough to over-
come the tendency of fermionic ensembles to form a homo-
geneous system, particularly when phases compete, in the
first one chemical disorder may act as a mere catalyst of
already present tendencies, possibly leading to a pinning of
stripes and/or charge-depleted regions. If, as one might as-
sume, underdoped cuprates lie in between those extremas,
some materials could be more influenced by disorder than
others. Nevertheless, here we are primarily focusing on the
disorder-induced scenario, but one is certainly dealing with
highly complex systems when studying lightly doped transi-
tion metal oxides.

Our goal here is to investigate the spectroscopic proper-
ties of systems with competing AF and SC order, and to
compare them to recent ARPES and STM experiments, in
order to develop a coherent understanding of cuprates from
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the mixed-phase scenario point of view. The present paper
builds upon the recent publication by Alvarez et al.,13 where
the proposed state was described in detail and “colossal”
effects for cuprates were predicted. The approach we fol-
lowed assumes as an experimental fact that AF and SC
phases compete, and addresses how the interpolation from
one phase to the other occurs with increasing hole doping,
once sources of disorder are introduced. It is concluded here
that recent LSCO ARPES results can be neatly explained by
the mixed-phase scenario. However, it remains to be inves-
tigated whether other properties, particularly transport, can
be understood in this picture.

The paper is organized as follows: In Sec. II the formal
aspects of the problem are described, including models and
approximations. Section III addresses the ARPES data for �i�
a variety of uniform states �showing that none fits the experi-
mental results� and �ii� in the presence of quenched disorder
that leads to the mixed-phase state. Results for the latter are
found to reproduce experiments fairly well. In Sec. IV, our
results for the local DOS are presented and discussed. Con-
clusions are provided in Sec. V.

II. THEORY AND METHODS

A minimum model for describing the interplay between
AF, SC �and possibly charge order �CO�� can be found in the
extended Hubbard model Huv, defined as

Huv = − t �
�ij�,�

�ci�
† cj� + H.c.� − �

i�
�ini� + �

i
Uini↑ni↓

− �
�ij�

Vijninj, �1�

where ci� are fermionic operators on a two-dimensional �2D�
lattice with N=L�L sites. t is the hopping between nearest-
neighbor �NN� sites i , j, and serves as the energy unit. Ui is
the usual Hubbard term and Vij�0 describes an effective NN
attraction. The local particle density ni=��ci�

† ci� is regulated
by the chemical potential �i, which, like the interactions Ui
and Vij, is allowed to vary spatially. To address the properties
of this model, the four-fermion terms in Huv are subjected to
a Hartree-Fock decomposition,

ni↑ni↓ → ni↑�ni↓� + �ni↑�ni↓ − �ni↑��ni↓� ,

ninj → �ijcj↓
† ci↑

† + �ij
�ci↑cj↓ − ��ij�2, �2�

where we have assumed that the predominant tendency in the
Vij term is toward superconductivity rather than particle-hole
pairing, which would favor charge ordering or PS. Thus,
from now on we will focus on the simplified case of an
AF-SC competition only and ignore further intricacies of the
full interacting model. The transformation of the Hubbard
term can also be performed in a way that preserves the origi-
nal O�3� symmetry, leading to a term that is similar to the
exchange term in models that describe double exchange,
which have been extensively studied numerically. Both the
O�3� and the Z2 model considered here �Eq. �2��, however,
lead to similar physics, namely, AF at half filling and stripes
at low doping �see below�, so that we assume that this par-

ticular simplification does not alter our results and/or conclu-
sions. After such a transformation, one is left with two new
�site-dependent� order parameters �OPs�, mi and �ij:

mi 	 �ni↑� − �ni↓� ,

�ij 	 �ci↑cj↓� . �3�

mi is the local magnetization, and �ij is the SC amplitude,
defined on the link ij. The Hamiltonian Huv→HHF
=HHF� +HHF

cl now is quadratic in electron operators and writ-
ten as

HHF = − t �
�ij�,�

�ci�
† cj� + H.c.� − �

i�
�ini�

− �
�ij�

��ijci↑cj↓ + H.c.� +
1

2�
i

Uimisi
z + �

�ij�
Vij��ij�2

+
1

4�
i

Ui��ni�2 − mi
2� , �4�

after we have introduced the local spin operator
si

z= 1
2ni↑−ni↓. HHF is effectively a single-particle Hamiltonian

with 2N basis states, which can be readily diagonalized using
library subroutines in the general case. It needs to be stressed
that the third line in Eq. �4� �	HHF

cl � contains c numbers only,
and no operator terms, unlike the first two rows �	HHF� �. It
is, however, the interplay between the second line in Eq. �4�,
which tends to increase the OP amplitudes and the third one,
which enforces an energy penalization for large values of
��ij�, mi that determines their actual values. We have resorted
to two different approaches in studying HHF, a conventional
mean-field method and a Monte Carlo �MC� technique, both
of which we will describe in detail below.

A. Mean-field method

The mean-field method relies on the self-consistency con-
dition Eq. �3� to determine the appropriate values of mi, �i,
and also ni�. Diagonalization itself amounts to performing
a slightly modified Bogoliubov—de Gennes �BdG�
transformation,38–40 where the electron operators ci� are ex-
pressed in terms of new quasiparticles 	n�, defined as

ci↑ = �
n=1

N


an�i�	n↑ − bn+N
* �i�	n↓

† � ,

ci↓ = �
n=1

N


bn�i�	n↓ + an+N
* �i�	n↑

† � . �5�

an�i� and bn�i� in Eq. �5� are complex numbers and are cho-
sen so that a Hamiltonian that is diagonal in 	n� emerges.
The OP amplitudes are then determined via the self-
consistency condition �3�, which allows us to express both mi
and �ij in terms of the wave functions an�i�, bn�i�:
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�ij = �
n=1

N

an�i�an+N
* �j��	n↑	n↑

† � − bn+N
* �i�bn�j��	n↓

† 	n↓� ,

ni↑ = �
n=1

N

�an�i��2�	n↑
† 	n↑� + �bn+N�i��2�	n↓	n↓

† � ,

ni↓ = �
n=1

N

�bn�i��2�	n↓
† 	n↑� + �an+N�i��2�	n↓	n↓

† � . �6�

where �	n�
† 	n��= 
1+e
En��−1, i.e., the Fermi function f with

properties f�x�=1− f�−x�, 
=1/T is the inverse temperature,
and En� are the eigenvalues of Eq. �4�. For the time being,
however, we will work at T=0, which simplifies those rela-
tions considerably, and also guarantees better convergence of
the self-consistent loop.

The self-consistent set of Eqs. �3�–�6� can be solved in an
iterative procedure, provided a meaningful starting wave
function 
an�i��0 is chosen. From the knowledge of the re-
sulting eigenfunctions, all relevant observables such as the
single-particle spectral function

A�k,�� = −
1

�
Im G�k,�� , �7�

where G�k ,�� is the �retarded� Green’s function and the lo-
cal DOS

N�i,�� = −
1

�
Im G�i,�� �8�

can be calculated in a straightforward fashion. Those two
observables are the crucial quantities with regard to ARPES
and STM experiments, respectively. Although this approach
is easy to implement and well established, we want to men-
tion here that it has its pitfalls, which lie in the correct choice
of 
an�i��0. This is particularly problematic in the regime of
small hole doping �=1− �1/N��ini, ��1, which is known to
lead to “stripe” states for not too small values of U, provided
a sufficiently correct selection of the seed functions is made.
The exact nature of those stripe states, however, might de-
pend on the linear lattice dimension L; also a possible inter-
mediate state between the undoped AF insulator and the
stripe state is beyond the grasp of the BdG approach �in the
clean limit, at least�. Of course, it is this particular regime
that is of interest in this work—and for cuprates in general—
and therefore we have in addition resorted to an alternative
approach, which does not suffer from the disadvantages of
the self-consistent technique, but provides an accurate, unbi-
ased solution at any temperature. This is the MC technique
described in the next subsection.

B. Monte Carlo procedure

For this purpose, Hamiltonian �4� is studied using a con-
ceptually different approach, which stresses the importance
of the c-number terms �ijVij��ij�2, �i�Ui /4�mi

2, which play
only a minor role in the self-consistent approximation.
The MC technique also offers the additional advantage of

treating �ij as a complex variable, and allows us to write
�ij= ��ij�ei
ij, where 
ij is the phase associated with the bond
between sites i, j. We will change our notation from here on
and write �ij=�i�, where � is a unit vector along either the
x or y direction. In a similar fashion, we write 
i

� instead of

ij and also assume Vi�=Vi. Therefore, we regard �i� as a

site variable and, thus, finally write �i�= ��i�ei
i
�
.

Within the MC method, the partition function ZHF pertain-
ing to HHF, given as

ZHF = �
i=1

N 

−1

1

dmi exp�
�
i

Ui

4
mi

2�
�


0

�

d��i�exp�− 
�
i

Vi��i�2�
�


0

2�

d
i
xd
i

yZc�
mi�,
��i��,

i
x,y�� , �9�

is calculated via a canonical MC integration over the ampli-
tudes mi, ��i� and the phases 

i

x,y�. In Eq. �9�, the Uini term
from Eq. �4� has been absorbed into the local chemical
potential. The purely electronic partition function

Zc=Tr
e−
HHF� � is obtained after diagonalizing HHF� for a
given, fixed set of those parameters and this diagonalization
is responsible for limiting the lattice sizes. In fact, we chose
another simplification and perform the “magnetic” integra-
tion over the signs only, rather than the amplitudes as well.
This amounts to replacing the OP mi by an Ising spin Si

z,
which may assume the values ±1 only. We will also replace
Uimi by a single term Ji, without loss of generality �i.e., a
certain value of Ji corresponds to a certain value of Ui and
vice versa�. Compared to the standard procedure described
above, the MC technique has some distinct advantages, in
describing both the AF as well as the SC degrees of freedom
�DOFs�, since its results do not depend on the initial configu-
ration. On the other hand, the MC technique requires a very
large number of diagonalizations, typically 106 rather than
the �102 iterations necessary to achieve self-consistency in
BdG methods. This renders calculations on system sizes
common in BdG �N�1000� impossible.46

The quantities of interest, such as A�k ,�� and the local
DOS, can be evaluated in a straightforward fashion, either
directly or via the Green’s function, which itself can be eas-
ily derived from the MC process. Similar techniques have
been pursued in the double-exchange model, which is rel-
evant for the manganites, and an in-depth description can be
found in Ref. 17. Further �technical� information with re-
spect to the calculations presented here is provided in the
Appendix.

III. SPECTRAL FUNCTIONS IN THE PRESENCE OF
COMPETING STATES

In this section, we will present the analysis of the one-
particle spectral function for several regimes of the phase
diagram of HHF. For general doping and interaction values
this can only be done with the MC routine described above.
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A. Clean system

The phase diagram of HHF for the clean case �i.e., without
quenched disorder� was presented in Ref. 13 and is repro-
duced for the benefit of the reader in Fig. 1. The figure shows
two “paths,” which describe the transition from the AF to the
SC phase. The first one crosses a region of long-range order
with local AF-SC coexistence, whereas the second one in-
volves an intermediate “stripe” state.41 We do not discuss
here the exact nature of the stripe state, which may be hori-
zontal or diagonal, depending on parameters such as doping
and lattice size. For our purposes it is sufficient that an in-
homogeneous state—stripe, PS, or CO—exists, and what its
effects are with regards to experimental probes. Four repre-
sentative points along those two paths �see Fig. 1� were cho-
sen and the corresponding spectral functions calculated.

Figure 2�a� shows A�k ,�� for the purely SC case �J=0�
for �=−1, leading to a uniform density �n��0.7. Figure 2�b�
is for the case when the system presents local AF-SC coex-
istence �namely, both OPs simultaneously nonzero at the
same site� and Fig. 2�c� for the pure AF phase. The red color
indicates large spectral weight, whereas the blue one indi-
cates very low intensity. In Fig. 2�c�, the AF gap can be
clearly identified, together with the typical dispersion of the
AF �upper branch�, Ek= ±��k

2 +J2, which makes Ek gapped
everywhere. This is in stark contrast to Fig. 2�a�, where there

are electronic states with appreciable intensity near the Fermi
energy �EF� close to �� /2 ,� /2�, allowed by the symmetry of
the pairing state. The “intermediate” state with local AF-SC
coexistence is not drastically different from the one with AF
correlations only, and its resulting energy dispersion can be
simply described by Ek= ±���k−��2+J2+�k

2 once the pa-
rameter �k is known. This conclusion is not supposed to
change using the SO�3�-symmetric spin model.

Similarly, along path 2 of Fig. 1 a point in the phase
diagram with striped order was chosen, and the correspond-
ing spectral density is given in Fig. 2�d�. This result com-
pares very well with previous calculations, �Ref. 42, Fig. 7�:
for instance, the system presents a FS crossing near �� ,0�.
Whereas the results from Fig. 2�a� and 2�c� refer to generally
well-understood phases of the cuprate phase diagram, Figs.
2�b� and 2�d� are of relevance for the discussion related to
the intermediate state, since they are both candidates for the
intriguing phase in between.

For comparison, ARPES data from Ref. 12 for LSCO are
reproduced in Fig. 3. For very low doping x=0.03 �just in-
side the spin-glass insulating �SGI� phase� a flatband is ob-
served close to −0.2 eV in addition to a lower branch �en-
ergy �−0.55 eV�, which is already present in the x=0 limit
and therefore can be safely identified with the lower Hubbard
band. As x is increased even further, the lower branch retains
its energy position, but gradually loses its intensity until it is
almost completely invisible after the onset of the SC phase at
x=0.06.11 In contrast, the second branch gains in intensity
with doping, and also moves continuously closer toward the
Fermi level; at the same time it starts to develop a coherence
peak, which is clearly visible at optimal doping. The main
experimental result here, namely, the existence of two
branches near �� ,0� �and also �� /2 ,� /2��, cannot be repro-
duced using spatially homogeneous models as demonstrated
above. The cases of AF, SC, and coexisting AF+SC states all
show only one branch below EF nearby �� ,0�. This was
already seen in Figs. 2�a�–2�c� for the MC data and is shown
again in Fig. 4�a� for all those configurations �in all these
cases the exact dispersion is known�.

If stripe configurations are considered, as in Fig. 2�d�
�MC data� and Fig. 4�b� �perfect configuration of stripes�,

FIG. 1. �Color online� MC phase diagram for Eq. �4� without
disorder at low temperatures, using V=1−J /2, reproduced from
Ref. 13. Five regions were observed: AF, d-SC, stripes, coexisting
SC+AF, coexisting stripes+SC, and metallic. White �yellow� dots
indicate where A�k ,�� was calculated in the present work �see Fig.
2�.

FIG. 2. A�k ,��, evaluated via MC simulation, on an 8�8
lattice for �a� �J ,V ,��= �0,1 ,−1� �SC state�, �b� �J ,V ,��
= �0.6,0.7,−0.4�, coexisting AF-SC state, �c� �J ,V ,��
= �0.7,0.65,−0.3� �AF�, and �d� �J ,V ,��= �1,0.5,−1.2�, striped
state. White spots mark high intensity.

FIG. 3. �Color online� Experimental ARPES spectra for LSCO
with x=0 and 0.03. Bright spots signal high intensity. Note the
development of a �flat� second high-intensity branch near �� ,0� and
the emergence of a strongly dispersive signal at the Fermi level as
the system is doped away from the half-filled insulator �reproduced
from Ref. 12�.
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there will appear two branches near EF, but the form of the
dispersion is clearly different from the experimental data in
Fig. 3. The investigation of A�k ,�� for a spin-fermion
model, related to HHF, but retaining the SO�3� spin symme-
try, has been done carefully in Ref. 42. Again, stripe phases
were found for certain parameters and while in some cases
the existence of two branches near �� ,0� was reproduced,
certainly there are no indications of “nodal” quasiparticles at
�� /2 ,� /2�. Then, stripes alone are not an answer to interpret
the results of Yoshida and co-workers. As a consequence, we
conclude that neither local AF+SC coexistence nor stripes
can fully account for the ARPES results in the low-doping
limit and alternative explanations should be considered.

Beyond the results already described, ARPES also pro-
vides surprising insights/results for momenta other than
�� ,0� �Fig. 3�: along the Brillouin zone diagonal, a disper-
sive band crossing EF is found already in the SGI phase.
The FS-like feature consists of a small arc centered at
��� /2 ,� /2�; surprisingly, as more holes are added, this arc
does not expand, but simply gains spectral weight. This in-
crease in spectral intensity is roughly proportional to the
amount of hole doping for x�0.1, although it grows more
strongly thereafter. This observed increase in spectral weight
is in relatively good agreement with the hole concentration
nH derived from Hall measurements and was interpreted as a
confirmation of the hole transport picture. Below, however,
we will provide a different explanation for this behavior.

The aforementioned large gap ���0.2 eV� at �� ,0�, to-
gether with the existence of the apparent gapless excitations

around �� /2 ,� /2� contains the essence of the PG problem.
The shrinking of this gap and the concomitant appearance of
a coherence peak has, for example, been interpreted as the
evolution of a strongly coupled SC �at low doping� into a
conventional BCS-SC at optimal doping. In this scenario, the
large gap size directly reflects a large pairing scale, whereas
the smallness of Tc is attributed to the preponderance of
phase fluctuations in such a regime, which would outrule the
existence of a phase-coherent SC condensate at higher tem-
peratures. Alternatively, this gap may be regarded as the sig-
nal of a hidden order, which is not otherwise manifested. In
other words, the relatively large excitation gap
�PG�0.1 eV is explained either in terms of �i� a large SC
gap �PG=�SC itself, or �ii� in terms of an additional, up-to-
now mysterious gap �PG=�SC+�HO with a large,
x-dependent “hidden order” gap �HO, whereas �iii� a mixed-
state scenario, strongly influenced by disorder, leaves open
the possibility that it is the �local� chemical potential that
determines the PG physics. The precise role of � in mixed-
state phases needs to be examined further, but will not be
addressed here.

B. Quenched disorder I: Frozen configurations

Since calculations for A�k ,�� in the clean limit do not
agree with ARPES measurements, we turn our attention to a
system with quenched disorder. The impact of quenched dis-
order is realized by tuning the coupling constants Ji and Vi in
Eq. �4�. The spatial variations of these couplings is chosen in
the following way �see Fig. 5�: charge-depleted “plaquettes”
that favor superconductivity are placed on an AF back-
ground. The same procedure was followed in Ref. 13, where
more details can be found. The main point is that impurities
will not only influence a single site, but, possibly due to poor
screening in the proximity of the insulating phase, will
change local potentials over a rather large area. The phase
diagram of the clean model along path 1 and the correspond-
ing disordered case are reproduced in Fig. 6 for the benefit of
the reader. Disorder has opened a region between the SC and
AF phases where none of the competing order dominates and
both regimes coexist in a spatially separated, mixed-phase
state. This “glassy” state was discussed in detail in Ref. 13,
where it was suggested that it leads to “colossal effects,” in
particular a giant proximity effect �GPE�, which was recently
observed in layered LSCO films.14 The pronounced suscep-
tibility of such mixed-phase states toward applied “small”
perturbations is well known and is, e.g., often regarded as the
driving force behind “colossal magnetoresistance” in
manganites.17

FIG. 4. �Color online� �a� Dispersion Ek= ±���k−��2+�k
2 +J2

for a perfect superconductor �SC� with J=0, �=0.3, a perfect co-
existing superconductor and antiferromagnet �SC+AF� with J=1,
�=0.3, and a perfect AF with J=1, �=0 as indicated.
�k=−2��cos�kx�−cos�ky�� and �k is the usual dispersion of the free
system. Lines serve as guide to the eye. �b� Dispersion of a perfect
striped configuration. Lattice sizes are 12�12 and 8�8, respec-
tively. White lines mark momenta of high intensity, which are ab-
sent at the Brillouin zone diagonal.

FIG. 5. �Color online� Schematic representation of Sr doping. A
chemical dopant �Sr� will disorder not only the nearest sites �dark
gray �blue�� in the CuO2 plane, but also neighboring ones, motivat-
ing the introduction of “plaquettelike” disorder configurations.
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To simplify the study and be able to access larger systems,
we will first consider a single SC cluster embedded in an AF
background and also consider a fixed or “frozen” configura-
tion of the classical fields �both AF and SC�. Afterward, we
will lift this restriction and perform a MC study. When a
12�12 SC region is placed on an AF background �total lat-
tice size is 22�22�, the resulting distribution of A�k ,�� is as
shown in Fig. 7�a�. The contribution from the AF back-
ground is clearly distinguishable from that of the SC island,
since it is present even when the SC region is removed. The
SC cluster induces a second flatband—quite typical for
gapped systems—near EF, along the �0,0�→ �� ,0� direction.
That this flatband is indeed produced by the SC island is
verified by decreasing the size of the island to 8�8 �Fig.
7�b��, 7�7 �Fig. 7�c��, and finally 5�5 �Fig. 7�d��, upon
which this signal gradually decreases �the cases 9�9 and
11�11 give very similar results to 12�12 and are not
shown�. The spectral intensity related to the surrounding AF
“bath” concurrently decreases, in agreement with experimen-
tal observations.11

The relative increase of the SC phase intensity also goes
hand in hand with an increase in spectral intensity along the

nodal direction, and the buildup of a FS around �� /2 ,� /2�.
Figure 8 shows a cut of A�k ,�� near EF for the case depicted
in Fig. 7�a�. There is considerable spectral weight near the
FS for momenta close to �� /2 ,� /2� only, suggesting that
other parts of the FS are gapped.

Therefore, even the simplest possible mixed-phase state
can qualitatively account for the observed ARPES data. It is
also interesting to note that SC signals comparably in
strength with the ones stemming from the AF band, are only
found for rather large SC blocks, encompassing at least 20%
space of the whole system. From this point of view, even in
the strongly underdoped limit at x=0.03, the relative amount
of the SC phase has to be quite substantial already.

C. Quenched disorder II: Monte Carlo results

The same system considered in the previous subsection
was evolved by the MC procedure explained in the Introduc-
tion. However, the calculations can only be performed on
smaller lattices. Results on a 10�10 lattice were obtained
using a 4�4 region with couplings that favor superconduc-
tivity on a background that favors antiferromagnetism. As
observed in the previous subsection, the SC island produces
the features seen near EF, but on a 10�10 lattice, and with a
small 4�4 SC island, there is not enough resolution to be
able to see the flatband described previously. This makes it
unlikely for such structures to be seen in “exact” solutions of
Hubbard-type Hamiltonians, which, for a variety of reasons,
are restricted to lattices as large or smaller than the ones
considered here. As a further consequence, it is inevitable to
conclude that the SC islands in the real material must be
substantially large, of sizes approximately 10�10 in lattice
units which translates into 40�40 Å2 nanoclusters in physi-
cal units.

D. Quenched disorder III: Mean-field theory

The MC results presented above are also supported by
more traditional approaches, namely, the solution of the BdG
equations. This self-consistent method allows for larger sys-
tems to be studied and is therefore much better suited to
resolve the mostly subtle signals that are to be expected for
the current investigation. In addition, the tracking of the

FIG. 6. �Color online� Results reproduced from Ref. 13 for the
benefit of the reader. �a� Phase diagram of model Eq. �4� along path
1 of Fig. 1, showing the AF, SC, and local coexistence regions �for
spatially constant couplings�. �b� Same as �a� upon adding quenched
disorder to the system in the form of SC plaquettes or impurities. In
this case a region without long-range order appears. The tempera-
ture for PG formation is also indicated. Lattice size is 8�8 in both
cases.

FIG. 7. �Color online� Distribution of A�k ,�� �white �yellow�
curve� for a single configuration of classical fields, corresponding to
a SC region of size �a� 12�12, �b� 8�8, �c� 7�7, or �d� 5�5 on
a 22�22 lattice �i.e., 30%, 15%, 10%, or 5% SC, respectively�. A
�k ,�� is shown along �0,0�→ �� ,0�→ �� ,��→ �0,0�. Even for
small ratios of SC clusters, the associated signals are already
visible.

FIG. 8. Energy cut of A�k ,�� close to EF for a single configu-
ration of classical fields, corresponding to a SC region of size
12�12 on a 22�22 lattice. The brightness of the colors indicate
the intensity in the kx−ky plane for an energy �=−0.24t.
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small FS as the doping level is changed certainly requires a
lattice grid that allows for a reasonable amount of resolution
in k space. This, of course, cannot at the current time be
achieved with the MC technique presented above, yet this
does not mean this approach is without merit for the problem
at hand. One has to keep in mind that the MC approach can
be justified on the grounds that it is unbiased toward any
particular state—at least, if performed in a correct fashion—
whereas the self-consistent solution may fail in this regard in
the “tricky” regime of small, but finite, doping and with
weak impurity potentials. The emergence of the stripe state
in this case is well documented, but will only be realized for
a sufficiently correct initial choice of the eigenfunctions.

With these caveats in mind, it may be the best strategy to
employ MC to establish the correct �clean� phase diagram,
and then using this information to describe the emerging
phases with the help of BdG. In this spirit, we present some
results for the inhomogeneous Hamiltonian HHF below.
Calculations were performed on systems ranging from
N=24�24 up to N=32�32. Only results on the largest such
lattices will be shown; however, by comparing results ob-
tained on different lattices we have confirmed that they are
only weakly, if at all, influenced by finite-size effects. As
before, plaquettes were inserted to create areas of predomi-
nant AF and SC order, respectively. These plaquettes were
randomly distributed throughout the lattice, and were al-
lowed to overlap. Owing to the random distribution of
plaquettes, clusters of low electronic density are generated,
their average size mainly determined by the size of the un-
derlying plaquettes �for the case of noncorrelated plaquettes�.
We have chosen Ui=5 �AF sites� and Vi=−1 �SC sites�, un-
less otherwise mentioned. With those values, it is possible to
clearly separate the AF and SC signals, an important aspect
when studying not overly large systems, and when one is
looking for subtle signals. Our main conclusions, however,
are not supposed to change for other parameter values.

The number of plaquettes grows linearily with the hole
density, which ranges from x=0.03 to x�0.2 to mimic
ARPES investigations. The total percentage of the area oc-
cupied by SC bonds is roughly proportional to the hole den-
sity; however, given the phase diagram in Fig. 1, there is a
strong connection between the area aSC occupied by the
SC regions, and the area occupied by the AF phase,
aAF=1−aSC:

1 − x = 1 � aAF + nSC � aSC, �10�

where nSC is the SC density �the AF density is nAF�1�,
which leads to the following expression:

aSC =
x

1 − nSC
. �11�

Equation �11� can be interpreted in two ways: for a given
value of x, either a desired value aSC defines nSC, or vice
versa. Here, our parameters �i.e., �i� are tuned so that
nSC�0.75, the value where the system becomes a homoge-
neous SC according to Fig. 1, and which in turn roughly
determines the area covered by the SC plaquettes for a given
x.

In Fig. 9 we show typical configurations for which spec-
tral functions were calculated, each one corresponding to dif-
ferent densities, �n�=0.97, 0.94, 0.87, and 0.79, respectively.
The uppermost row ��a�–�a3�� displays the environment cre-
ated by the plaquettes, with the red color favoring AF and the
blue one the SC phase. In the second row ��b�–�b3��, the
corresponding SC gap amplitudes are shown; yellow denotes
large �i’s �which are approximately in line with the ones
found for a pure system at density nSC� and ever darker col-
ors mean an ever smaller value of �i. The bottom row plots
the corresponding AF OP, which, given our choice of
plaquettes, results in what is essentially a mirror image of the
second row. Here, blue denotes strong local AF amplitude mi,
whereas lighter colors stand for very weak or absent mag-
netic ordering ��c�–�c3��. What the second and third rows in
Fig. 9 show is that there are essentially three different re-
gions in such a mixed-state: one that is a pure SC with no
discernible AF amplitude, one where both amplitudes as-
sume finite values �those may vary quite distinctively� and a
third one that is solely AF. Those intermediate regions appear
even though the underlying plaquettes are either purely AF
or SC �which probably is an oversimplification to begin
with�, and owe their existence to boundary effects.

The spectral functions related to the mixed AF-SC states
such as in Fig. 9 are shown in Fig. 10, in addition to those for
the pure AF �x=0� �Fig. 10�a�� and the pure SC �nSC=0.76,
Fig. 10�f�� cases; the former has the usual dispersion, char-
acterized by a flatband in the neighborhood of the X point,
plus the shadow bands of small intensity near �� ,��. In Figs.
10�a�–10�f�, the yellow color stands for large spectral weight

FIG. 9. Typical quenched disorder configurations on a 32�32
lattice at different electronic densities: the top row �a�–�a3� displays
the local environments �black=AF, white=SC�, whereas �b�–�b3�
show the emerging local SC amplitudes, with the white color stand-
ing for the highest values �black for �i=0�. The bottom row shows
the AF amplitudes. Black equals strong AF ordering, whereas ever
lighter colors identify an ever weaker AF order parameter. Although
individual bonds are strictly AF or SC, respectively, boundary re-
gions typically assume finite values for both OPs.
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�with respect to the maximum of A�k ,�� for each density�,
with ever darker colors describing ever smaller intensities.
With the introduction of SC plaquettes to the AF background
�Fig. 10�a�→10�b��, spectral intensity is accumulating close
to EF at momenta �� ,0� and at EF for ��� /2 ,� /2�, both of
which were gapped at x=0. At the same time, the dispersion
arising from the lower Hubbard band �LHB� remains clearly
identifiable and almost unchanged in energy position at
�AF�−2t. Therefore, in the neighborhood of the X point two
distinctive branches are emerging for phase-separated sys-
tems such as in Fig. 9, and both the SC and the AF branches
can be clearly identified by comparison with the respective
“clean” regime �x=0, x�0.2�. Their relative intensities de-
pend on the ratio aAF/aSC, with the AF branch becoming
increasingly faint as this ratio tends towards 0. The observed
features are very broad for weak doping for any wave vector
close to EF �Figs. 10�b� and 10�c��, characteristical of poorly
defined quasiparticles with very small residue Z. This resi-
due, however, appears to be small because of the disordered
nature of the ground state, rather than as a consequence of
strong interactions between the charge carriers—quite an im-
portant distinction. For example, as one moves closer toward
the homogeneous state �Fig. 10�c�→10�d��, the intensity dis-
tribution at �� ,0� becomes much sharper and reminiscent of
a quasiparticle peak, without changing the interactions at all.
All those observations are in agreement with Fig. 7 �although
those data are much better defined, presumably because the
OPs were assumed constant for each region�, as well as with
experimental evidence, which has uncovered a very similar
behavior in a series of underdoped to optimally doped
LSCO.11

Similar agreement between theory and experiment is
found around the �� /2 ,� /2� point as well: just as in

ARPES, a dispersive band is “growing out” of the original
LHB and eventually touches EF, while the spectral weight at
the Fermi level continuously increases as holes are added.
This can be seen in Fig. 10, but is more obvious in Fig. 11,
which shows the spectral intensities, integrated between the
chemical potential and a cutoff �D=−0.3t, at different den-
sities. Note that these data are calibrated with respect to the
maximum intensity as found in Fig. 11�d�. The emergence of
a FS “arc,” centered around �0.45� ,0.45��, is obvious. With
increasing doping it is the arc intensity that increases,
whereas the arc size barely changes �compare, e.g., Figs.
11�c� and 11�d��, as is expected for a �d-wave� gapped sys-
tem. Both observations mirror ARPES results and suggest, in
conjunction with these data here, a simple picture of the
underdoped cuprates involving AF and SC clustering con-
cepts. To further quantify this behavior, we have calculated
the integrated spectral intensity in the neighborhood of the
FS at different doping levels, I�

x :

I�
x = 


−��D�

�F 

�

A�k,��d� dk , �12�

where � denotes a window �“window 1 �2�” is a 52 �72�
square� centered around the FS arc at midpoint. Using data
gathered from ARPES experiments �there, effectively
�D�0�, it was shown that this quantity increases approxi-
mately linearily with doping,12 which is precisely what arises
from the mean-field calculation �Fig. 12�. This increase is
almost entirely associated with increased spectral weight
around the nodal direction, as is also clear from Fig. 11.
Then, the most natural explanation for the observed behavior

FIG. 10. A�k ,�� vs k calculated for a series of densities on a
32�32 cluster, starting from x=0.0 �100% AF� in �a�, to x=0.03
�22% SC� �b�, x=0.06 �43% SC� �c�, x=0.13 �70% SC� �d�
x=0.21 �84% SC� �e�, and x=0.24 �100% SC� �f�. Dark colors
signal large intensity. The two branches visible near �� ,0�, belong-
ing to the SC and the AF regions, respectively, can be clearly iden-
tified for intermediate states �b�–�e�, which suggests a simple
mixed-state interpretation for ARPES experiments.

FIG. 11. The spectral intensities �dark gray=large intensity�,
integrated over a small shell below the Fermi level as described in
the text, at different densities �n�=0.97 �a�, 0.90 �b�, 0.87 �c�, and
0.79 �d�, and using a 32�32 lattice. The FS arc developing around
��0.45� ,0.45�� can be readily identified. It increases in intensity
only as holes �plaquettes� are added to the system, whereas the arc’s
length remains essentially constant. This is to be compared with
ARPES measurements in underdoped LSCO �Ref. 12�. Note that
the “FS,” as defined by the colored area, resembles that of an non-
interacting metal at density nSC �see text�.
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of I�
x is that it reflects the increasing amount of aSC rather

than the change in particle density �although both are re-
lated�. A linear relationship between I�

x and the particle den-
sity as such is not obvious �or even fulfilled� for a clean SC
system, but it is naturally explained in a mixed-state picture.
For the homogeneous SC state �nSC�0.76� the FS is even
more clearly defined as in Fig. 11�d�: in this case, the central
peaks remain and gain in intensity, whereas the small inco-
herent intensity in the rest of the kx-ky plane vanishes. Again,
this “sharpening” of quasiparticle peaks as the system be-
comes more homogeneous—and quasiparticles better
defined—has been observed in ARPES.11

Quite remarkably, in Fig. 11 the high-intensity spectral
weight together with the low-intensity signals in the antin-
odal direction closely resemble a full FS, as one would ex-
pect for a noninteracting system of �nSC electons. Remark-
ably, it is only weakly dependent on the hole carrier density,
but it appears to be shrinking, presumably because the
chemical potential is not completely pinned at EF. Therefore,
just as in photoemission, Luttinger’s sum rule seems fulfilled
for the set of parameters considered here. It is suspected here
that those “shadow” or “ghost” parts of the FS stem from
sites that have neither strong AF nor SC order, although this
remains to be clarified; tellingly, just such a ghost FS has
been observed in photoemission as well, following a careful
analysis of the corresponding weak signals.43 Although the
physics of a ghost FS needs to be investigated more thor-
oughly, we regard this as an independent confirmation of the
mixed-state scenario.

We also want to mention here that the experimental
observation—a doping-independent size of the FS arc—also
contradicts other popular proposals, which associate the un-
derdoped regime with one of strong pair attraction and sig-
nificant phase fluctuations: In those scenarios, V increases as
x→0, but this would entail a FS arc that at the same time is
shrinking in size. The simple fact that the size stays constant
suggest a relatively doping-independent value of � and, thus,
V. The same is true for scenarios which rely on additional,
nonzero OPs �gaps� to dominate the underdoped phase: the
FS should be curtailed and become smaller as this additional
order becomes stronger at lower doping, in contrast to what
is seen experimentally.

To lend further insight to our analysis, we have also at-
tempted to a series of different calculations at fixed density

�n�=0.87, but somewhat deviating from the above scenarios:
�i� first, a model where the random SC configuration as
shown in Fig. 9�a2� is replaced by one with a single cluster,
occupying the same overall area, in order to better under-
stand the effects of randomness and cluster size and shape;
�ii� second, a model of charge-depleted plaquettes with
V=0, i.e., a situation of hole-rich and hole-poor phases co-
existing, but without the former one possessing SC order and
thus without prformed pairs, and finally �iii� a model where
plaquettes are distributed in an ordered fashion, forming a
superlattice of 16 plaquettes, each covering a block of
6�6 sites on the usual 32�32 lattice. A�k ,��’s resulting
from those configurations are shown in Figs. 13�b�–13�d�. In
the case of �i�, the replacement of the random configuration
by a “superblock” leads to a narrowing of the spectral func-
tions, with more clearly defined peaks, but otherwise leaves
the overall features such as the existence of the two branches
and the FS positions, unperturbed. One consequence, how-
ever, is the narrowing of the gap distribution function P���
as the randomness is reduced, reflecting the smaller number

FIG. 12. Integrated spectral weight I�
x , for two different integra-

tion windows �in k space, with frequency cutoff �D=−0.3� as a
function of the hole density x. The downturn of I�

x at large doping
is a finite-size effect.

FIG. 13. �Color online� A�k ,�� for doping rate x=0.13: �a�
same as Fig. 10�c�, �b� has one single SC-favoring cluster in the
middle, �c� Vi=0 everywhere, even in charge-depleted regions, and
�d� with SC plaquettes forming a superlattice. As before, the darker
the signal, the larger is the intensity. The SC gap distributions P���
are shown in �e� for the random model �a� �thick black line�, the
single cluster �b� �dashed line�, and the superlattice structure in �c�
�gray �red� line�. In the first case, the gaps have a Gaussian-like
distribution around the maximum, with a broad tail, whereas in case
�b� there are essentially two peaks only. �c� has a multitude of
clearly defined peaks.
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of possible environments. For the present case, P��� consists
of a central peak from data well inside the cluster and a
smaller peak from the SC-AF boundaries, whereas for the
totally random case P��� can be approximately described by
a Gaussian distribution, with a multitude of �’s. This might
be of importance, since exactly such a Gaussian distribution
has been reported in STM experiments in underdoped
BSCCO. Then, randomly located SC regions are the best
picture to describe the experiments. On the other hand, quite
drastic changes occur if the plaquettes are chosen as charge-
depleted-only regions, as shown in Fig. 13�c�: in such a case
a single band with a clear FS crossing for k��� ,0� emerges,
and such a feature is certainly not observed in experiments.
Therefore, the inclusion of a pairing term even in the low-
doping limit seems necessary to correctly reproduce the ex-
perimental features.

The particular configuration of ordered plaquettes �Fig.
13�d�� was motivated by claims that the STM results in un-
derdoped �but SC� BSCCO should be best interpreted in
terms of charge-ordering;44 the superlattice structure chosen
is the simplest realization of such a CO state, and may help
elucidate the ARPES measurements of such a complicated,
yet highly ordered, phase. Although the overall features are
largely unchanged when compared to the random cluster
situation, the broad peaks observed for the random structure
split up into several subpeaks, i.e., for some momenta there
may be even more than just two solutions. This is even
clearer if more traditional representations of A�k ,�� are cho-
sen, which are not shown here. Although those multiple-peak
features may be too weak to be measured in current ARPES
experiments, and therefore such a state cannot a priori be
ruled out, there is no indication thus far of such a structure
being observed, at least according to ARPES data.

IV. DOS and T*

Calculations of the total DOS for the model with
quenched disorder is shown in Fig. 14�a�. This is at a point in
the phase diagram Fig. 6�b� with six impurities, i.e., without
long-range order in either the AF or the SC sector. The DOS
clearly shows a PG that disappears at a temperature scale T*.
The DOS at the Fermi level decreases with decreasing tem-
perature suggesting insulating behavior; however, the state
contains superconducting islands. The qualitative physics de-
scribed here has already been investigated by the authors in
Ref. 13 and will not be repeated.47 It is worth noting that in
this model the PG is caused by short-range order of either SC
or magnetic variables. In other words, if the temperature for
short order formation is denoted by TSC

* and TAF
* for d-wave

superconductivity and antiferromagnetism, respectively,
then the temperature for PG formation is roughly
T*�max�TSC

* ,TAF
* �. This explain the dependence of T* on

doping as observed in Fig. 6. For low doping the system has
strong short- �and possibly long-� range AF order; and no SC
order; therefore, T*�TAF

* for low doping. As doping in-
creases, the system becomes less and less AF which implies
a decrease in TAF

* and consequently in T*. However, as the
carrier concentration is increased further, the systems starts
to present SC order, at short distance first and then at long

distances. Then, T* stops decreasing and stays constant or
even increases with carrier concentration near the optimal
doping region.

The BdG equations are less influenced by finite-size ef-
fects and, thus, allow for a better understanding of the DOS
of a mixed AF-SC state. Although we have performed
T�0 calculations only, some interesting information can al-
ready be extracted from these solutions as discussed below.
As the system is doped away from half filling, the SC re-
gions appear as midgap states between the original Hubbard
bands �Fig. 14�b��; those states are gradually filled as doping
is increased, at the expense of the original bands. The asso-
ciated peaks in N��� gain in strength, whereas the energy
states belonging to the AF sites gradually fade away, giving
way to the usual DOS of a dSC. From the most naive point
of view, this two-peak structure in N��� can be associated
with the existence of the PG phenomenon, wherein it is the
disappearance of the AF peak �at higher energies�—which
should be happening at ever lower T’s as x is increased—that
determines T��x�. But there are also some other subtle issues
that need to be considered following Fig. 14�b�: the SC peak
seems to be traveling toward higher energy, rather than to-
ward EF. This can already be seen in the corresponding
ARPES data, but is much more obvious in the DOS. This
behavior is in disagreement with data from ARPES, which
clearly show the SC band moving closer to EF as x is in-
creased. In this framework, the PG is dictated by the energy
position of the charge-depleted phase in the presence of the
half-filled insulator. This is an important, yet subtle issue
since the energies involved are rather small; yet it should be
explored in further considerations of the mixed-state picture.

FIG. 14. �Color online� �a� DOS near the Fermi energy �0� for
the situation of Fig. 6 where there are six plaquettes on an 8�8
lattice. The disappearance of the PG can be seen as the temperature
is increased. �b� DOSs calculated at different densities by mean-
field theory at T=0 for a 32�32 lattice for the disordered model.
The clean case ��n�=0.76� was calculated for a 40�40 lattice to
minimize finite-size effects.
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Summarizing, although the description of PG physics is not
perfect, at least the key features �such as its existence� are
neatly reproduced by our mixed-phase model.

V. LOCAL DOS

Consider again a system with inhomogeneous couplings
Ji and Vi in such a way as to produce AF and SC regions in
the sample. We calculate Ni��� for all sites, displaying them
in “linear order”48 in Figs. 15 and 16, for various plaquettes
concentrations as indicated. The results show that there are
two types of curves or “modes,” and that each site contrib-
utes to a different “mode” of the local DOS �LDOS�. For
example, all AF sites present a clear gap �Fig. 15�a��,
whereas SC sites have the equivalent of a d-wave gap �on a
finite-size system�. This seems in agreement with STM
measurements22 in underdoped Bi2Sr2CaCu2O8+�. For ex-
ample, Fig. 3 of Ref. 22 shows the differential conductance
along a path on the sample vs the bias, indicating two types
of regions—similar to what is observed in Figs. 15�b� and
16�a� of the present work, which represent intermediate
states that do not present a dominant global order parameter
�as is the case for Figs. 15�a� and 16�a��. Certainly these data
still suffer from important finite-size problems, but the basic
issues are captured nevertheless. Also, note that the transition
from the SC to the AF regions is gradual with an intermedi-
ate phase that has a small SC-like gap, but lacks the pro-
nounced �coherence� peak of the SC state. These results fa-
vor the idea that “exotic” phases are not needed to explain
the nature of underdoped cuprates, but instead that quenched
disorder creates regions of local SC or AF order when those
two phases strongly compete.

The distribution of intensities of the LDOS for each fre-
quency range is shown in Fig. 17. The AF, SC, and metallic
�non-SC� contributions are present with different intensities
depending on the concentration of SC plaquettes as shown. A
metallic—but not SC—phase appears due to the value of the
chemical potential used around each plaquette. This detail is
not crucial to obtain the data presented here, but instead pro-
vides a more realistic separation between SC and AF regions.
With a simpler model for the plaquettes, the metallic peak
would not be present.

This is even more obvious in the mean-field approxima-
tion, where sites with local AF or SC order can be easily
identified. Traveling along certain cuts in a mixed-phase sys-

FIG. 15. �Color online� Local DOS Ni��� vs �−� on an 8�8
lattice with one and six plaquettes, respectively, plotted in linear
order. The color convention is as follows: white �yellow� indicates
AF sites, bright gray �orange� SC sites, and medium gray �cyan�
metallic sites. The inset shows the d-wave gap distribution,
��i,x��cos�
i�−cos�
i+x�� in each case.

FIG. 16. �Color online� Ni��� on an 8�8 lattice with 20 and 24
plaquettes, respectively, plotted in linear order. Color convention as
in Fig. 15. Just as in Fig. 15, the data sets for each site i are offset
by a small amount from each other to allow for better visibility.

FIG. 17. �Color online� Distribution of the local DOS vs �−�
on an 8�8 lattice with the concentration of “plaquettes” shown and
parameters corresponding to Figs. 15 and 16. NI stands for the
number of impurities. �b� shows Ni��� for sites which are predomi-
nantly AF, and �c� those for SC ordered sites. Those data were taken
on a disordered lattice with 28�28 sites, and about 60% SC. The
parameters were Ui=4 for the AF regions, and Vi=−1 for the SC
sites.
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tem, which show either AF or SC order, and measuring Ni���
along this path �see Figs. 17�b� and 17�c��, it is revealed that
the signals are vastly different in either case. Whereas the AF
sites �derived from the value of mi� have a clear and well-
defined gap, the SC sites resemble those of a d-wave SC.
From these results it is also clear that there is not just one SC
gap �which may, for example, be extracted from the position
of the first main peak�, but rather a distribution of gap values,
presumably reflecting the random nature of the samples, as
depicted in Figs. 9�b�–9�b3�. As the hole doping level is
increased, the relative amount of SC data taken “in the bulk”
increases, leading to a narrowing of the gap distribution.
Those data, for example, should be compared with those for
Ca1.92Na0.08CuO2Cl2,24 where similar features were ob-
served; sites with a large excitation gap were found to be
insulating, whereas the other ones were metallic. As the
number of charge carriers is modified, the relative amount of
those two phases changes, whereas the dI /dV signals them-
selves remain fairly independent of the doping level.

VI. CONCLUSIONS

In a recent paper, a phenomenological model for cuprates
was introduced.13 This model includes itinerant fermions
coupled to classical degrees of freedom that represent the AF
and SC order parameters. The model can be studied integrat-
ing out the fermions and Monte Carlo simulating the classi-
cal fields. The simple characteristics of this model allows us
to investigate the crossover from AF to SC, with or without
quenched disorder incorporated, and regardless of whether
homogeneous or inhomogeneous states emerge as ground
states. The simplified character of the model, as compared
with the much more difficult to study Hubbard model, allows
for numerical studies at any electronic density and tempera-
ture, and the evaluation of dynamical properties as well. Due
to present day limitations in the analysis of many-body prob-
lems, the complex physics of transition-metal oxides at na-
nometer length scales can only be captured with phenomeno-
logical models, such as those recently discussed by Alvarez
et al.13

In the present paper, the previous effort has been extended
to the analysis of photoemission one-particle spectral func-
tions and the local DOS, comparing theory with experiments.
It has been observed that without quenched disorder �clean
limit� the model presents various phases: SC, AF, local co-
existence of SC and AF orders, and striped states. However,
the spectral density calculated for all these states does not
reproduce the experimental measurements for cuprate super-
conductors as reported in Ref. 12. To make progress in the
theoretical description of experiments, quenched disorder
was added to the system, inducing regions of SC and AF
order, interpolating between the two fairly uniform AF and
SC states. In this case, the ARPES spectral weight presents
two branches, one induced by the AF background and the
other by the SC regions or islands. This spectral weight
shows clear similarities with the experimental observations
and, therefore, the “nodal” regions observed near the Fermi
energy for underdoped compounds are explained within the
context of our model as induced by the SC regions.

The calculation of the DOS revealed a PG for the regions
of the phase diagram where no long range order dominates,
although local order exists. The disappearance of the PG
with temperature gave an estimation of the temperature scale
T*. Moreover, the LDOS calculated in the inhomogeneous
system presents two types of curves or “modes,” correspond-
ing to AF and SC clusters.

There are two logical next steps in further explorations of
the mixed-phase scenario. One is the clarification of the pe-
culiar behavior of the energy gap at �� ,0� and its evolution
with doping—as already mentioned above—and the second
one is the investigation of transport properties. The scenario
presented here suggests a percolative MI transition, with the
transition possibly taking place somewhere around interme-
diate doping. It would certainly be interesting, e.g., to calcu-
late the Drude weight, which at T�0 can be inferred from
the difference between the kinetic energy and the frequency-
integrated optical conductivity, as a function of doping and
confirm whether or not a MI transition can actually be ob-
served in the mean-field approach used here. This procedure
unfortunately is not capable of directly calculating more in-
teresting observables such as the temperature-dependent re-
sistivity ��T�. We only mention here, however, that a much
simpler and more phenomenological approach in describing
underdoped LSCO in terms of a random-resistor network has
been adopted previously, with surprisingly good agreement
between theory and experiment for ��T� �see Fig. 4 in Ref.
18 and other references therein�. Therefore, although the
mixed-state scenario as presented here only aspires to ex-
plain single-particle properties, it is at least conceivable that
transport properties may be explained as well with such an
ansatz.

In summary, a simple model is able to capture several
features found experimentally in high-temperature supercon-
ductors. In this theory, the glassy state is formed by patches
of both phases, as already discussed in Ref. 13, and it can
present giant responses to small external perturbations. In
this work, it was shown that ARPES, DOS, and LDOS ex-
perimental information in the underdoped regime can also be
rationalized using the same simple theory. Our model does
not address directly the important issue of the origin of pair-
ing in the SC state or the role of phonons versus Coulombic
interactions,49 but can describe phenomenologically the AF
vs SC competition. The results support the view that under-
doped cuprate superconductors are inhomogeneous at the
nanoscale, and that only well-known competing states �AF
and SC, perhaps complemented by stripes� are needed to
understand this very mysterious regime of the cuprates.
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APPENDIX: DIAGONALIZATION PROCEDURE

To diagonalize Eq. �4� a modified Bogoliubov
transformation39 needs to be applied. After some algebra it
can be shown that Eq. �4� becomes
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where H↑ and H↓ are the 2N�2N matrices given by

H↑ = �K̂ + Ĵ �̂

�̂* − K̂ + Ĵ
� , �A2�

H↓ = �K̂ − Ĵ �̂

�̂* − K̂ − Ĵ
� . �A3�

K̂��̂� is an N�N matrix, such that K̂ij=−t��̂ij=�i,�� only if i

and j are NN sites and 0 otherwise. Ĵij=JiSi
z�ij and

Mn=�ijbn
*�i��K̂ij− Ĵij�bn�j�+an+N

* �i��K̂ij− Ĵij�an+N�j�. The c
numbers an�i��bn�i�� are chosen, so that they diagonalize
H↑�H↓�, i.e.,

�
ij

an+�N�i�Hi�,j��
↑ an�+��N�j� = En+�N

↑ �n+�N,n�+��N. �A4�

Then, the total energy can be written as

Etotal = �
n=1

N

�En
↑f�
En

↑� + En
↓f�
En

↓�� + �
n=1

N

�Mn − En
↓�

+
1

2�
i,�

1

Vi
��i��2, �A5�

where f�x�=1/ �1+ex� is the Fermi function. The sum is only
over the N largest eigenvalues of H↑, 
En

↑�1�n�N, and the N
largest eigenvalues of H↓, 
En

↓�1�n�N. This expression in-
volves the eigenvalues of both matrices. Alternatively, it is
possible to express Etotal in terms of the eigenvalues of only
one matrix, H↑ for example, which is the more efficient way
for the MC simulation. To understand that, first note that the
eigenvalues of H↓ have the opposite signs as those of H↑. Let

S = �0 Î

Î 0
� �A6�

where Î is the N�N identity matrix. Then S=S−1 and
H↑=−SH↓S−1. Therefore, if ��� is an eigenvector of H↑ with
eigenvalue En

↑, then S−1��� is an eigenvector of H↓ with ei-
genvalue −En

↑. This proves that the eigenvalues of H↓ and H↑

are the opposites of one another. From this discussion it also
follows immediately that if a is an eigenvector of H↑, then b
defined by bn=an+N, bn+N=an∀n� �1,N� is an eigenvector
of H↓ so the eigenvectors of one matrix can be obtained
from the eigenvectors of the other. Now, let 
En

↑�N+1�n�2N

be the N lowest eigenvalues of H↑ and similarly

En

↓�N+1�n�2N the N lowest eigenvalues of H↓. Therefore,

En
↓=−En+N

↑ ∀n� �1,N�. Then the second term in Eq. �A5�
becomes −En+N

↑ f�−
En+N
↑ � and using that f�−x�=1− f�x�

Etotal = �
n=1

2N

En
↑f�
En

↑� + �
n=1

N

Mn +
1

2�
i,�

1

Vi
��i��2, �A7�

and this expression was used in the MC evolution of the
system.

Most observables are calculated by replacing the electron
operator ci� by Bogoliubov operators via Eq. �5�. For ex-
ample, the number of particles, Ne, is given by the average of
�ici�

† ci� and in terms of an�i� is found as

Ne = �
n=1

n=2N

�an�2 + 2�
n=1

N

��an�2 − �an+N�2��f�
En
↑� + f�
En

↓�� ,

�A8�

where we have used the abreviation �an�2=�i�an�i��2. Note
that unlike the standard Bogoliubov expression for the num-
ber of electrons, the second term in Eq. �A8� can contribute
even at T=0 due to the fact that En

↑ can be negative for J
finite. Moreover, unlike standard spin-fermion models, such
as those for manganites and cuprates,42 the number of elec-
trons depends not only on the eigenvalues of the one-particle
sector, but also on the eigenvectors.

As a particular case consider A�r , t�, which is defined by
the expression:

A�r,t� = ��
l

cl�
† �t�cl+r,��0� + H.c.� , �A9�

where �¯� denotes thermal averaging. Applying the modi-
fied BdG transformation, Eq. �5�, Eq. �A9� is calculated us-
ing

A�r,�� = �
n

Xn�r���� − En
↑� + Yn�r���� + En

↑� , �A10�

where

Xn�r� = �
l

an
*�l�an�l + r� , �A11�

and a similar expression is valid for Yn. Equation �A10� can
be Fourier transformed to obtain A�k ,��, but it is faster to do
that after performing the average, and that route has been
followed in the present work.

In STM experiments, one typically measures the change
of a �local� tunneling current dI /dV, a quantity which—
under suitable assumptions—is proportional to N�i ,�� and
thus allows for a direct mapping of the local electronic states.
N�i ,�� is but the Fourier transform of A�k ,�� and can be
just as easily evaluated:

N�i,�� = �
n=1

N

�an�i��2��� − En� + �an+N�i��2��� + En� .

�A12�
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