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Using the dynamical mean-field theory, we have evaluated the magnetic instabilities and T=0 phase diagram
of the double-exchange model on a Bethe lattice in infinite dimensions. In addition to ferromagnetic �FM� and
antiferromagnetic �AF� phases, we also study a class of disordered phases with magnetic short-range order
�SRO�. In the weak-coupling limit, a SRO phase has a higher transition temperature than the AF phase for all
fillings p below 1 and can even have a higher transition temperature than the FM phase. At T=0 and for small
Hund’s coupling JH, a SRO state has lower energy than either the FM or AF phases for 0.26� p�1. Phase
separation is absent in the JH→0 limit but appears for any nonzero value of JH.
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Due to the keen interest in manganites1 and dilute mag-
netic semiconductors,2 the double-exchange �DE� model re-
mains one of the central models in condensed-matter science.
Yet the behavior of the DE model for small Hund’s coupling
continues to puzzle researchers. Both the nature of the uni-
form phases and the presence of phase separation �PS� in the
weak-coupling regime is the subject of ongoing debate.3–6

This paper uses dynamical mean-field theory �DMFT� to ob-
tain the magnetic instabilities and T=0 phase diagram of the
DE model in infinite dimensions. We reach the surprising
conclusion that a short-range ordered �SRO� phase is stable
for small Hund’s coupling JH and even has a higher transi-
tion temperature than the long-range ordered ferromagnetic
�FM� and antiferromagnetic �AF� phases for some fillings.

Developed in the late 1980s by Müller-Hartmann7 and
Metzner and Vollhardt,8 DMFT exploits the momentum in-
dependence of the self-energy in infinite dimensions. Even in
three dimensions, DMFT is believed to capture the physics
of correlated systems including the narrowing of electronic
bands and the Mott-Hubbard transition.9 Although DMFT
has been widely applied to the DE model,3–6,10–14 until now
there has been no complete treatment of the magnetic insta-
bilities and T=0 phase diagram of the DE model. Usually,
DMFT calculations are performed on either a Bethe or hy-
percubic lattice. Because of the simplified formalism on the
Bethe lattice and the risk of pathological results13 associated
with the unbounded, hypercubic density-of-states �DOS�, we
choose to work on a Bethe lattice with a semicircular DOS
bounded by ±W /2.

The DE Hamiltonian is

H = − t�
�i,j�

�ci�
† cj� + cj�

† ci�� − 2JH�
i

si · Si, �1�

where ci�
† and ci� are the creation and destruction operators

for an electron with spin � at site i, si= �1/2�ci�
† ���ci� is the

electronic spin, and Si=Smi is the spin of the local moment
�treated classically�. Repeated spin indices are summed.
Then within DMFT, the effective action on site 0 is given
by10

Seff�m� = − T�
n

c̄0��i�n��G0�i�n���
−1 + J��� · m�c0��i�n� , �2�

where J=JHS, �n= �2n+1��T, c̄0��i�n� and c0��i�n� are now
anticommuting Grassman variables, and G� 0�i�n� is the bare
Green’s function containing dynamical information about the
hopping of electrons from other sites onto site 0.

In the infinite-dimensional limit, the high-temperature
nonmagnetic �NM� phases of the Heisenberg and DE models
have a vanishing correlation length 	. The SRO phase is
a bulk solution of the DE model that, like the FM and AF
states, relies only on the local topology of the Bethe lattice.
It has some of the same characteristics as conventional
spin glasses: a finite local magnetization and spin-spin
correlations that decay exponentially over distance.15 The
SRO phase is characterized by a correlation parameter q that
gives the average q= �sin2�
i /2��, where 
i is the angle be-
tween a central spin and each neighboring spin. Overall, the
neighboring spins describe a cone with angle 2 arcsin��q�
around the central spin. The FM and AF phases have, respec-
tively, q=0 and 1. If Mn is the average magnetization of the
lattice sites at a distance na �a is the lattice constant� from
the central site, then Mn= �1−2q�Mn−1 so that the magneti-
zation about every site decays exponentially like 	Mn	
= 	M0	exp�−na /	�. The correlation length 	=−a / log	2q−1	
diverges only in the FM and AF limits and vanishes in the
NM state obtained by setting q=1/2.

In their earlier work on the Bethe lattice, Chattopadhyay
et al.5 assumed that the angles 
i were the same for every
neighbor and inaccurately characterized this state by its “in-
commensurate correlations” rather than by its short-range or-
der. Since only the FM and AF states possess well-defined
wave vectors on the Bethe lattice, the SRO state cannot be
interpreted using the formalism developed by
Müller-Hartmann7 for the hypercubic lattice.9 Ordered spiral
solutions are not allowed on the Bethe lattice due to its to-
pology and lack of translational invariance.

Because the SRO phase has no well-defined wave vector,
its transition temperature cannot be obtained from the mag-
netic susceptibility.12,14 Rather, TSRO�q� must be solved from
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coupled Green’s function equations. On a Bethe lattice, the
bare and full local Green’s functions are related by

G� 0
����i�n�−1 = znI� −

W2

16
�qG� ��̄��i�n� + �1 − q�G� ����i�n�� , �3�

where G� ��� and G� ��̄� are spin-reversed Green’s functions and
zn= i�n+�. The full Green’s function G� ����i�n� at site 0 is
obtained using the effective action of Eq. �2�. With the pa-
rameterization

G� 0
����i�n�−1 = �zn + Rn�I� + Qn

����� z, �4�

we evaluate the critical transition temperatures by linearizing
in the magnetization M = �mz� on site 0 �taken to be spin up�.
To first order, Rn is independent of M and is obtained by
solving the cubic equation


�zn + Rn�2 − J2�Rn +
W2

16
�zn + Rn� = 0, �5�

while Qn
�↑�=−Qn

�↓� is proportional to M. After integrating
exp
−Seff�m�� over the Grassman variables, we find that the
probability for the local moment to point along m is P�m�
exp��Jef fMmz� with Jef f =−2TJ�n�Qn

�↑� /M� / 
�zn+Rn�2

−J2�. Hence, TSRO�p ,q� is solved from the implicit relation
TSRO=Jef f�TSRO� /3 or

1 = −
2J2

3
�2q − 1�

��
n

Rn

�zn + Rn�2�zn + 2�1 − q�Rn� − J2�zn + 2�2 − q�Rn/3�
,

�6�

which correctly reduces to the FM or AF results when q=0
or 1. Notice that TSRO�p ,q�=0 in the NM state with q=1/2.
Of course, TSRO�p ,q� is the same for any arrangement of the
spins with the same average value of sin2�
i /2�. In terms of
the chemical potential �, the electron filling p is given by
p=1− �32T /W2��n Re Rn. So p=1 when �=0, correspond-
ing to half filling or one electron per site.

In the weak-coupling limit, T�J�W, TSRO�p ,q� is
evaluated by converting the Matsubara sum in Eq. �6� into an
integral over � and evaluating R�z= i�+�� to zeroth order in
JH. Maximizing TSRO�p ,q� with respect to q, we obtain
TSRO

�max��p� plotted in Fig. 1. Due to the symmetry about p=1,
we restrict consideration to values of p between 0 and 1.
Remarkably, a SRO phase with AF correlations �1/2�q
�1� can always be found with a higher transition tempera-
ture than the AF phase. As q→1, the AF and SRO transition
temperatures meet at p=1 or half filling. Even in the range of
fillings between about 0.26 and 0.38, where the Curie tem-
perature is nonzero, a SRO phase with FM correlations �0
�q�1/2� has the higher critical temperature! An instability
is also found in the range of fillings between 0.38 and 0.73,
where neither the FM nor AF phases are stable for small
J /W. The point at which q=1/2 and TSRO

�max��p�=0 lies slightly
below p=0.5. The divergence of the weak-coupling results as
p→1 signals the breakdown of the condition T�J under

which they were derived and is associated with the appear-
ance of a gap in the AF DOS, as discussed below. The cor-
relation parameter q changes discontinuously at TSRO

�max��p�
from 1/2 in the NM phase above to a value less than or
greater than 1/2 in the SRO phase below.

We have also obtained the magnetic instabilities of the DE
model for arbitrary J /W. For any J /W and p, Fig. 2�a� indi-
cates the phase with the highest transition temperature.
Around p=1, an AF instability occurs in a narrow range of
fillings that vanishes as J /W→0 or �. The range of AF
instabilities has a maximal extent �from p=0.78 to 1� when
J /W�0.33. For J /W�0.33, TSRO

�max��p�=0 when q=1/2 along
the NM curve. For 0.33�J /W�0.5, TSRO

�max��p��0 for all fill-
ings and q jumps from 0 in the FM to a value in the range
1/2�q�1 in the SRO phase. For J /W�0.5, either the FM
or AF phase has a higher transition temperature than the
SRO phase and q jumps from 0 to 1 at the FM/AF boundary.

The ground-state energies of the FM, AF, and SRO phases
are obtained after once again parameterizing G� 0

����i��−1 by
Eq. �4�. Then R�z� solves the quartic equation

FIG. 1. The correlation parameter q �solid� and the associated
maximum SRO transition temperature TSRO

�max� �dashed� vs filling p
for a SRO state in the weak-coupling limit. Also plotted in the thin
short-dashed line are the weak-coupling limits of TC for q=0 and
TN for q=1.

FIG. 2. �Color� The �a� magnetic instabilities and �b� T=0 phase
diagram of the DE model.
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R�z + R��
z + 2�1 − q�R�2 − J2� +
W2

16

z + 2�1 − q�R�2 = 0, �7�

which differs from Eq. �5� �except when q=1/2� because we
are now working in the broken-symmetry phase. The inter-
acting DOS per spin is defined by

N��,q� = −
1

4�
�
�

Im TrG� ����z → � + i��

=
16

�W2 Im�R�z→�+i�, �8�

which reduces to the bare DOS N0���= �8/�W2��W2 /4−�2

when J→0. The AF DOS with q=1 can be solved
analytically for all J: N�� ,q=1�= �8	�	 /�W2�
�Re ��W2 /4+J2−�2� / ��2−J2�, which vanishes for 	��J
and 	�	��W2 /4+J2. Hence, N�� ,q=1� contains a square-
root singularity on either side of a gap with magnitude 2J. As
J /W→�, the width of each sideband narrows like W2 /8J. It
is also possible to explicitly evaluate the DOS at �=0 for
any q: N��=0,q�= 
8/�W2�1−q��Re �Jc

2−J2, which van-
ishes when J�JcW�1−q� /2. In a NM, the critical value
required to split the band is Jc=W /4, as found earlier.13 In an
AF, Jc=0 since a gap forms for any nonzero coupling con-
stant.

Taking J /W=0.2, we plot the interacting DOS versus �
for q=0, 1 /4, 1 /2, 3 /4, and 1 in Fig. 3. The FM DOS has
kinks at �= ± �W /2−J�. Between the kinks, both up-spin and
down-spin states appear; on either side, the bands are fully
spin polarized. The kinks disappear in the SRO phase with
1�q�0 due to the absence of long-range magnetic order.
As q increases from 0 to 1, the width of the DOS shrinks and
a gap appears when J�Jc�q�. The breakdown of the weak-
coupling results in the limit p→1 is caused by the appear-
ance of a gap in the AF DOS for any nonzero J.

Quite generally, the total energy E�p ,q� of any state may
be written as an integral over the interacting DOS:

E�p ,q� /N=2�d��f���N�� ,q�, where f���=1/ �exp
���
−���+1� is the Fermi function and �=��p�. At T=0, this
relation becomes

1

N
E�p,q� = −

1

�
� d� Re�1 +

16Rz

W2 � , �9�

which converges because R�z�→−W2 / �16z� as 	z	→�.
In their numerical work, Chattopadhyay et al.5 obtained a

very complex phase diagram at T=0, with SRO phases
above J /W�1/16 and PS between AF and FM phases for
0.1� p�1 below this value. In light of the numerical diffi-
culty of constructing the phase diagram for small J /W, we
have studied this limit analytically. As demonstrated below,
PS disappears in the limit J /W→0.

Carefully accounting for the dependence of the chemical
potential ��p� on J /W for a fixed filling p, we find that the
difference between the energies of the SRO and NM phases
is20 �E�p ,q� /N=−3TSRO�p ,q� /2, where both sides are
evaluated analytically to second order in J /W. So for small
J /W, the ground state energy is minimized by the same cor-
relation parameter q that maximizes the transition tempera-
ture! This result is not surprising: for small J /W, the transi-
tion temperature is also small so the correlation parameter
that appears at TSRO�p ,q� continues to minimize the energy
at T=0.

It is now easy to understand why a SRO phase has a lower
energy than the AF phase for small J /W when p�1. Due to
the narrowing of the AF DOS, the AF energy may be higher
than that of a SRO phase with J�Jc�q� and no energy gap.
When the chemical potential of the AF lies outside the en-
ergy gap, then the square-root singularity of the AF DOS will
raise the energy compared to the broader, gapless DOS of a
SRO state.

For any filling p, the energy E�min��p� is obtained by mini-
mizing E�p ,q� with respect to q. When J�0, PS occurs due
to the formation of an energy gap in the AF phase, so that
�1/N�dE�min� /dp 	 p=1− =−J. A necessary condition for PS be-
tween fillings p1�1 and p2=1 is that the second derivative
of the energy E�min��p� must change sign at some filling p�

between p1 and p2. To second order in J /W, the condition
d2E�min��p� /dp2=0 may be written 1/�1− �2� /W�2 �J /��2.
Since the right-hand side vanishes as JH→0, the condition
for PS cannot be satisfied except as �→0 or p�→1. Near
p=1, � /W1− p so the PS width p2− p1 grows linearly with
J /W.

The magnetic instabilities and T=0 phase diagram of the
DE model are plotted side-by-side in Fig. 2. For J /W
�0.33, a SRO phase is stable over a range of fillings that
diminishes with increasing J /W. The NM solid curve in the
SRO region with q=1/2 separates a SRO phase with AF
correlations �1/2�q�1� on the left from one with FM cor-
relations �0�q�1/2� on the right. For J /W�0.33, PS oc-
curs between a SRO state and an AF with p=1. In agreement
with the discussion above, the PS region grows linearly with
J /W. For J /W�0.33, the SRO phase is bypassed and PS is
found between a FM and an AF with p=1. The horizontal
dashed line in Fig. 2�b� separates these two PS regions. The
PS width diminishes as J /W increases past 0.33. In this high-

FIG. 3. The interacting DOS N�� ,q� �normalized by 1/W� vs
� /W for J /W=0.2 in the FM or q=0 �solid�, SRO phase with q
=1/4 �long dash�, NM or q=1/2 �dash�, SRO phase with q=3/4
�small dash�, and AF or q=1 �dot dash� phases.
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coupling regime, our results are in qualitative agreement
with other authors.3,10 Aside from the behavior at very small
J /W, Fig. 2�b� also agrees well with the phase diagram in
Ref. 5.

Together, Figs. 2�a� and 2�b� provide a bird’s eye view of
the magnetic instabilities and phase evolution in the DE
model. As the temperature is lowered, the phase space of the
pure FM shrinks and the AF phase with p�1 disappears
altogether. The coupling J /W�0.33 below which a SRO
phase is stable at T=0 closely agrees with the value where
the NM curve intersects the FM instability boundary and
where the AF instability covers the widest range of fillings in
Fig. 2�a�. Bear in mind that the pure FM, AF, and SRO phase
instabilities of Fig. 2�a� may be bypassed when �J /W , p� lies
in the PS region of Fig. 2�b�.

The presence of a NM or SRO phase at T=0 would seem
to contradict Nernst’s theorem, which requires that the en-
tropy is quenched at zero temperature. However, entropic
ground states occur quite frequently in infinite dimensions,
appearing in earlier work using a hypercubic lattice for the
frustrated Hubbard9 and DE �Ref. 4� models.

As pointed out over 40 years ago,16 the competing FM
and AF interactions in the DE model produce a Ruderman-
Kittel-Kasuya-Yosida �RKKY�-like interaction for small
J /W,6 which frustrates the ordered phases and stabilizes a
SRO state. For small J /W, the component of the electronic
spin along the local-moment direction is of order J /W so the
electronic spins are not frozen at T=0. When the dimension
is lowered, the SRO state evolves into the state with incom-
mensurate correlations �IC� obtained by Monte Carlo
simulations.3 Indeed, simply replacing “SRO” by “IC,” Fig.

2�b� bears a striking resemblance to the one-dimensional and
two-dimensional phase diagrams of Ref. 3.

Whether the SRO phase is a new kind of spin glass or
spin liquid can only be resolved by future studies. Two of the
most important unresolved questions about spin glasses15 are
whether there exists a true thermodynamic transition17 and
whether a model without quenched disorder can support a
spin glass.18 The answers for the SRO phase of the DE
model on a Bethe lattice are clear. Although not marked by a
divergent susceptibility, the SRO transition is characterized
by the development of short-range magnetic order and a re-
duction in the entropy compared to the NM state. In future
work, we will pursue the analogy with the spin-glass solution
for the random Ising model on a Bethe lattice, where the
Edwards-Anderson order parameter can be explicitly
constructed.19

To summarize, we have studied the behavior of a SRO
solution to the DE model in infinite dimensions. Remarkably,
the SRO transition temperature may be higher than that of
the ordered FM and AF phases and the SRO phase remains
stable for small couplings down to T=0. Our results for the
magnetic instabilities and phase diagram of the DE model in
infinite dimensions should complement future investigations
in lower dimensions.
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