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We calculate the density-of-states and the spectral function of Ga1−xMnxAs within the dynamical mean-field
approximation. Our model includes the competing effects of the strong spin-orbit coupling on the J=3/2 GaAs
hole bands and the exchange interaction between the magnetic ions and the itinerant holes. We study the
quasiparticle and impurity bands in the paramagnetic and ferromagnetic phases for different values of
impurity-hole coupling Jc at a Mn doping of x=0.05. By analyzing the anisotropic angular distribution of the
impurity band carriers at T=0, we conclude that the carrier polarization is optimal when the carriers move
along the direction parallel to the average magnetization.
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The combined magnetic and semiconducting characteris-
tics of ferromagnetic semiconductors make them excellent
candidates for spintronic applications.1 In particular, GaAs
doped with Mn �Ga1−xMnxAs� is promising as a spin-carrier
injector in spintronic devices2 due to its relatively high mag-
netic transition temperature3 and its potential integration
within the current semiconductor technology. However, the
properties of magnetic semiconductors still need to be
greatly optimized since practical uses demand magnetic tran-
sitions above room temperature and carrier polarization of at
least 70%.1

A realistic model which incorporates the relevant bands of
the host material is crucial to guide the experimental efforts
in the search for optimal magnetic semiconductors. In
Ga1−xMnxAs, the Mn ions are in the Mn2+ state with a half-
filled d shell of total spin S=5/2.4,5 Since Mn2+ ions prima-
rily replace Ga3+, they contribute carrier holes to the p-like
valence band. The strong spin-orbit interaction couples the
l=1 angular momentum to the electron spin �s=1/2�, result-
ing in a total spin J= �l+s � =3/2 for the two upper valence
bands and J= �l−s � =1/2 for the split-off band.6 Since the J
=3/2 bands are degenerate at the � point, an accurate model
should include at least these two bands. However, a more
realistic approach should incorporate the split-off and con-
duction bands as we discuss later.

Here, we continue our dynamical mean-field ap-
proximation7–10 �DMFA� study of the effects of strong spin-
orbit coupling in Ga1−xMnxAs.11 While we previously exam-
ined the influence of the spin-orbit interaction on the ferro-
magnetic transition temperature Tc and the carrier
polarization,11 we now focus on the density-of-states, the
spectral function, and the dispersion of the quasiparticle and
impurity bands. We also discuss the anisotropy of the spectra
in the ferromagnetic phase and its influence on the transport
properties.

Although the formation of the impurity band has been
captured in previous DMFA studies,12 previous work does
not take into account the spin-orbit coupling and is unable to
address the reduced carrier polarization within the impurity

band. The DMFA describes the impurity band through quan-
tum self-energy corrections which are not included in other
mean-field theories. Because this method is nonperturbative,
it allows us to study both the metallic and impurity-band
regimes as well as both small and large couplings. Although
the precise role played by the impurity band in Ga1−xMnxAs
is still controversial, an array of experimental probes, such as
angle-resolved photoemission,13 infrared spectroscopy,14–16

spectroscopic ellipsometry,17 scanning tunneling mi-
croscopy,18,19 and photoluminescence techniques,20 display
features characteristic of an impurity band.

We start with the Hamiltonian proposed in Refs. 11 and
21:

H = H0 − Jc�
Ri

Si · Ĵ�Ri� . �1�

The first term incorporates the electronic dispersion and the
spin-orbit coupling of the J=3/2 valence holes within the
spherical approximation.22 The second term represents the
interaction between the Mn spins and the valence holes,23

with Jc the exchange coupling and Ĵ�Ri� the total J=3/2 spin
density of the holes at the site i of a Mn ion with spin Si. The
relatively large magnitude of the Mn spin �S=5/2� justifies
its classical treatment.

Since the typical hole concentration is small �around 5%�,
the holes gather at the J=3/2 bands around the � point. This
supports the use of the spherical approximation,22 for which
the noninteracting Hamiltonian of pure GaAs is rotationally
invariant. Hence, H0 is diagonal in a chiral basis

H0 = �
k,�

k2

2m�

c̃k�
† c̃k�,

where c̃k,�
† creates a chiral hole with momentum k parallel to

its spin and J · k̂= ±3/2 or ±1/2. The two band masses mh
�0.5m and ml�0.07m correspond to the heavy and light
bands with �= ±3/2 and ±1/2, respectively �m is the elec-
tron mass�. For convenience we use the hole picture so that
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the valence bands have a minimum instead of a maximum at
zero momentum. However, in displaying our results, we re-
verse the sign back to accommodate the usual convention.

As discussed previously,11 the coarse-grained Green func-
tion matrix in the nonchiral fermion basis is

Ĝ�i�n� =
1

N
�
k

�i�nÎ − �̂�k� + �Î − �̂�i�n��−1, �2�

where N is the number of k points in the first Brillouin zone,

� is the chemical potential, and �̂�k�= R̂†�k̂� k2

2m�
R̂�k̂� is the

dispersion in the spherical approximation. Here, R̂ are spin
3/2 rotation matrices that relate the fermion operator ck� to

its chiral counterpart c̃k�=R�	�k̂�ck	, and repeated spin indi-

ces are summed. The mean-field function Ĝ�i�n�
= �Ĝ−1�i�n�+ �̂�i�n��−1 is required to solve the DMFA impu-
rity problem. At a nonmagnetic site, the local Green function

equals the mean-field function Ĝnon= Ĝ, while the local

Green function at a magnetic site is Ĝmg�i�n�= �Ĝ−1�i�n�
+JcS · Ĵ�−1. To obtain this result, we treat disorder in a fash-
ion similar to the coherent potential approximation �CPA�.24

Now Ĝmg�i�n� must be averaged over all possible spin
orientations at the local site and over all possible impurity
configurations on the lattice. The former is implemented by
introducing the angular distribution function P�S�

=
exp�−Seff�S��

Z , where Z=�d
Sexp�−Seff�S�� and Seff�S� is the
effective action of the system25

Seff�S� = − �
n

ln det 	Ĝ�i�n��Ĝ−1�i�n� + JcS · Ĵ�
ei�n0+
.

�3�

The extra factor of Ĝ�i�n� in Eq. �3� is introduced to aid in
convergence. If the Mn ions are randomly distributed with
probability x, then the configurationally averaged Green

function reads Ĝavg�i�n�= �Ĝmg�i�n��x+ Ĝ�i�n��1−x�.
When the magnetic order is along the z axis, Ĝmg, Ĝ, and

�̂ are diagonal matrices and the angular distribution function
depends only on the polar angle of the impurity spin P�S�
= P���.26 In fact, Ĝmg can be written as a combination of the

identity matrix Î, Jẑ, Jz
2̂, and Jz

3̂, where the coefficients are of
order zero, one, two, and three, respectively, of the magneti-

zation Ĝmg=O�1�Î+O�M�Jẑ+O�M2�Jz
2̂+O�M3�Jz

3̂.26 Making
use of these results, a new algorithm has been designed
which dramatically reduces the computational time com-
pared to our earlier work.11 Since the rotational symmetry of
the model is explicitly broken by our choice of a preferential
direction for the magnetization, we no longer need a small
magnetic field to break the symmetry along a magnetization
axis.11

To calculate dynamical quantities, we work in the real
frequency domain, where the coarse-grained Green function
matrix is

Ĝ�
� =
1

N
�
k

�
Î − �̂�k� − �̂����−1 �4�

with 
=�+ i0+.
Generally the Matsubara and real frequency Green func-

tions need to be iterated simultaneously and averaged over
the polar angle distribution P���. However, if we focus only
on the paramagnetic phase �T�Tc� and the ferromagnetic
ground state �T=0� the angular distributions are known and
self-consistency in the Matsubara domain is not necessary. In
the paramagnetic phase, the angular distribution of the Mn
spins is completely random so that P���=1/. In the T=0
ferromagnetic ground state, the average impurity magnetiza-
tion achieves its full value and P���=����.

After the coarse-grained Green function is self-
consistently calculated, the density-of-states is computed as

DOS��� = −
1


Im Tr Ĝ�
� , �5�

where Tr is the trace. Each of the diagonal elements of

− 1
 Im Ĝ�
� is the projection of the density-of-states onto a

state with fixed Jz component, i.e., Jz= +3/2 , +1/2 ,−1/2,
and −3/2.

We are also interested in the spectral function defined as

A�k,�� = −
1


Im Tr�
Î − �̂�k� − �̂����−1. �6�

The center of the quasiparticle peak in the spectral function
represents the renormalized quasiparticle energy ���k� ��
=1,2 ,3 ,4�, which can be obtained by solving the condition

Re�
Î − �̂�k� − �̂����diag = 0, �7�

where the subscript “diag” means that we first diagonalize
the matrix, then solve the equation for each diagonal ele-
ment.

We focus on the doping of x=0.05, for which Tc is near
the highest reported.3,27–33Figure 1 shows our results for the
density-of-states for various values of Jc in the ferromagnetic
phase �main panel� and the paramagnetic phase �inset�. As Jc
increases, states with positive energy appear inside the semi-
conducting gap. These states correspond to the Zeeman split-
ting of the hole levels induced by the local impurity magne-
tization. For Jc�2.0 eV an impurity band clearly appears.
For Jc=3.0 eV and T=0, a second impurity band has started
to form though it has not yet separated from the main band.
We also observe a second impurity band appearing at posi-
tive energies in the paramagnetic phase when Jc�5.0 eV
�not shown in the graphs�. The appearance of two impurity
bands is consistent with the fact that the model includes two

bands with J · k̂= ±3/2 and ±1/2.
As expected, the center of the impurity band shifts to

higher energy as Jc increases. However, the predicted ener-
gies of the impurity band are too large. We believe that this is
a consequence of excluding the conduction band from our
model, since band repulsion with the conduction band pushes
the impurity band to lower energies. We also notice that the
impurity band in the ferromagnetic phase is broader than the
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one in the paramagnetic phase, confirming previous
results.12,25 This suggests that the lifetime of the “bound-
state” holes is shorter in the ferromagnetic phase because
additional scattering events that exchange holes between im-
purities are required to maintain magnetic order. Hence, we
will refer to the impurity-band states as quasibound states.

Next, we compare our density-of-states results with angle
resolved photoemission spectroscopy �ARPES� data in the
paramagnetic phase of Ga1−xMnxAs, x=0.035.13 For this
doping Okabayashi et al. observe an impurity band already
well separated but not very far apart from the main band. A
rough estimate for Jc of 2.0−3.0 eV is the most suitable to
describe the situation observed in the experimental setup. In
the following discussion we take Jc=3.0 eV, though this
value is an overestimate of the exchange coupling, to further
explore the physical consequences of our model and the be-
havior of the impurity band.

Figure 2 shows the decomposition of the DOS in terms of
its Jz components for Jc=3.0 eV. As expected, at T�Tc all
four components of Jz contribute equally to the total DOS,
the electronic system is unpolarized. At T=0, however, we
see that the impurity band is not fully polarized, as would be
expected for the double exchange model. In addition to the
dominant Jz= +3/2 component, components with Jz= +1/2
and −1/2 are also present. This is clearly a consequence of
the strong spin-orbit coupling, which mixes the Jz= +3/2
state with Jz= ±1/2 states. Previous DMFA studies12 with
coupling to only one carrier band captured the formation of
the impurity band but were unable to address the effect of
frustration on the carrier polarization.

Now we explore the spectral function of our model for
Jc=3.0 eV. Figure 3�a� shows the spectral function in the
paramagnetic phase. Figures 3�b� and 3�c� display the T=0
spectrum along the direction parallel and perpendicular to
the average magnetization, respectively. Notice two main ef-

fects on the energy levels: the valence band quasiparticle
states �shown in main panels� are renormalized and the im-
purity band �shown in the blown-up insets� appears. Due to
the localized nature of the impurity band states, their spectral
weight extends over a large region in momentum space with
typical values of the spectral function reduced by two orders
of magnitude in comparison with the quasiparticles peaks.

The spectrum within the paramagnetic phase is isotropic,
while it is obviously anisotropic in the ferromagnetic phase.
For Jc=3.0 eV all the quasiparticle lines track the peaks, and
quasiparticles are well defined. As expected in the paramag-

netic phase, the states corresponding to J · k̂= ±3/2 and ±1/2
remain degenerate for all values of momentum. In this phase,
the self-energy matrix is proportional to the identity,26 pre-

serving J · k̂ as a good quantum number. The self-energy just
shifts the quasiparticle bands towards negative energies due
to the band repulsion between the quasiparticle and the
emerging impurity band. Also notice that the heavy and light
quasiparticle bands are still degenerate at the � point.

In the ferromagnetic phase, the quasiparticle lines split
into 4. Since the finite magnetization competes with the chi-
ral nature of the holes, the quasiparticle lines no longer cor-
respond to well-defined chiral states. This is confirmed by
Figs. 3�b� and 3�c�, where the curvature �related to the effec-
tive mass� of the quasiparticle bands depends on the direc-
tion of the momentum. For the direction parallel to the aver-
age magnetization the spectrum of the quasiparticle band
with Jz= +1/2 is shifted towards the semiconducting gap by
approximately 0.4 eV while the other bands are pushed to-
wards negative energies. The positive shift in the Jz= +1/2
band is mainly due to the Zeeman splitting. The band repul-
sion between this band and the impurity states is very small
since the impurity band hardly includes Jz= +1/2 quasipar-
ticles with momentum parallel to the magnetization �see Fig.
4�. On the other hand the Jz= +3/2 quasiparticle band shifts

FIG. 1. Density-of-states for Jc=1.0, 2.0, 3.0, and 4.0 eV, at
T=0 �main panel� and T�Tc �inset�. The appearance of an impurity
band is evident for Jc�2.0 eV. The broader impurity band at
T=0, compared to that at T�Tc, indicates that lifetime of the
bound-state holes decreases as the system becomes magnetically
ordered.

FIG. 2. Decomposition of the density-of-states in terms of Jz

components, for Jc=3.0 eV at T=0 �main panel� and T�Tc �inset�.
The chiral nature of the holes due to spin-orbit coupling mixes up
states with different Jz components, making the total DOS only
partially polarized at T=0.
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its spectrum by �−0.2 eV due to strong repulsion with the
Jz= +3/2 states at the impurity band. However, for the direc-
tion perpendicular to the average magnetization the quasipar-

ticle peak centered at ��0.4 eV has J · k̂= +3/2 character.

Since the impurity band on the perpendicular plane is formed
mainly by J · k̂= ±1/2 states, the J · k̂= +3/2 quasiparticles
do not suffer band repulsion.

Now examine the impurity band spectra in the insets. In
the paramagnetic phase the impurity band does not show
significant variation with k, indicating strong localization of
the bound-state holes. In the ferromagnetic phase, the varia-
tion with k, although small, confirms that the bound-state
holes are more mobile. Typical fillings leading to the highest
critical temperatures correspond to values of the chemical
potential inside the impurity band. Therefore, the transport
properties rely on the impurity band rather than on the qua-
siparticle bands.

As demonstrated by Fig. 4 for the ferromagnetic phase,
the impurity-band spectral function along the direction par-
allel to the magnetization is predominantly composed of Jz
= +3/2 holes, whereas along the direction perpendicular to
the magnetization, it is a mixture of Jz= +3/2 , +1/2, and
−1/2 states. This result suggests that the carrier polarization
may be optimized by driving the current along the direction
parallel to the magnetization. However, this may come with a
price, since the carrier mobility is lower for the Jz= +3/2
heavy holes. Due to the mixing of heavy and light holes, the
direction perpendicular to the magnetization may have
higher mobility but lower carrier-spin polarization. Also no-
tice that the Jz=−1/2 states participating in the local screen-
ing at the impurity band mostly display finite perpendicular
momentum. This is the configuration most energetically fa-
vorable to avoid an exchange penalty while fulfilling spin-
orbit constraints.

Although we are able to predict trends on photoemission

FIG. 3. Spectral functions near the center of the Brillouin zone
for Jc=3.0 eV at �a� T�Tc along any direction, �b� T=0 along the
direction parallel, and �c� perpendicular to the magnetization. Insets
display a zoom of the impurity band region. Each spectral curve
corresponds to a different value of the magnitude of the momentum
k, as indicated at the right of the graphs, and the baseline of each
spectrum is shifted proportionally to k for clarity. The momentum k
is measured in inverse units of the effective cubic lattice constant of
�aGaAs

3 /4�1/3�3.5 Å. In the main panels the dashed curves represent
the renormalized valence bands. For comparison, the valence bands
of pure GaAs are also displayed �dotted curves�. The scale in the
insets is blown-up by a factor of 100 in �a� and 200 in �b� and �c�.

FIG. 4. Variation of the Jz components of the impurity band
spectral function for Jc=3.0 eV and T=0 ��a� Jz= +3/2, �b� Jz=
+1/2, and �c� Jz=−1/2� as the magnitude of the momentum k
changes from 0 �solid curve� to k=0.25 along the direction paral-
lel �dotted curve� and perpendicular �long-dashed curve� to the av-
erage magnetization. Notice that the three graphs have different
scales.
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and transport measurements, we need a more realistic ap-
proach to the band structure of the host material in order to
make detailed comparisons with experimental data. The in-
clusion of the conduction band in our model will constrain
the impurity band within the GaAs bandgap. In addition, the
incorporation of the Coulomb attraction between the Mn im-
purities and the holes will narrow the effective width of the
impurity band. The inclusion of both effects will allow us to
make quantitative comparisons with experimental data.

In conclusion, we have calculated the spectra of the renor-
malized valence bands and the impurity band of Ga1−xMnxAs
within the DMFA. We compare our results with existing
ARPES data for the paramagnetic phase.13 From the aniso-
tropy of the impurity band in the ferromagnetic phase, we
predict that the direction parallel to the magnetization will
produce the most polarized spin current, whereas the perpen-
dicular direction may display higher conductivity with lower

polarization. It would be interesting to be able to compare
our results in the ferromagnetic phase with additional
ARPES data.
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