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Some of the highest transition temperatures achieved for Mn-doped GaAs have been in �-doped heterostruc-
tures with well-separated planes of Mn. In the absence of magnetic anisotropy, the Mermin-Wagner theorem
implies that a single plane of magnetic ions cannot be ferromagnetic. Using a Heisenberg model, we show that
the same mechanism that produces magnetic frustration and suppresses the transition temperature in bulk
Mn-doped GaAs, due to the difference between the light and heavy band masses, can stabilize ferromagnetic
order for a single layer of Mn in a GaAs quantum well. This comes at the price of quantum fluctuations that
suppress the ordered moment from that of a fully saturated ferromagnet. By comparing the predictions of
Heisenberg and Kohn-Luttinger models, we conclude that the Heisenberg description of a Mn-doped GaAs
quantum well breaks down when the Mn concentration becomes large, but works quite well in the weak-
coupling limit of small Mn concentrations. This comparison allows us to estimate the size of the quantum
fluctuations in the quantum well.
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I. INTRODUCTION

The discovery of dilute-magnetic semiconductors �DMS�
with transition temperatures above 170 K �Refs. 1–3� has
renewed hopes for a revolution in semiconductor technolo-
gies based on electron spin.4 However, the difficulty in pro-
ducing DMS materials with ferromagnetic transition tem-
peratures above room temperature has stalled the
development of practical spintronic devices. Some of the
highest transition temperatures to date have been achieved in
�-doped GaAs heterostructures,5 where the Mn are confined
to isolated planes. The Curie temperature of digital hetero-
structures does not seem to vanish as the distance between
layers increases.6 Yet, a single layer of magnetic ions with
spin S=5/2 would not be expected to become ferromagnetic
due to the Mermin-Wagner theorem, which states that gap-
less spin excitations destroy magnetic order at any nonzero
temperature in two dimensions. The magnetic anisotropy due
to strain is commonly invoked7–10 to explain the ferromag-
netism of heterostructures. However, strain changes signifi-
cantly as a function of film thickness and capping layers, and
would be negligible for a single layer of Mn in a GaAs
quantum well. The questions addressed in this paper are as
follows: Can a single layer of Mn in a GaAs quantum well
be ferromagnetic? What kind of ferromagnet is it?

To answer these questions, we employ two complemen-
tary approaches. First, we study the magnetic interactions
between Mn moments embedded in a GaAs quantum well
using a two-dimensional �2D� S=5/2 Heisenberg model,
with exchange interactions taking the same form as in bulk
Mn-doped GaAs.11 Remarkably, the same anisotropic
Heisenberg interactions that suppress the bulk transition tem-
perature act to stabilize long-range magnetic order in 2D by
producing a gap in the spin-wave �SW� spectrum. Second,
we estimate the parameters of the Heisenberg model by con-
structing a Kohn-Luttinger �KL� model for a GaAs quantum
well with an additional exchange interaction between the
holes and the Mn spins, which are treated classically and
confined to the central plane. Comparing the predictions of

the Heisenberg and KL plus exchange �KLE� models, we
conclude that the Heisenberg description of a Mn-doped
quantum well works quite well for small Mn concentrations
or in the weak-coupling limit, but breaks down when the Mn
concentration becomes too large.

This paper is organized into five sections. In Sec. II, we
examine several anisotropic S=5/2 Heisenberg models that
might describe a single layer of Mn in a GaAs quantum well.
Section III develops a more precise electronic description of
the quantum well based on the KLE model. In Sec. IV, the
KLE model is used to estimate the parameters of an aniso-
tropic Heisenberg model. A brief conclusion is provided in
Sec. V.

II. HEISENBERG DESCRIPTION OF A QUANTUM WELL

In bulk Mn-doped GaAs, the difference between the light
�ml=0.07m� and heavy �mh=0.5m� band masses with ratio
r=ml /mh�0.14 produces an anisotropic interaction11 be-
tween any two S=5/2 Mn ions. This anisotropy arises be-
cause the kinetic energy K=�k,����k���ck,�

† ck� is only di-
agonalized when the angular momentum j of the charge

carriers is quantized along the momentum direction k̂. The

heavy and light holes carry angular momentum j · k̂= ±3/2
and ±1/2, respectively. As shown by Zaránd and Jankó
�ZJ�,11 the interaction between Mn spins Si and S j �as in the
inset to Fig. 1� can be written as

Hij = − Jij
�1�Si · S j + Jij

�2�Si · rijS j · rij . �1�

For r=1, K is diagonal in any basis and Jij
�2�=0. Since Jij

�2�

�0 for r�1, the Mn spins in GaAs prefer to align perpen-
dicular to the vector rij = �Ri−R j� / �Ri−R j� connecting spins i
and j. For a tetrahedron of Mn spins, the interaction energy
between every pair of spins cannot be simultaneously mini-
mized and the system is magnetically frustrated. As shown
both in the weak-coupling, Ruderman-Kittel-Kasuya-Yosida
limit11 and more generally12,13 within dynamical mean-field
theory, this anisotropic interaction suppresses the Curie tem-
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perature compared to a nonchiral system with r=1. Moreno
et al.13 found that the transition temperature may be lowered
by about 50% for r=0.14 compared to r=1.

We construct a simple 2D Heisenberg model for a single
layer of Mn-doped GaAs by including the effect of this an-
isotropy;

HZJ =
1

2�
i�j

Hij − D�
i

�Si
z�2, �2�

where the sum is taken over a square lattice and S=5/2. We
also include a single-ion anisotropy term D that might be
important in a quantum well due to elastic strain and spin-
orbit coupling. When Jij

�2��0, the anisotropic interactions
cause the Mn spins to point out of the plane, producing a gap
�SW in the SW spectrum even when D=0. By breaking the
rotational invariance of the spin, the anisotropic coupling
would allow a single layer of Mn ions to order ferromagneti-
cally even in the absence of single-ion anisotropy. As dis-
cussed further below, the single-ion anisotropy D is also
known15 to produce a SW gap and to stabilize ferromagnetic
long-range order in the 2D Heisenberg model.

Before proceeding to study HZJ using SW theory, we note
that other types of Heisenberg models may also stabilize fer-
romagnetic order in 2D. For example, the Hamiltonian

H� = − J�
�i,j�

�Si
xSj

x + Si
ySj

y + �1 + ��Si
zSj

z	 �3�

with an anisotropic coupling between neighboring spins was
recently used10 to model a plane of Mn spins in a GaAs host.
When ��0, the rotational invariance of the spins is broken
and 2D ferromagnetism is stabilized at finite temperatures.
However, H� does not contain the same anisotropic interac-
tions between Mn spins that are believed11 to be present in
the bulk system.

Due to the presence of the Jij
�2� terms in Hij, HZJ does not

commute with the total spin Stot=�iSi. Therefore, quantum
fluctuations will suppress the magnetic moment of the ZJ
model even at zero temperature. Such quantum fluctuations
are typically found in antiferromagnets but are rather unusual

in ferromagnets away from quantum critical points. Notice
that the Hamiltonian H� constructed above does not have
quantum fluctuations.

To gain a better idea of the size of the quantum fluctua-
tions in the ZJ model, we specialize to the case where both
Jij

�1�
J1 and Jij
�2�
J2 couple only neighboring spins on the

square lattice. We then use SW theory to solve HZJ, assuming
that S	1. At the mean-field �1/S0� level, the ferromagnetic
alignment of the spins along the z axis is unstable to an
A-type antiferromagnetic realignment of the spins in the xy
plane �with lines of spins alternating in orientation� when
J2 /J1�2+D /J1. To order 1 /S, Eq. �1� may be written in
terms of Holstein-Primakoff bosons,

Hij � − J1�S2 − S�ai
†ai + aj

†aj − ai
†aj − aj

†ai�	 ±
J2S

2
�ai ± ai

†�


�aj ± aj
†� , �4�

where � is � for spin i and j separated by x̂, and  for spin
i and j separated by ŷ. The second term in Eq. �2� will
similarly contribute 2DS�iai

†ai. Since only the first terms in
a 1/S expansion of the spin operators have been retained, the
interactions between SWs have been neglected. Because of
the relatively large S=5/2 spin of the magnetic ions, how-
ever, the next order in the expansion �1/S2� will be rather
small for low temperatures, and we expect the linear approxi-
mation to recover all of the relevant quantum physics. Writ-
ing the Holstein-Primakoff bosons in a momentum represen-
tation, we get the useful form

HZJ = H0 + �
k

Ak�ak
†ak + a−k

† a−k� + �
k

Bk�ak
†a−k

† + aka−k� ,

�5�

with coefficients given by

Ak = 2J1S�1 − ��k�� + J2S��k� + DS ,

Bk = J2S��k�/2, �6�

where ��k�= �cos kx+cos ky� /2 and ��k�=cos kx−cos ky �lat-
tice constant set to unity�. In this form, it is easy to see that
the anisotropy J2 destroys the ability of the Hamiltonian to
commute with the total spin Stot

z =�iSi
z=NS−�kak

†ak, causing
a quantum correction to the ground-state magnetization.

The SW Hamiltonian can be diagonalized in the usual
way by transforming to Bogoliubov bosons �k

† and �k, which
obey the canonical commutation relations. Forcing the re-
sulting Hamiltonian to be diagonal in �k

†�k, we obtain the
SW energies �k=2Ak

2 −Bk
2 with the energy gap �SW=2�J2

+D�S. The absence of terms linear in the boson operators
and the positive definiteness of the SW frequencies for −D
�J2�2J1+D guarantee that the ferromagnetic state with all
spins aligned along the z axis is stable against noncollinear
rearrangements of the spins.14 The diagonalized SW Hamil-
tonian may be used to estimate the quantum-mechanical cor-
rection to the ground-state magnetization. Starting with the
magnetization written as �Si

z�=S−N−1�k�ak
†ak�, we find upon

transforming to Bogoliubov bosons,

FIG. 1. �Color online� Quantum correction to the ground-state
magnetization per spin �S=5/2� in the limit D=0. The inset illus-
trates the direction of the interaction Jij

�2�.
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�Si
z� = S −

1

N
�
k
�Ak

�k
−

1

2
+

2Ak

�k
��k

†�k�� . �7�

Since nk= ��k
†�k�=1/ �e��k −1�, Eq. �7� can be used to calcu-

late the quantum correction to the ground-state magnetiza-
tion by simply setting ��k

†�k�=0 and evaluating the integrals
over k. The result is plotted versus J2 /J1 for D=0 in Fig. 1.

Within linear SW theory, Eq. �7� also affords us the sim-
plest estimate for the transition temperature TC of the
nearest-neighbor HZJ model. Clearly, the transition tempera-
ture calculated within this formalism neglects the large quan-
titative corrections due to SW interactions. But including
such interactions to second order in 1/S would require addi-
tional approximations to handle the terms quartic in �k

† and
�k. Since the precise value of TC does not play a role in the
subsequent discussion, we are satisfied that the correct quali-
tative trends �i.e., the stabilization of TC at a finite value� are
reproduced by linear SW theory. Including now both terms
of Eq. �7�, we can write the T-dependent order parameter as

�Si
z� = S +

1

2
−

1

N
�
k

Ak

�k
coth���k

2
� . �8�

We obtain TC from the crossing point �Si
z�=0 for a given set

of parameters J2 /J1 or D /J1.16 The result is illustrated in Fig.
2, where TC is scaled by the Weiss mean-field �MF� result,
TC

�MF�=4J1S�S+1� /3.
Consider first the limiting case with D=0. Because the

SW stiffness is assumed to be independent of temperature,
the SW approach overestimates TC for J2 /J1�1. Notice that
TC is symmetric on either side of J2 /J1=1 and drops to zero
when J2 /J1=0 and 2. The limit J2 /J1→0 can be analyzed by
considering the behavior of the SW frequencies for small k.
Expanding �k to second order in k, we find that for small
J2 /J1, TC→4�J1S�S+1/2� / ln�4�2J1 /J2�. This inverse loga-
rithm is similar to the form discussed in Ref. 15 for the HZJ

model with J2=0 and small single-ion anisotropy. In that
case, TC→T3 / ln��2J1 /D�, where T3 is the bulk transition
temperature, approximately proportional to J1S�S+1�.

We confirm this relationship by calculating TC in the HZJ

model using the above SW theory, with J2=0 and a nonzero
D. As shown in Fig. 2, the results for J2=0 or D=0 agree
quite well as D or J2→0. For larger J2 and D, the curves
deviate significantly, with the J2=0 curve growing linearly in
the limit of large D. Quite generally, we find that as �SW
→0,

TC →
4�J1S�S + 1/2�
ln�8�2J1S/�SW�

. �9�

This general expression reduces to the correct limits when J2
or D=0. We conclude that the behavior of TC in the case of
strong fluctuations is controlled by the isotropic exchange J1
and the SW gap.

With a finite D, the TC versus J2 /J1 curve qualitatively
resembles a scaled-up version of the D=0 curve in Fig. 2. In
that case, however, the asymptotic behavior at J2=0 is re-
moved �TC becomes finite�, the instability to in-plane order-
ing occurs at J2 /J1=2+D /J1 �as discussed above�, and the
maximum TC increases. In our SW calculation, TC vanishes
at this instability due to the softening of the SW frequencies
�k with k= �� ,0� and k= �0,��.

III. KOHN-LUTTINGER PLUS EXCHANGE MODEL

To estimate the size of the quantum fluctuations in a Mn-
doped GaAs quantum well, we model the quasi-2D hole gas
as a thin quantum well of width L, accounting for the Cou-
lomb confinement potential arising from the ionized
dopants,17 central cell corrections, and any additional epitax-
ial confinement. We use a spherical approximation of the KL

Hamiltonian18 with four bands �j · k̂= ±3/2 and ±1/2� to
evaluate the energies ��k��� for a GaAs quantum well with
zero boundary conditions at z= ±L /2. We express the Kohn-
Luttinger Hamiltonian in a reduced basis form by the lowest-
energy wave functions �1�z�=2/L cos��z /L� and �2�z�
=2/L sin�2�z /L� of the quantum well, with �n�kz

2�m�
= �n� /L�2�nm. The Mn spins are now treated classically and
the Mn impurities are distributed in the z=0 plane with con-
centration c. Since �2�0�=0, the Mn spins only couple to the
holes in the first wave function with projection ��1�0��2
=2/L. The exchange coupling of the Mn spins Si=Smi with
the holes is given by V=−2Jc�imi · ji, where ji
=���ci,�

† J��ci,� /2 are the hole spins and J�� are the Pauli
spin-3 /2 matrices. The states �1 and �2 are coupled by the
off-diagonal terms in the KL Hamiltonian with matrix ele-
ments proportional to �n��kx± iky�kz�m�, which vanishes for
n=m but is given by −�8i /3L��kx± iky� for n=1 and m=2.

For any coupling constant Jc and orientation m
= �sin � ,0 ,cos �� of the Mn spins, the energy E�Jc ,�� of the
KLE model is obtained by first diagonalizing an 8
8 matrix
in j=3/2 and n ,m=1,2 space:

HKLE = �A1 B†

B A2
� . �10�

The diagonal block elements can be written in terms of a
generalized 4
4 matrix,

FIG. 2. �Color online� The transition temperature of the nearest-
neighbor HZJ model calculated in SW theory. For D=0, TC falls to
zero at J2 /J1=0 and 2; for J2=0, TC=0 for D=0 only. The SW
value for TC is normalized by the Weiss MF result.
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An
0 =�

k�
2

2ma
+ �n�

L
�2 1

2mh
+ bQ� 0 d�kx − iky�2 0

0
k�

2

2mb
+ �n�

L
�2 1

2ml
− bQ� 0 d�kx − iky�2

d�kx + iky�2 0
k�

2

2mb
+ �n�

L
�2 1

2ml
− bQ� 0

0 d�kx + iky�2 0
k�

2

2ma
+ �n�

L
�2 1

2mh
+ bQ�

� ,

�11�

so that A1=A1
0−Jcm ·J. We include the strain term Q�
�zz− ��xx+�yy� /2, which is multiplied by the deformation potential b

=−1.7 eV for GaAs.19 The other block diagonal element is simply A2=A2
0, since the holes in �2�z� do not couple to the Mn

spins at z=0. We have defined d=3�1/mh−1/ml� /8, k�= �kx ,ky�, ma=4�3/ml+1/mh�−1, and mb=4�1/ml+3/mh�−1. The
off-diagonal block elements coupling �1�z� and �2�z� are

B =�
0 16id�kx − iky�/3L 0 0

16id�kx + iky�/3L 0 0 0

0 0 0 − 16id�kx − iky�/3L

0 0 − 16id�kx + iky�/3L 0
� , �12�

which couples the jz= ±3/2 and ±1/2 components.
An expression for Jc can be derived by directly comparing

the potential V to the standard spin-hole interaction, e.g. Eq.
�1� of Ref. 19. We estimate

Jc �
S��N0�

2j�
c , �13�

where S=5/2, j=3/2, �N0�1.2 eV,19 �=L /a is the number
of layers in the quantum well, and a�4 Å is the lattice con-
stant of Ga in the z=0 plane. So we see that Jc�1c eV/� is
inversely proportional to the width of the quantum well. For
�=10, Jc�100c meV.

The splitting between the light and heavy band masses at
the � point of �n�z� is given by

�n =
1

2
� n�

�a
�2� 1

ml
−

1

mh
� − 2bQ�. �14�

Since both contributions are positive for Q��0, the confine-
ment of holes in the quantum well formally plays the same
role as the compressive strain in a thin film.20 For ��20 and
typical strains less than 0.5%, the contribution to the band
splitting from quantum confinement is much larger than the
contribution from strain. In the limit �→0 of an infinitely
narrow quantum well, the effects of strain can be neglected
entirely. For a narrow quantum well with ��20, �n
�29�n /��2 eV and Jc /�1��c /29. Hence, a narrow quan-
tum well with a small Mn concentration is in the weak-
coupling limit with Jc��1. By contrast, GaAs films with �
larger than about 50 cannot be treated as quantum wells be-
cause too many wave functions �n�z� would be required. The
dominant contribution to the band splitting in such films
comes from strain8 rather than the confinement of the holes.

After obtaining the eigenvalues of the 8
8 matrix HKLE,
we evaluate the energy E�Jc ,�� of a quantum well by inte-
grating over k�. Since the hole filling p in the region of
perpendicular anisotropy is quite small, the holes only oc-
cupy a very small portion of the Brillouin zone centered
around k�=0. This implies that each hole interacts with
many different Mn moments, so that the precise geometry
and location of the Mn impurities within the z=0 plane does
not affect our results. Consequently, the results of the KLE
model for the energy do not depend on whether the Mn ions
are randomly distributed within the central plane. The small
area in momentum space occupied by the holes also justifies
our use of a spherical approximation18 to the KL Hamil-
tonian.

Because each of the holes must interact with two Mn
moments in order to mediate their effective interaction, the
resulting quantum-well energy E�Jc ,�� is an even function of
Jc. Of course, magnetic properties like the Kondo effect do
depend on the sign of the exchange coupling. But in the
weak-coupling limit of small Jc, the Kondo temperature21

will be extremely small and the Kondo effect shall be ne-
glected in the subsequent discussion.

IV. ESTIMATION OF THE HEISENBERG PARAMETERS

By comparing the predictions of the KLE and ZJ models,
we now estimate the ZJ exchange interactions between the
Mn moments in a GaAs quantum well. In general, obtaining
the long-range interactions Jij

�1� and Jij
�2� that parametrize the

ZJ Hamiltonian is not possible. However, we can estimate
the q=0 component of the isotropic exchange coupling,
J1�q=0�=� jJij

�1�, by considering the change in energy of the
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quantum well when the exchange with the Mn spins �all
aligned along the z direction with angle �=0� is turned off.
For HZJ, this gives the energy to align all of the spins. So we
find that

−
1

2
J1�q = 0�S2 − DS2 =

1

N
�E�Jc,� = 0� − E�Jc = 0�	 .

�15�

The q=0 component of the anisotropic exchange coupling,
J2�q=0�=� jJij

�2�, may be estimated by evaluating the change
in energy when all of the Mn spins rigidly rotate away from
the z axis toward the xy plane with angle �:

1

4
J2�q = 0,��S2 + DS2 =

1

N

E�Jc,�� − E�Jc,� = 0�
sin2 �

. �16�

Within the KLE model, the average exchange vanishes when
the moments are randomly oriented �whether perpendicular
or parallel to the plane� because holes with small momenta
interact with many Mn moments. By contrast, the single-ion
anisotropy energy −D�i�Si

z�2 is large when the moments are
randomly oriented in the z direction but vanishes when the
moments are randomly oriented in the plane. Comparing the
energies of these two random configurations, we conclude
that the single-ion anisotropy D corresponding to the KLE
model must vanish. Because the right-hand side of Eq. �16�
is independent of � within the Hamiltonian Eq. �2�, the prox-
imity of J2�q=0,�→0� and J2�q=0,� /2� is a measure of
how well the KLE model can be approximated by the
Heisenberg model HZJ.

Analytic results for the q=0 exchange parameters can be
obtained in the weak-coupling limit of small Jc if only �1�z�
is occupied by holes and the hole chemical potential �
��pc /maa2 is also small compared to the band splitting �1.
For Jc����1, we find that J1�q=0�S2=9�Jc

2 /W
J1
�0�S2

and J2�q=0,��=2J1�q=0�, where W=�2c /maa2 is the band-
width and ma is the band mass in the xy plane. Both J1�q
=0� and J2�q=0,�� are independent of the hole filling due to
the flatness of the 2D density of states.7 Recall from our
discussion above that the system with only nearest-neighbor
interactions is unstable to an antiferromagnetic realignment
of the spins in the xy plane when J2 /J1�2. So in the limit
Jc����1, a phase with aligned moments is unstable when
the exchange interactions are short ranged. Neglecting the
effect of anisotropy, J1�q=0� may be used to estimate TC

from the MF solution of a spin S Heisenberg model:

TC
�MF� =

1

3
J1

�0�S�S + 1� =
1

3�
��N0�2maa2S�S + 1�

c

�2

� 0.18
c

�2 eV, �17�

which agrees precisely with the MF result of Lee et al.7

Hence, the transition temperature of a quantum well in-
creases as it becomes narrower. A departure of the concen-
tration c�z� of the Mn profile from a delta function would
increase the effective width of the confining potential,
thereby lowering the transition temperature.

More generally, when both wave functions �1�z� and
�2�z� are included, Eqs. �15� and �16� may be used to evalu-
ate J2�q=0,�� /J1�q=0� as a function of p. As illustrated in
Fig. 3, J2�q=0,0� /J1�q=0� initially increases with filling,
before decreasing and becoming negative above p1 �indicat-
ing that the spins with �=0 are no longer locally stable�. We
find that J1�q=0� increases linearly for small p and reaches a
value of about 1.4 times J1

�0� at a filling p�0.025, indepen-
dent of c. The maximum in J2�q=0,0� /J1�q=0� approaches
2 for small Mn concentrations c and hole fillings p approach-
ing 0, which is just the limit Jc����1 discussed above. By
contrast, J2�q=0,� /2� /J1�q=0� decreases with increasing p
and becomes negative when p� p2� p1. This implies that the
moments are tilted away from the z axis for p� p1 and only
fall into the xy plane �E�Jc ,�� has a minimum at �=� /2�
above some higher filling p3� p2. Once the spins land on the
xy plane above p3, the rotational invariance of the spins
about the z axis would destroy long-range magnetic order if
not for crystal-field anisotropy within the plane.20

As remarked earlier, the Heisenberg description of a
quantum well requires that J2�q=0,�� is independent of the
angle �. Hence, Fig. 3 implies that for any nonzero Mn con-
centration, the ZJ model fails when the hole filling falls be-
low a critical threshold. The ZJ model works best over the
widest range of hole fillings for small Mn concentrations.
For c=0.175, the ZJ model is appropriate for hole fillings in
the range 0.025� p�0.07. As c increases, the Heisenberg
description only works within a narrower range of hole fill-
ings, and even there not as well. For Mn concentrations that

FIG. 3. �Color online� The top panel shows J2�q=0,�
=0� /J1�q=0� �dashed� and J2�q=0,� /2� /J1�q=0� �solid� versus p
�holes per Mn� for three values of the Mn concentration c. In the
bottom panel, J1�q=0� /J1

�0� is plotted versus p for the same
concentrations.
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are insufficiently small, the interactions between the Mn mo-
ments within the quantum well are too complex to be ac-
counted for by the ZJ model, even when the exchange inter-
actions are long-ranged.

Up to this point, we have not made any assumptions about
the range of the interactions Jij

�1� and Jij
�2� in the ZJ model.

When the Mn concentration is sufficiently low, we expect the
nearest-neighbor interactions J1 and J2 to be the dominant
ones, and our results for J1�q=0� and J2�q=0,�� can be used
to estimate the transition temperature of a quantum well. In
Sec. II, we found that the transition temperature reaches a
peak when J2=J1. So Fig. 3 suggests that the transition tem-
perature of a quantum well will be highest for some hole
filling slightly below p1, when the moments still lie along the
z axis and J1�q=0��J2�q=0,��. For c=0.175, TC will be go
through a maximum when p�0.048 holes per Mn.

V. CONCLUSIONS

Our results imply that a single layer of Mn-doped GaAs
�or a very thin film with � doping� with perpendicular mag-
netic moments may achieve a transition temperature close to
the MF result of Eq. �17�. Figure 2 suggests that TC will
reach a maximum with increasing p when J2�q=0,��
�J1�q=0�. At higher fillings, TC is expected to decrease
until the Mn moments fall into the xy plane, whereupon
crystal-field anisotropy is required to stabilize long-range
ferromagnetic order.

However, the description of a Mn-doped GaAs quantum
well by a Heisenberg model, even one with long-range inter-
actions, is restricted to small Mn concentrations and hole

fillings that are above a threshold value. From Eq. �13�, we
see that this is just the weak-coupling limit Jc��1 and Jc
��. As the Mn concentration increases, the Heisenberg de-
scription is valid over a narrower range of hole fillings and,
even within that range, is not as accurate. Recent work22 on
the double-exchange model also reached the conclusion that
a mapping onto a Heisenberg model is only valid in the
weak-coupling limit.

For small Mn concentrations, where the Heisenberg de-
scription works quite well, quantum fluctuations in the total
spin may be at least partially responsible for the depression
of the magnetic moment found in Mn-doped GaAs
epilayers.23 It is ironic that the same frustration mechanism
that suppresses the Curie temperature and electronic polar-
ization in bulk Mn-doped GaAs should permit ordering in a
2D quantum well. With these results, we are in a position to
address our originally postulated questions: How can a single
layer of Mn-doped GaAs be ferromagnetic? What kind of
ferromagnet is it? We conclude that a Mn-doped GaAs quan-
tum well is ferromagnetic due to a SW gap produced by the
difference between the light and heavy band masses, but
quantum fluctuations suppress the T=0 moment of this fer-
romagnet from its fully saturated value.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge helpful conversations with
Juana Moreno, Thomas Maier, and Adrian Del Maestro. This
research was sponsored by the U.S. Department of Energy
Division of Materials Science and Engineering under Con-
tract No. DE-AC05-00OR22725 with Oak Ridge National
Laboratory, managed by UT-Battelle, LLC.

1 H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsu-
moto, and Y. Iye, Appl. Phys. Lett. 69, 363 �1996�.

2 H. Munekata, H. Ohno, S. von Molnár, Armin Segmüller, L. L.
Chang, and L. Esaki, Phys. Rev. Lett. 63, 1849 �1989�.

3 For a recent review, see A. H. MacDonald, P. Schiffer, and N.
Samarth, Nat. Mater. 4, 195 �2005�.

4 I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
�2004�.

5 A. M. Nazmul, S. Sugahara, and M. Tanaka, Phys. Rev. B 67,
241308�R� �2003�; A. M. Nazmul, T. Amemiya, Y. Shuto, S.
Sugahara, and M. Tanaka, Phys. Rev. Lett. 95, 017201 �2005�.

6 R. K. Kawakami, E. Johnston-Halperin, L. F. Chen, M. Hanson,
N. Guébels, J. S. Speck, A. C. Gossard, and D. D. Awschalom,
Appl. Phys. Lett. 77, 2379 �2000�.

7 B. Lee, T. Jungwirth, and A. H. MacDonald, Phys. Rev. B 61,
15606 �2000�.

8 M. Abolfath, T. Jungwirth, J. Brum, and A. H. MacDonald, Phys.
Rev. B 63, 054418 �2001�.

9 X. Liu, Y. Sasaki, and J. K. Furdyna, Phys. Rev. B 67, 205204
�2003�.

10 D. J. Priour Jr., E. H. Hwang, and S. Das Sarma, Phys. Rev. Lett.
95, 037201 �2005�.

11 G. Zaránd and B. Jankó, Phys. Rev. Lett. 89, 047201 �2002�; G.
A. Fiete, G. Zaránd, B. Jankó, P. Redlínski, and C. P. Moca,
Phys. Rev. B 71, 115202 �2005�.

12 K. Aryanpour, J. Moreno, M. Jarrell, and R. S. Fishman, Phys.
Rev. B 72, 045343 �2005�.

13 J. Moreno, R. S. Fishman, and M. Jarrell, Phys. Rev. Lett. 96,
237204 �2006�.

14 J. Schliemann and A. H. MacDonald, Phys. Rev. Lett. 88, 137201
�2002�.

15 R. P. Erickson and D. L. Mills, Phys. Rev. B 43, 11527 �1991�.
16 P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 �1988�; V. Yu.

Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Lett. A 157,
295 �1991�.

17 F. A. Reboredo and C. R. Proetto, Phys. Rev. B 47, 4655 �1993�.
18 A. Balderischi and N. O. Lipari, Phys. Rev. B 8, 2697 �1973�.
19 T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205

�2001�.
20 M. Sawicki, F. Matsukura, A. Idziaszek, T. Dietl, G. M. Schott, C.

Ruester, C. Gould, G. Karczewski, G. Schmidt, and L. W. Mo-
lenkamp, Phys. Rev. B 70, 245325 �2004�; M. Sawicki, K.-Y.
Wang, K. W. Edmonds, R. P. Campion, C. R. Staddon, N. R. S.
Farley, C. T. Foxon, E. Papis, E. Kamińska, A. Piotrowska, T.
Dietl, and B. L. Gallagher, ibid. 71, 121302�R� �2005�.

MELKO, FISHMAN, AND REBOREDO PHYSICAL REVIEW B 75, 115316 �2007�

115316-6



21 See, for example, R. M. White, Quantum Theory of Magnetism
�Springer, New York, 2007�, p. 129.

22 R. S. Fishman, F. Popescu, G. Alvarez, T. Maier, and J. Moreno,
Phys. Rev. B 73, 140405�R� �2006�.

23 S. J. Potashnik, K. C. Ku, R. Mahendiran, S. H. Chun, R. F.
Wang, N. Samarth, and P. Schiffer, Phys. Rev. B 66, 012408
�2002�.

SINGLE LAYER OF Mn IN A GaAs QUANTUM WELL: A… PHYSICAL REVIEW B 75, 115316 �2007�

115316-7


