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The correct stacking of hexagonal layers is used to obtain accurate estimates for the exchange and anisotropy
parameters of the geometrically frustrated antiferromagnet CuFeO2. Those parameters are highly constrained
by the stability of a collinear metamagnetic phase between fields of 13.5 and 20 T. Constrained fits of the
spin-wave frequencies of the collinear ↑↑ ↓↓ phase below 7 T are used to identify the magnetic unit cell of the
metamagnetic ↑↑ ↑ ↓↓ phase, which contains two hexagonal layers and 10 Fe3+ spins.
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Because of their rich magnetic phase diagrams, geometri-
cally frustrated antiferromagnets have long occupied an im-
portant place in condensed-matter physics.1 The antiferro-
magnetic interactions between the Fe3+ spins of CuFeO2 are
geometrically frustrated within each hexagonal plane since
no spin configuration can simultaneously minimize the cou-
pling energies of all three neighbors around an equilateral
triangle. Unlike for many geometrically frustrated antiferro-
magnets, quantum fluctuations about the magnetic ground
states of CuFeO2 can be safely neglected due to the large S
=5 /2 spins. Whereas geometric frustration often leads to
magnetic phases with noncollinear spins and complex unit
cells, magnetic anisotropy perpendicular to the hexagonal
planes in CuFeO2 produces two different collinear magnetic
phases. The ↑↑ ↓↓ phase2,3 sketched in Fig. 1�a� is stable up
to the field Bc1�7 T. Between Bc2�13.5 T and Bc3
�20 T, another collinear phase with a net moment of 1�B
per Fe3+ ion4,5 has been assumed to resemble the ↑↑ ↑ ↓↓
phase shown in Fig. 2 for type B stacking, with 5 spins per
unit cell. Incommensurate and noncollinear phases were
identified between Bc1 and Bc2 and above Bc3.4,5

Previous efforts to understand the collinear magnetic
phases3,6 and to estimate the exchange and anisotropy
parameters7 of CuFeO2 assumed that the hexagonal layers
were stacked sequentially on top of each other. In the pres-
ence of spin-phonon coupling, a metamagnetic phase with
five sublattices �SLs� can also be produced by classical spins
in isolated two-dimensional layers with nearest-neighbor
exchange.8 We now demonstrate that an accurate determina-
tion of the Heisenberg parameters must employ the correct
stacking of hexagonal layers. We also show that the stability
of a metamagnetic phase between Bc2 and Bc3 �Refs. 4 and 5�
strongly constrains those parameters. Whereas earlier work7

assuming a sequential stacking was unable to explain the
observed spin-wave �SW� frequencies of the zero-field twins,
realistic magnetic stackings are now used to explain all fea-
tures of the low-field collinear phase and to identify the mag-
netic unit cell of the high-field collinear phase in CuFeO2.

The observation of collinear magnetic phases that are
fully polarized along the �ẑ directions at low temperatures
led to the assumption3,6 that the Fe3+ spins were “Ising-like.”

However, measurements of the zero-field SW frequencies7,9

plotted in Fig. 1�b� reveal SW gaps of only about 0.9 meV at
wave vectors �H ,H ,L= 3

2 � with H=0.21 and 0.29, on either
side of the ordering wave vector Q= � 1

4 , 1
4 , 3

2 �. If the spins
were truly “Ising-like,” then the SW frequencies would be
much higher and they would not exhibit a significant disper-
sion along the �0,0 ,L� direction7,10 perpendicular to the hex-
agonal planes. With little change in wave vectors, the SW
gaps are reduced either by an applied field along the ẑ direc-
tion or by the substitution of nonmagnetic Al3+ ions for Fe3+.
Above the field Bc1 �Refs. 4 and 5� or an Al concentration of
about 1.6%,9 the SW gaps vanish, the magnetic ground state
becomes noncollinear, and the crystals display multiferroic
behavior.11–13

Assuming that the hexagonal planes stack sequentially,
we recently fit7 the SW frequencies of pure CuFeO2 to the
predictions of the Heisenberg model

H = −
1

2�
i�j

JijSi · S j − D�
i

Siz
2 − 2�BB�

i

Siz, �1�

which includes single-ion anisotropy D and a magnetic field
B. Anisotropy can arise either from the low-spin states of
Fe3+ �Ref. 14� or ionic defects.15 For “Ising-like” spins, D
would be much greater than the exchange parameters Jij. In a
further simplification, we ignored the very small ��0.4%�
distortion of the hexagonal plane5,16 below the Néel tempera-
ture, which can produce only a very small change in the
exchange parameters and hence in the SW frequencies. De-
spite these simplifications, the SW dispersions evaluated
along the �H ,H , 3

2 � and �0,0 ,L� axes agree quite well with
inelastic neutron-scattering measurements.7 However, we
were unable to fit the frequency of the two twins with wave
vectors rotated �� /3 away from Q in the �H ,K , 3

2 � plane.
Without attempting to fit the twins, we obtained the ex-
change and anisotropy parameters given in line i of Table I,
where Jpm or Jzm are the mth nearest-neighbor exchange pa-
rameters within each hexagonal plane or between adjacent
planes.

To better understand the metamagnetic phase between Bc2
and Bc3, we have recalculated the SW frequencies of the
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↑↑ ↓↓ phase below Bc1 using the realistic magnetic stacking
of the hexagonal layers shown in Fig. 1�a� where the dis-
placement of layer n+1 from layer n is d= x̂+2ŷ /�3 �lattice
constant set to one�. All other stackings of the ↑↑ ↓↓ layers
have higher coupling energies. Because spins a, b, c, or d
experience the same local environment on every layer, the
magnetic unit cell still contains only 4 SLs. The first few
exchange pathways Jpm and Jzm are indicated in Fig. 1�a�.

The SW frequencies are evaluated using a Holstein-
Primakoff 1 /S expansion about the classical limit. On the
spin-up a and b sites, we replace Siz=S−�i

†�i, Si
+=Six+ iSiy

=�2S�i, and Si
−=Six− iSiy =�2S�i

† ��i=ai or bi�. On the spin-
down c and d sites, we replace Siz=−S+�i

†�i, Si
+=�2S�i

†, and
Si

−=�2S�i ��i=ci or di�. The SW frequencies �k at wave
vector k are then obtained by solving the equations of mo-
tion for the vectors vk= �ak ,bk ,ck

† ,dk
†� and vk

†. The equation
of motion for vk may be written in terms of the 4�4 matrix
M� �k� as idvk /dt=−�H ,vk�=M� �k�vk with SW frequencies
given by the condition Det�M� �k�−�kI��=0. Only positive
frequencies �k	0 are retained.

As expected for a collinear antiferromagnet and shown
schematically for any wave vector in Fig. 3�a�, each of the
SW branches is linearly split by a magnetic field. The lowest
SW frequency with wave vector �0.21,0.21,1.5� or
�0.29,0.29,1.5� will vanish at the field 0.9 meV /2�B
�7.7 T, which is slightly larger than Bc1. With the correct
stacking of the hexagonal layers, the parameters in line ii of
Table I are obtained by fitting the SW frequencies of the
main branches along the �H ,H , 3

2 � and �0,0 ,L� axes as well

�

�

�

�

���

(a) Stacking of layers

(b)

�

�

FIG. 1. �Color online� �a� The low-field spin configuration �up
spins are empty and down spins are filled circles� in each hexagonal
plane with the four inequivalent spins a, b, c, and d. Both the n
�solid� and n+1 �dashed� layers are shown with the exchange pa-
rameters indicated. �b� The fit of the SW frequencies along the
�H ,H , 3

2 � axis using the exchange and anisotropy parameters given
in line iii of Table I. Open squares give the frequencies of the twins
and solid circles give the frequencies of the main SW branch with
ordering wave vector at H= 1
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FIG. 2. �Color online� Three types of magnetic stacking that
satisfy the conditions for local stability of the metamagnetic phase.
In type A stacking, the stacking patterns on the left and right
alternate.

TABLE I. Heisenberg parameters of CuFeO2 obtained from fits
of the zero-field SW frequencies. Line i assumes sequential stacking
of the hexagonal layers �Ref. 7�, ii and iii use the realistic stacking
in Fig. 1�a� while iii also constrains the parameters stabilizing the
collinear phase between Bc2 and Bc3. Exchange and anisotropy pa-
rameters are in meV, TN

MF is in kelvin.

fit Jp1 Jp2 Jp3 Jp4 Jz1 Jz2 Jz3 D TN
MF

i −0.46 −0.20 −0.26 −0.13 0.00 0.07 46

ii −0.75 −0.17 −0.10 0.01 −0.51 −0.19 −0.06 0.14 65

iii −0.23 −0.12 −0.16 0.00 −0.06 0.07 −0.05 0.22 25

ωk

0 Bc3

(a)
4 SL 5 SL

Bc2Bc1

FIG. 3. �Color online� �a� Schematic field dependence of the SW
frequencies �k

�s� in 4 or 5 SL phases. �b� The predicted, normalized
elastic intensities �F�m��2 / f�m�2 versus m �H= m

5 along the �H ,H ,0�
axis� for stackings A–C. The inset are the experimental, normalized
intensities versus m.
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as the SW frequencies of the twins evaluated along �H ,H , 3
2 �.

Several possible collinear metamagnetic phases carry a
net moment of 1�B per Fe3+ ion and exhibit elastic peaks at
wave vectors � m

5 , m
5 ,0� in the L=0 basal plane.4 Two configu-

rations are possible in each hexagonal plane: the ↑↑ ↑ ↓↓
pattern sketched in the lower left of Fig. 2 and the ↑↑ ↓ ↑↓
pattern sketched in the lower right. Depending on the stack-
ing, the magnetic unit cell of the metamagnetic phase may
contain either five or ten magnetic ions. For example, type A
stacking of ↑↑ ↑ ↓↓ layers in Fig. 2 contains 10 SLs while
type B stacking of ↑↑ ↑ ↓↓ layers and type C stacking of
↑↑ ↓ ↑↓ layers contain 5 SLs. In type A stacking with dis-
placements d=−x̂− ŷ /�3 �layers 2n to 2n+1� and d�= x̂
+2ŷ /�3 �layers 2n+1 to 2n+2�, the local environments of
spin � on even layers and spin �� on odd layers are different:
a is coupled by Jz1 to three up spins on layer 2n+1 while a�
is coupled by Jz1 to two up spins and one down spin on layer
2n+2. In both type B and C stackings, the displacement
vector is d=−ŷ /�3.

Two conditions must be satisfied for the local stability of
a metamagnetic phase. First, the SW frequencies �k

�s� must
all be real for every k. This condition is independent of the
magnetic field, which only shifts the frequencies by �2�BB.
Second, the SW weights Wk

�s� that appear as coefficients of
the delta functions in the spin-spin correlation function,

S�k,�� =
1

N
	 dte−i�t�

i,j
eik·�Rj−Ri�
�Si

+Sj
−�t�� + �Si

−Sj
+�t��

= �
s

Wk
�s�
�� − �k

�s�� , �2�

must all be positive. Those weights are most easily evaluated
by expanding S�k ,�� within the HP formalism and then
solving the equations of motion for the spin Green’s func-
tions.

An apparently equivalent but much easier way to guaran-
tee that the weights Wk

�s� are positive is to examine the field
dependence of the SW frequencies. For a stable 5 SL collin-
ear phase, three of the 5 SW modes must linearly increase
with field while two must linearly decrease, as shown in Fig.
3�a�. For a stable 10 SL collinear phase, six of the 10 SW
modes must linearly increase and four must linearly decrease
with field. If this condition is violated for any k, then some
of the weights Wk

�s� are found to be negative and the phase is
unstable. Of course, the softening of any SW branch with
field signals the local instability of that metamagnetic phase.

Unfortunately, the exchange and anisotropy parameters
given by lines i and ii of Table I do not satisfy both condi-
tions for the local stability of any possible stacking of
↑↑ ↑ ↓↓ or ↑↑ ↓ ↑↓ layers between the fields Bc2 and Bc3. In
other words, fits to the SW frequencies of the zero-field
↑↑ ↓↓ phase are inconsistent with the existence of a collinear
metamagnetic phase.

This inconsistency may be eliminated by fitting the zero-
field SW frequencies of the ↑↑ ↓↓ phase while simulta-
neously constraining the exchange and anisotropy param-
eters to stabilize a metamagnetic phase between Bc2 and Bc3.
Note that this constraint utilizes only the observed stability

of the metamagnetic phase over a range of magnetic fields
and not the measured SW frequencies of that phase. The
three phases shown in Fig. 2 are the only ones that satisfy
both conditions for local stability when the exchange and
anisotropy parameters are obtained from constrained zero-
field fits of the SW frequencies. A constrained fit assuming
one of the three stackings in Fig. 3 produces fitting param-
eters that give higher energies for the other two possible
stackings.

To determine which of these three phases is actually ob-
served, we evaluate the magnetic structure factor F�m� for
the elastic peaks in the L=0 basal plane at wave vectors
�H ,H ,0� with H=m /5. In terms of the Fe3+ magnetic form
factor f�m�, F�0�= f�0� for all three possible phases. The nor-
malized intensities �F�m��2 / f�m�2 are plotted versus m in Fig.
3�b�. When the magnetic moments of six adjacent layers are
summed, stacking A produces the pattern 0↑000 along x̂ so
that �FA�m��2 / f�m�2=1 is constant. If left or right stacking
pattern in the top panel of Fig. 2 were continued indefinitely
rather than alternating, then the resulting phase would have
no elastic peaks in the L=0 basal plane. The layer sums of
stackings B or C produce ↑↑ ↑ ↓↓ or ↑↑ ↓ ↑↓ patterns along
x̂, causing �F�m��2 / f�m�2 to change by a factor of 10.5 as m
increases from one to two.

For comparison, the experimental results4,11 for the elastic
intensities are plotted in the inset of Fig. 3�b�. The normal-
ized intensity �F�m��2 / f�m�2 for m=1–4 is constant to within
about 1%. Therefore, only type A stacking of ↑↑ ↑ ↓↓ layers
with a 10 SL unit cell is possible. An alternative 10 SL stack-
ing of ↑↑ ↓ ↑↓ layers can produce the same elastic intensity
in the �H ,H ,0� direction as the preferred type A stacking of
↑↑ ↑ ↓↓ layers. Consequently, the observed �H ,H ,0� elastic
peaks alone are insufficient to fix the magnetic configuration
of the metamagnetic phase.

The exchange and anisotropy parameters associated with
stacking A are given on line iii of Table I. As in our original
fits,7 �Jp3�� �Jp2� but Jp4 is negligible. Since Jz3 is comparable
to Jz1, even longer-ranged interactions between neighboring
planes might exist. All of the interactions Jzm between adja-
cent planes are much smaller in magnitude than the interac-
tions Jpm �m�4� within a plane. Using these parameters, the
fits of the main and twin SW branches are plotted along the
�H ,H , 3

2 � axis in Fig. 1�b�.
Constraining the fits of the zero-field SW frequencies to

produce a stable metamagnetic phase has a substantial effect
on the exchange and anisotropy parameters. For example, Jp1
is reduced by about 70% from line ii to line iii of Table I.
While a wide range of parameters can provide reasonable fits
to the zero-field SW data, demanding that a metamagnetic
phase is stabilized between Bc2 and Bc3 considerably narrows
the possible range of those parameters. Also notice that the
mean-field transition temperature TN

MF listed in line iii of
Table I is much closer to the measured transition temperature
of 14 K �Ref. 4� between partially disordered and paramag-
netic phases than the transition temperatures of the uncon-
strained fits in lines i and ii. Of all three fits, line iii produces
a crystal-field environment that is most “Ising-like,” with the
anisotropy D about the same size as the nearest-neighbor
exchange Jp1. The difference between the parameters in lines
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i–iii of Table I underscores the danger of using even an ex-
tensive set of SW measurements for a single magnetic phase
to fix the parameters of a Heisenberg model.

Surprisingly, the high-field collinear phase is the 10 SL
phase sketched in Fig. 2 rather than the 5 SL phase that had
been previously assumed.4,5 Projected onto the �H ,H ,0�
axis, this 10 SL phase agrees with the metamagnetic phase
conjectured by Mitsuda et al.4 Because it remains locally
stable up to about 34.5 T �very close to the critical field Bc4
measured by Terada et al.5�, the disappearance of the 10 SL
↑↑ ↑ ↓↓ phase at Bc3 probably occurs at a first-order transi-
tion between collinear and noncollinear phases. That appears
to be the case for the ↑↑ ↓↓ phase since Bc1 is lower than the
7.7 T field where the SW gap would vanish and the ↑↑ ↓↓
phase would become locally unstable. The 10 SL ↑↑ ↑ ↓↓
phase remains locally stable only down to Bc2, where the
frequency of a SW mode vanishes.

Our work demonstrates that the stacking of the hexagonal
planes and the stability of a metamagnetic phase play crucial
roles in determining the exchange and anisotropy parameters
of a frustrated antiferromagnet. By constraining the fitting
parameters at zero field, we have been able to identify the
magnetic unit cell of the collinear metamagnetic phase in
CuFeO2. Constrained zero-field fits may prove to be a pow-
erful technique for other systems as well.
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