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Determination of the magnetic ground state of a polycrystalline compound based
on susceptibility measurements
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The diruthenium compound [Ru2(O2CMe)4]3[Cr(CN)6] contains two interpenetrating sublattices that behave
like giant antiferromagnetically coupled moments with strong anisotropy. Preferred orientations of the total
moment of each sublattice are determined from susceptibility measurements on a polycrystalline sample. In
agreement with previous predictions, fits to the experimental magnetization indicate that the sublattice moments
are aligned along cubic diagonals rather than cubic axis or edge diagonals. The parametrization of the sublattice
susceptibility implies that the sublattice spin states are more deformed when aligned antiparallel.

DOI: 10.1103/PhysRevB.83.094433 PACS number(s): 75.50.Xx, 75.10.Dg, 75.30.Gw

I. INTRODUCTION

Diruthenium tetracarboxylate, [Ru2(O2CMe)4]3 [Cr(CN)6]
(Me = methyl, CH3),1–4 or Cr(Ru2)3 for short, may be the
only known compound where two weakly interacting, magnet-
ically ordered sublattices occupy the same three-dimensional
volume. Antiferromagnetically (AF) coupled sublattices5,6

become aligned above the critical field Hc ∼ 1000 Oe and
below the critical temperature Tc ≈ 33 K.7 Based on a
simple model for the metamagnetic transition, a great deal
of useful information can be extracted from the average
magnetization 2μBMav(T ,H ) of a polycrystalline Cr(Ru2)3
sample. In particular, the average magnetization can be used
to determine the anisotropy axis of the individual sublattices.

A single sublattice of Cr(Ru2)3, sketched in the inset of
Fig. 1, has a cubic unit cell with dimension al = 13.4 Å. The
[Cr(CN)6]3− (called Cr for short) ions on the corners of the
cube are separated by Ru2 complexes. A second identical
sublattice fills the open space of the first sublattice to produce
a body-centered-cubic structure.

Magnetically, each Ru2 complex is in a delocalized,
mixed-valent (II/III) state with total spin S = 3/2.1 Due to
the “paddle-wheel” molecular environment produced by the
surrounding four Me groups, each Ru2 spin S experiences easy-
plane anisotropy D(S · v)2, with D ≈ 100 K or 8.6 meV,8,9

and unit vector v pointing to one of the neighboring Cr ions.
Because the two sublattices have very weak molecular overlap,
the AF coupling Kc ∼ 5 × 10−3 meV between sublattices is
much weaker than the AF coupling Jc ∼ 1.5 meV within each
sublattice between a S = 3/2 Ru2 (II/III) complex and the two
neighboring S = 3/2 Cr (III) ions.

Of course, the best way to resolve the magnetic ground of
a molecule-based material is by performing elastic neutron-
scattering measurements on a deuterated single crystal. For an
anisotropic material, magnetization measurements on a single
crystal can determine the easy and hard axis. However, single
crystals of molecule-based compounds are often impossible to
synthesize and deuteration is quite expensive. So it is important
to extract as much information as possible from available
polycrystalline samples.

For fields far below JcS/μB ∼ 25 T and DS/μB ∼ 200 T,
the internal structure of each sublattice is nearly rigid and

each sublattice spin Mslni (i = 1 or 2) is confined by
anisotropy barriers to certain high-symmetry orientations. We
use the average magnetization of polycrystalline Cr(Ru2)3 to
determine the possible orientations ni of the sublattices in
small fields. In agreement with earlier work,5 the best fits
to the experimental data are obtained when ni are restricted
to the cubic diagonals. A more sophisticated parametrization of
the sublattice susceptibility indicates that the sublattice states
are more deformed when aligned antiparallel.

Section II below summarizes previous results for the ground
state of a single sublattice of Cr(Ru2)3 and Sec. III presents
a simple model for the metamagnetic transition. Section IV
analyzes the fits to the experimental data at ambient pressure
under one of three possible conditions: ni restricted (i) to
cubic diagonals like (111), (ii) cubic axis like (100), or (iii)
edge diagonals like (110). We also present results for the
fitting parameters under case (i). The pressure dependence
of the fitting parameters discussed in Sec. V provides dramatic
evidence for a low-pressure (LP) to high-pressure (HP) phase
transition at about 7 kbar and supports our earlier conjecture of
a high- to low-spin transition on the Ru2 complexes.6 A brief
summary is provided in Sec. VI.

II. MAGNETIC GROUND STATE

In the inset to Fig. 1, Ru2 pairs are labeled as a (along
the x axis), b (along y), or c (along z). For classical spins
with infinite anisotropy, the a, b, or c spins must lie on the
yz, xz, or xy planes, respectively. Quantum spins will have
small components in the classically forbidden directions.5 If
the total Ru2 spin on the a, b, and c sites lies along the (111)
direction, the directions of the individual a, b, or c spins are
given by (u,w,w), (w,u,w), or (w,w,u) with u2 + 2w2 = 1.
For classical spins, u → 0 as D → ∞. Because anisotropy
is absent on the Cr sites, the Cr spins are predicted to
point opposite the net Ru2 spin along one of the eight cubic
diagonals.

For classical spins with infinite anisotropy, the net sublattice
spin along a cubic diagonal at T = 0 is

Msl = (
√

6 − 1)S ≈ 1.45S (1)
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FIG. 1. (Color online) Inset is the predicted ground state of a
single sublattice of Cr(Ru2)3 for infinite anisotropy and classical
spins. The net sublattice spin is oriented along the n ∝ (111) direction
antiparallel to the Cr spins (corresponding to case i). Ratios of
σ 2/σ 2(i) are plotted versus temperature for cases (ii) and (iii).

per Cr ion. For quantum spins with finite anisotropy, the net
spin at any temperature is

Msl =
√

3MRu2 (
√

2(1 − u2) + |u|) − MCr. (2)

In either case, the net sublattice spin is opposite to the Cr spin
and parallel to the total Ru2 spin on the a, b, and c sites. Due
to the tilt of the Ru2 spins away from their easy planes, the
amplitude of the Ru2 spin MRu2 is suppressed from 3/2 even at
T = 0.

III. MODEL FOR THE METAMAGNETIC TRANSITION

At T = 0 and H < Hc, the two sublattices are AF aligned
with n1 = −n2. At T = 0 and H > Hc, the sublattice orien-
tations n1 = n2 in the paramagnetic (PM) state lie along the
anisotropy axis that is closest to the field direction m. The
analysis summarized in the previous section suggests that
the anisotropy axes are the eight cubic diagonals. At a nonzero
temperature, thermal equilibrium between the 64 possible
configurations of {n1,n2} is then achieved by fluctuations out
of the ordered AF or PM state.

We now generalize the earlier model for the metamagnetic
transition by allowing the sublattice spin to be oriented either
(i) along cubic diagonals like (111), (ii) along cubic axis like
(100), or (iii) along edge diagonals like (110). For any of
these three cases, the energy of a magnetic configuration with
sublattice orientations {n1i ,n2i} on cluster i is given by

E = NCr

∑
i

{ − μBMsl(n1i + n2i) · H + KcMsl
2 n1i · n2i

}
,

(3)

where H = Hm is the magnetic field and there are 64, 36,
or 144 possible configurations for {n1i ,n2i}. Each cluster i

contains NCr ∝ ξ 3 Cr(Ru2)3 unit cells, half belonging to each
sublattice. The correlation length ξ decreases as magnetic
fluctuations are suppressed.

In order to account for the small deformation of each
sublattice ground state in a weak magnetic field, we previously
introduced the susceptibility χsl ≡ 2μBd(Msl · m)/dH of an
isolated sublattice.6 After averaging over azimuthal angles
about the n axis, Msl(H,T ) depends only on the angle θ =
arccos(n · m) between n and H = Hm. Hence χsl(θ ) can be
expanded in Legendre polynomials Pl(cos θ ). Earlier work
included l = 0, 1, and 2 polynomials.

A nonzero l = 1 term in the polynomial expansion implies
that χsl(0) 	= χsl(π ). Hence the sublattice responds differently
to a magnetic field along the m = n (θ = 0) and m = −n
(θ = π ) directions. But for a sublattice state with fixed n,
this asymmetry violates the Onsager relation,10 which states
that the diagonal components of the susceptibility tensor
are invariant upon switching the orientation of the magnetic
field. Onsager’s relation implies that only even Legendre
polynomials should contribute to the sublattice susceptibility.

Earlier work6 suggested that the sublattice was more rigid
for H along the n direction than along the −n direction. We
believe that the asymmetric rigidity of the sublattice state arises
from the way that one sublattice deforms the other. Because
it is produced by the weak intersublattice coupling Kc, the
sublattice deformation can be lifted by a weak magnetic field
of order KcS/μB ∼ 1000 Oe. Since the deformation of one
sublattice by the other depends on their relative orientation,
a term proportional to χ0(1 − n1 · n2) is added to the total
sublattice susceptibility. If χ0 > 0, the sublattices are more
easily deformed when n1 = −n2 (favored at low fields); if
χ0 < 0, the sublattices are more easily deformed when n1 = n2

(favored at high fields).
The total susceptibility due to the deformation of the

sublattices is then

χdef(n1,n2; m) = 2χ0(1 − n1 · n2) + 2χ1

+χ2{sin2 θ1 + sin2 θ2}
+χ3{sin4 θ1 + sin4 θ2}, (4)

where cos θi = ni · m and the expansion in Legendre polyno-
mials includes l = 0, 2, and 4 components. All coefficients
χn are subject to the condition that χdef(n1,n2; m) � 0 for all
orientations of n1 and n2.

For a cluster with sublattice orientations n1 and n2, the total
magnetization is given by

2μBMclust(n1,n2; m) = μBMslNCr(n1 + n2)

+ NCr

2
Hm χdef(n1,n2; m). (5)

Correspondingly, −NCr χdef(n1,n2; m)H 2/4 must be added to
the energy of Eq. (3) for each cluster.

For a polycrystalline sample, the average magnetization is
given by

2μBMav = 2μB

∑
i

∫
d�

4π
〈Mclust(n1i ,n2i ; m)〉 · m, (6)

where we integrate over all orientations m of the external field
and perform a thermal average over all orientations {n1i ,n2i} in
cluster i. Notice that Mav(T ,H ) depends on seven parameters:
χn (n = 0, 1, 2, and 3), Msl, Kc, and NCr. In the absence of the
sublattice susceptibility, the average values for the saturation
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magnetization would be given by 2
√

3μBMsl, 2μBMsl, and
2
√

2μBMsl for cases (i), (ii), and (iii), respectively.
The fits based on this model break down close to Tc ≈

33 K and at high fields because the field-induced change in
each sublattice moment becomes a substantial fraction of the
zero-field moment. We shall employ a field cutoff of 3000 Oe
and a maximum temperature of 30 K.

IV. AMBIENT PRESSURE

For each set of sublattice orientations ni , fits of the
experimental magnetization at ambient pressure are presented
in Figs. 2(a)–2(c). The quality of the fits is measured by

σ 2 = 1

Nd

∑
i

{
Mexpt

av (Hi) − M th
av(Hi)

}2
, (7)

where M
expt
av (H ) and M th

av(H ) are the experimental and the-
oretical values for the average magnetizations at a fixed
temperature and Nd are the number of experimental fields
Hi . Since the energy E of Eq. (3) vanishes as Msl → 0, the
ratios of σ 2 for different cases must approach 1 as T → Tc.
Close to Tc, we expect that σ 2(ii)/σ 2(i) ∼ 1 + ϑ(M2

sl) and
σ 2(iii)/σ 2(i) ∼ 1 + ϑ(M2

sl).
The ratios σ 2/σ 2(i) for cases (ii) and (iii) are plotted versus

temperature in Fig. 1. Case (i) always provides the best fit
with σ 2(ii)/σ 2(i) and σ 2(iii)/σ 2(i) reaching maxima at about
27 K. Above 27 K, the drop of both ratios is consistent with the
reduction of Msl. For case (iii), the disagreement between the
experimental data and the theoretical predictions is particularly
egregious and can be clearly seen in Fig. 2(c) above 2000 Oe.
The disparate quality of these fits supports our earlier claim
that the sublattice moments lie along the cubic diagonals.

At least two factors are responsible for the sensitivity
of the fits to the symmetry of the anisotropy axis. Due
to the averaging over field direction in a polycrystalline
sample, the external field is never precisely parallel to the net
moment ni of either sublattice. So even when χ0 = χ1 = 0, the
sublattice susceptibility produces linear slopes of the average
magnetization both at low fields and near saturation. Since both
slopes sensitively depend on the symmetry of the anisotropy
axis, it is difficult to simultaneously fit the magnetization data
at low and high fields.

Just as importantly, the metamagnetic critical field Hc at
low temperatures sensitively depends on the smallest angle
between the external field and the anisotropy axis.5 So the
shape of the rise in the average magnetization near 1000 Oe is
different for cases (i), (ii), and (iii). Taking these two factors
together, the magnetization of a polycrystalline sample can be
used to identify the symmetry of the anisotropy axis.

The resulting fitting parameters for case (i) (net sublattice
spins along the cubic diagonals) are given in Fig. 3. In Fig. 3(a),
Kc is roughly 5.2 × 10−3 meV at low temperatures and
increases almost linearly with temperature above about 15 K.
As expected, Msl monotonically decreases with temperature
in Fig. 3(a). The extrapolated value of Msl(T = 0) ≈ 1.9 is
slightly smaller than the classical result 1.45S = 2.175 derived
earlier under the assumption of infinite anisotropy.

Both the correlation length ξ and NCr ∼ ξ 3 increase rapidly
with temperature, as shown in Fig. 3(b). Results for NCr(T )

FIG. 2. (Color online) Fits for the average magnetization of a
polycrystalline sample at ambient pressure (Ref. 7) with the sublattice
moments restricted to (a) cubic diagonals, (b) cubic axis, or (c) edge
diagonals with h, k, l = ±1. Insets show possible orientations ni for
the sublattice spins.

can be fit by the critical scaling form ξ (T ) ∝ (1 − T/Tc)−ν

with an exponent ν ≈ 1.1, about twice the value ν = 0.5
obtained in earlier work5 and close to the value ν = 1 for
a two-dimensional Ising model.11 Because of its unique
properties, Cr(Ru2)3 may be the only known material where
the magnetic correlation length ξ and critical exponent ν

can be extracted directly from magnetization measurements
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FIG. 3. (Color online) Fitting parameters versus temperature for
P = 0.001 kbar and case (i): (a) intersublattice coupling Kc and
sublattice spin Msl, and (b) size NCr of a correlated magnetic cluster
and sublattice susceptibility components χn.

rather than indirectly from internal probes like elastic neutron
scattering.

Perhaps the deepest insight about the sublattice ground state
is provided by the sublattice susceptibility components χn.
The components χ1, χ2, and χ3 reveal how each sublattice
separately responds to a magnetic field oriented at an angle θ

with respect to the spin Msln. On the other hand, χ0 reveals how
one sublattice deforms the other. Our results plotted in Fig. 3(b)
reveal that the sublattice susceptibility is dominated at low
temperatures by χ0. Since χ0 > 0, the sublattice deformation is
greatest when the sublattices are aligned antiparallel. The rise
of χ0 with temperature implies that the sublattice deformation
grows with temperature.

This surprising result answers a question left open by earlier
work: Why are the two sublattices oppositely aligned in zero
field? The dipolar interaction between two rigid sublattices
favors parallel alignment with a coupling constant of ap-
proximately the same magnitude but opposite in sign to the
one extracted from the magnetic susceptibility.5 But Kc must
include both the dipolar interaction between rigid sublattices
(favoring parallel alignment) and the energy reduction due
to the deformation of one sublattice by the other (favoring
antiparallel alignment). Consequently, the rise of Kc with
temperature in Fig. 3(a) may be related to the rise of χ0 with
temperature in Fig. 3(b).

V. PRESSURE DEPENDENCE

We recently speculated6 that the pressure-induced phase
transition in Cr(Ru2)3 at 7 kbar can be explained by a high-

to low-spin transition12 on the Ru2 complex. With spin S =
1/2 on each Ru2 complex, the net sublattice spin of the HP
phase above 7 kbar would lie parallel to the Cr spins. Due
to the reduced anisotropy on the Ru2 complexes, the HP spin
configuration would be more easily deformed by an external
field.

But our earlier work did not permit a change in symmetry of
the anisotropy axis with pressure. For example, the anisotropy
axis might change from the cubic diagonals in the LP phase
to the cubic axis in the HP phase. To resolve that issue, we
have reanalyzed the magnetization curves under each of the
three possible cases for the sublattice orientations. At 8 K and
11.68 kbar, σ 2(ii)/σ 2(i) ≈ 3.8 and σ 2(iii)/σ 2(i) ≈ 9.4. These
smaller ratios are consistent with the suppressed value of Msl

in the HP phase. Hence the symmetry of the anisotropy axis
does not change with pressure.

For case (i) (net sublattice spins along the cubic diagonals),
the fits of the average magnetization remain quite good up
to 12 kbar. Plotted in Fig. 4, the fitting parameters reveal a
dramatic change at about 7 kbar. In Fig. 4(a), Kc jumps at
the LP to HP transition, only to fall at higher pressures. As
in earlier work,6 the sublattice spin Msl in Fig. 4(b) drops by
roughly a factor of 2 from the LP to the HP phase. Below 7
kbar, NCr decreases with pressure in Fig. 4(b), indicating a
reduction in the size of the fluctuating clusters. Possibly due
to phase separation, NCr increases above 7 kbar.

As in ambient pressure, the susceptibility coefficients
χn plotted in Fig. 4(b) provide a revealing signature of
the sublattice spin state. Since χ0 < 0 above 7 kbar, the
sublattices are more deformed when aligned parallel. Because

FIG. 4. (Color online) Fitting parameters versus pressure for T =
8 K and case (i): (a) inter-sublattice coupling Kc and sublattice spin
Msl, and (b) size NCr of a correlated magnetic cluster and sublattice
susceptibility components χn.
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the deformation energy favors parallel alignment, the dipolar
interaction between rigid sublattices must favor antiparallel
alignment in the HP phase.

Along with the drop in Msl, the dramatic increase in
the susceptibility components χ1, χ2, and χ3 above 7 kbar
provides convincing evidence for a LP to HP phase transition
in Cr(Ru2)3. The larger value of χ1 in the HP phase may be
caused by the reduced anisotropy of the low-spin S = 1/2 Ru2

moments.

VI. CONCLUSION

A remarkable amount of information can be extracted from
the magnetization of a polycrystalline sample. Based on a
simple phenomenological model and the varying quality of
fits to experimental data, we have concluded that the sublattice
moments of Cr(Ru2)3 are oriented along the cubic diagonals,
in agreement with earlier predictions5 for the sublattice
ground state. A re-analysis of the susceptibility parameters
as a function of pressure provides additional confirmation
of a high- to low-spin transition on the Ru2 complexes. Of
course, future measurements are required to confirm this
conjecture.

Ideally, the magnetic ground state of a molecule-based
magnet would be determined from elastic neutron-scattering
measurements on a deuterated single crystal. However, deuter-
ation is quite expensive, single crystals are often difficult or
impossible to obtain, and pressure-dependent measurements
are even more challenging. While even neutron-scattering
measurements on deuterated polycrystals can provide valu-
able information, those measurements are often difficult to
interpret. In the absence of neutron-scattering results, we have
demonstrated that a careful analysis of the average magne-
tization of a polycrystalline sample can provide important
information about the magnetic ground state as a function
of temperature and pressure.
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