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Quantum spin fluctuations and ellipticity for a triangular-lattice antiferromagnet
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The effects of quantum spin fluctuations are investigated for the three-sublattice spin configurations of a
geometrically frustrated triangular-lattice antiferromagnet in a magnetic field with easy-axis anisotropy. Because
quantum fluctuations reduce the tilt of the spins toward the easy axis, the predicted distortion of the noncollinear
state at zero field is too small to explain the ellipticity reported for the multiferroic state of CuCrO2. Due to the
change in spin angles, quantum fluctuations shift the boundaries between the collinear and noncollinear phases
and open a gap in field between the two types of noncollinear phases.
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It is well known that quantum fluctuations (QFs) signifi-
cantly affect the spin states of a Heisenberg antiferromagnet
(AF).1 For many two-dimensional systems,2 QFs lower the
transition temperature to zero. Because an AF state is not
an eigenstate of the Heisenberg Hamiltonian, QFs suppress
the spin amplitudes of an AF even at zero temperature.
QFs also alter the excitation energies about an AF ground
state. In particular, several groups3 have studied the change
in excitation energies for a spin S = 1

2 triangular-lattice AF,
which has a classical 120◦ ground state with three equivalent
sublattices.

Less understood are the effects of QFs on noncollinear spin
states with inequivalent sublattices. The possible importance
of QFs for such systems is demonstrated by the elliptical
spin states observed in the multiferroic phases of MnWO4,4

TbMnO3,5,6 CuFeO2,7,8 and CuCrO2.9,10 If the generalized
spiral 〈Si〉 = Mi(0, sin θi, cos θi) has an ellipticity p � 1, then
the magnetic structure factor perpendicular to the easy axis is p

times smaller than the magnetic structure factor parallel to the
easy axis. In order of increasing p, TbMnO3 (S = 2), CuCrO2

(S = 3
2 ), MnWO4 (S = 5

2 ), and CuFeO2 (S = 5
2 ) have elliptic-

ities of 0.72, 0.79, 0.82, and 0.9, respectively. QFs play two im-
portant roles in altering the noncollinear states of these mate-
rials: suppressing the spin amplitude Mi = S − �Mi by �Mi

and rotating the spin angle θi by �θi . We find that both quan-
tum effects contribute to the ellipticity of a spiral spin state.

Because the noncollinear states of TbMnO3, CuFeO2, and
MnWO4 are incommensurate, evaluating the effects of QFs for
those materials would be quite challenging. In order to qual-
itatively understand the effect of QFs on a noncollinear state
with inequivalent sublattices, we examine the simple three-
sublattice spin configurations of a geometrically frustrated
triangular-lattice AF. Since the hexagonal layers of CuCrO2

are only weakly coupled,9,10 this model should describe the
multiferroic state of CuCrO2.11 Another reason to focus on
CuCrO2 is that QFs are expected to play a more important role
due to the moderate S = 3

2 spins.
The geometry of a triangular-lattice AF is sketched in

Fig. 1(a), with nearest-neighbor interaction J1 < 0 and second-
and third-neighbor interactions J2 and J3. The Hamiltonian of
a triangular-lattice AF in a magnetic field H in the z direction
can be written

H = −1

2

∑
i �=j

Jij Si · Sj − D
∑

i

Siz
2 − 2μBH

∑
i

Siz. (1)

Easy-axis anisotropy D favors collinear states with spins
aligned along the z axis and may be experimentally controlled
in materials like CuFeO2 (S = 5

2 ) by doping8 or oxygen
nonstoichiometry.12

For classical spins with large anisotropy (i.e., Ising spins),
the four-sublattice collinear state ↑↑↓↓ is stable in zero field
for the range of parameters J1 < 0, −0.5|J1| < J2 < 0, and
J3 < J2/2.13 As the anisotropy decreases, the ↑↑↓↓ phase
transforms into one of two possible noncollinear states (de-
pending on the exchange parameters): either a distorted spiral
with incommensurate wave vector or the three-sublattice phase
sketched in the lower left of the phase diagram of Fig. 1(b).14

While the former case corresponds to the multiferroic phase of
Ga- or Al-doped CuFeO2,8 the latter case corresponds to the
multiferroic phase of pure CuCrO2.11 With increasing field,
the three-sublattice phase continuously transforms into the
collinear ↑↑↓ phase at H (1)

c and then into another noncollinear
three-sublattice phase at H (2)

c .
To qualitatively understand the effects of QFs, we study the

transition from the collinear ↑↑↓ phase into the two types
of noncollinear three-sublattice phases. For the parameters
used in Fig. 1(b), which are believed to describe CuCrO2,11

these noncollinear phases are stable at D = 0 on either side of
the field H (1)

c = H (2)
c = Hc ≡ 1.6S|J1|/μB . Whereas the low-

field phase below H (1)
c is characterized by a single independent

angle θ1 = −θ2 (θ3 = π ), the high-field phase above H (2)
c is

characterized by two independent angles θ1 = θ2 and θ3. These
three-sublattice phases were first predicted15 for a triangular-
lattice AF with only nearest-neighbor interactions (J2 = J3 =
0). The low-field phase is chiral but the high-field phase
is not.

Upon transforming the spins in their rotated reference
frames to boson operators a

(r)
k and a

(r)†
k (sublattices r = 1,

2, or 3),1 the Hamiltonian can be expanded about the classical
limit in powers of 1/

√
S:

H = S2E0 + Hint + SR2 + ϑ(S0), (2)

Hint = S
∑

k

u(k)† · L(k) · u(k), (3)

where u(k) = (a(1)
k ,a

(2)
k ,a

(3)
k ,a

(1)†
−k ,a

(2)†
−k ,a

(3)†
−k ) is a six-

component vector and L(k) is a 6 × 6 Hermitian matrix. The
function R2(θi) appears after the Hamiltonian is symmetrized
in terms of the boson operators.16 The term of order S3/2,
linear in the boson operators, vanishes when the classical
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FIG. 1. (Color online) (a) The collinear three-sublattice state
with up (white) and down (dark) spins on a triangular lattice with
AF interactions J1, J2, and J3. (b) The magnetic phase diagram
for J2/|J1| = −0.11 and J3/|J1| = −0.06 with spin states of each
phase indicated and the noncollinear phases shaded.11 Qualitatively,
the dashed curves are the phase boundaries shifted by QFs.
(c) The qualitative effect of QFs on the collinear and noncollinear
three-sublattice states.

energy E0(θi) is minimized as a function of the spin angles θi .
Each term in this expansion is a function of the normalized
field 2μBH/S, which should be considered of order S0.

Because the Boson operators a
(r)
k satisfy the commutation

relations [a(r)
k ,a

(s)†
k′ ] = δk,k′δrs , u(k) satisfies the matrix com-

mutation relation [u(k),u(k′)†] = Nδk,k′ , where N is the 6 × 6
matrix

N =
(

I 0

0 −I

)
(4)

and I is the three-dimensional unit matrix. The inter-
action term Hint can be diagonalized by the transfor-
mation u(k) = X−1 · w(k), where X is a 6 × 6 nonuni-
tary matrix satisfying X N X† = N . The vector w(k) =
(α(1)

k ,α
(2)
k ,α

(3)
k ,α

(1)†
−k ,α

(2)†
−k ,α

(3)†
−k ) is defined in terms of Boson

operators α
(r)
k that also satisfy the commutation relations

[α(r)
k ,α

(s)†
k′ ] = δk,k′δrs . Consequently, w(k) also satisfies the

matrix commutation relation [w(k),w(k′)†] = Nδk,k′ .
Diagonalizing Hint yields

Hint = S
∑

k

w(k)† · L′(k) · w(k), (5)

where SL′(k)ij = SL′(k)iiδij has diagonal matrix elements
{ε1(k),ε2(k),ε3(k),ε1(k),ε2(k),ε3(k)}/2. Hence, we obtain the
familiar expression

Hint =
∑
k,r

εr (k)

(
α

(r)†
k α

(r)
k + 1

2

)
, (6)

with three branches of spin-wave energies εr (k). The energy
E = 〈H〉 can be written E = S2E0 + SE2 with order-S term
SE2 = ∑

k,r εr (k)/2 + SR2.
In the collinear ↑↑↓ phase for D > Dc, the anisotropy

energy produces a gap in the spin-wave spectrum, but in the
noncollinear phases below Dc, continuous rotational symme-
try around the z axis generates a gapless Goldstone mode.
As D → Dc

+, the spin-wave gap vanishes at the ordering

wave vector Q = (4π/3)x of the noncollinear three-sublattice
phases.

The spin amplitude for sublattice r is given by Mr = S −
�Mr , where

�Mr = 3

N

∑
k

〈
a

(r)†
k a

(r)
k

〉 = 3

N

∑
k,s

∣∣X−1
rs

∣∣2
. (7)

The changes �θi in the spin angles are evaluated by minimiz-
ing the total energy E(θi) as a function of the angles θi . With the
expansions θi = θ

(0)
i + �θi , θ

(0)
i minimize the classical energy

E0(θi) and �θi are of order 1/S. It is straightforward to show
that

�θr = − 1

SN

∑
s

Y−1
rs

∂E2

∂θs

, (8)

with the Hessian Yrs = ∂2(E0/N )/∂θr∂θs evaluated at the
classical angles θ

(0)
i .

Results for zero field with angles {θ1,θ2 = −θ1,θ3 = π}
are plotted in Fig. 2. The classical 120◦ phase with θ1 = π/3
is recovered as D → 0. In this limit, the amplitudes of all
three spins are suppressed by the same amount �Mr ≈ 0.381.
With increasing D, spins 1 and 2 bend toward the z axis

FIG. 2. (Color online) In zero field, (a) the suppression �Mi of
the spin amplitudes, (b) the classical angle θ

(0)
1 /π for site 1 and

the change in angle S�θ1/π versus D/|J1|. Recall that θ
(0)
2 = −θ

(0)
1 ,

θ
(0)
3 = π , �θ2 = −�θ1, and �θ3 = 0. Inset in (a) is the ellipticity p of

the S = 3
2 noncollinear phase, for classical spins without QFs (short

dashed) or for quantum spins, either including (solid) or not including
(dash-dot) the change in the angles θ1 and θ2. Other parameters are
as in Fig. 1(b).
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and �M1 = �M2 exceeds �M3. Hence, QFs produce an
elliptical spiral state with maximal spin along the anisotropy
axis. Qualitatively similar results were obtained in Ref. 17 to
explain the elliptical spiral of TbMnO3.5,6

The change �θ1 = −�θ2 in the spin angles due to QFs is
plotted in Fig. 2(b). For large D, �θ1 > 0, corresponding to
a rotation away from z, but for D/|J1| < 0.19, �θ1 changes
sign and spins 1 and 2 cant toward z. As D → 0, the effect
of QFs on the spin angles disappears and the 120◦ phase is
restored.

With the magnetic structure factor defined by

Fγ (Q) = 1

N

∑
i

〈Siγ 〉 exp(iQ · Ri), (9)

the ellipticity is given by p = |Fy(Q)|/|Fz(Q)|. For the
three-sublattice noncollinear phase in zero field, p =
M1

√
3 sin θ1/(M3 + M1 cos θ1). Even for classical spins with-

out QFs, p = √
3 sin θ1/(1 + cos θ1) < 1 when D > 0 be-

cause spins 1 and 2 tilt toward the easy axis (θ1 < π/3).
The inset to Fig. 2(a) plots the ellipticities for classical

spins (dash) and for quantum S = 3
2 spins, either with (solid)

or without (dash-dot) considering the effect of QFs on the
angles. As expected, p → 1 as D/|J1| → 0 for each case. For
D/|J1| > 0.19, p is substantially increased by the effect of
QFs on the spin angles because �θ1 > 0 and the tilt of spins 1
and 2 toward the easy axis is reduced. For D = 0.68|J1|, which
is the critical value for the transition from the noncollinear
phase to the ↑↑↓↓ phase, the ellipticity without considering
the effect of QFs on the angles is 0.778 while the corrected
ellipticity is 0.894, larger even than the classical value of 0.817.
So for large anisotropy, QFs actually enhance p above that
for a classical spiral. The results of Ref. 17, which did not
consider the effect of QFs on the spin angles, are in qualitative
agreement with the dashed and dash-dotted curves.

For H > Hc, the noncollinear phase has two inde-
pendent angles with configuration {θ1,θ2 = θ1,θ3}. When
2μBH/S|J1| = 4, the second-order ↑↑↓ to noncollinear
transition occurs at Dc/|J1| = 0.167, as shown in Fig. 3.
This transition becomes first order when 2μBH/S > 5.07|J1|.
Figure 3(a) indicates that QFs suppress the down spin more
than the two up spins. In the collinear ↑↑↓ phase, �M1 =
�M2 = �M3/2, which implies that the average spin Mav =
1/3 is not affected by QFs.18 In the noncollinear phase, the
down spin is even more suppressed compared to the up spins,
and �M3 − 2�M1 > 0 grows with decreasing D.

The effect of QFs on the angles θi is shown in Fig. 3(b).
Both �θ1 and �θ2 diverge at the critical value Dc, which
implies that Dc is shifted from its classical value. By expanding
Dc = D(0)

c + �Dc, the condition for the angles θi to approach
their collinear values is

θ
(0)
i

(
D(0)

c + �Dc

) + �θi

(
D(0)−

c

) = θ
(0)
i

(
D(0)

c

)
(10)

or

�Dc = − �θi

∂θ
(0)
i /∂D

∣∣∣∣
D

(0)−
c

, (11)

which is of order 1/S. For the high-field noncollinear phase,
the condition with either �θ1 or �θ3 yields the same result for

FIG. 3. (Color online) With 2μBH/S|J1| = 4, (a) the suppression
�Mi of the spin amplitudes and (b) the classical angles θ

(0)
i /π for

each site and the change in angles S�θi/π versus D/|J1|. Other
parameters are as in Fig. 1(b). Inset in (a) is the change in critical
anisotropy S�Dc versus field.

�Dc, but for the low-field noncollinear phase, only �θ1 can
be used to evaluate �Dc.

Results for �Dc are plotted versus field in the inset to
Fig. 3(a). We find that �Dc is a nearly linear function of field
on either side of 2μBHc/S = 3.2|J1|, which separates the two
types of noncollinear phases. Since �Dc < 0 close to Hc, QFs
open a gap in the phase diagram, as shown qualitatively in
Fig. 1(b). Notice that this gap is asymmetric: wider above Hc

than below. Of course, the actual size of the gap depends on the
spin S. The opening of a magnetization plateau with Mav = 1

3
due to QFs was first predicted by Chubukov and Golosov19 for
a triangular-lattice AF with J2 = J3 = 0 and D = 0.

For 2μBH/S > 5.07|J1|, the transition from the collinear
↑↑↓ phase into the noncollinear phase is first order. Conse-
quently, the condition for �Dc requires the order-S0 energy
E4(θi), which attains different values on either side of the
classical transition at D(0)

c . That calculation is beyond the scope
of this paper.

Qualitatively, the effects of QFs on the spin states are
sketched in Fig. 1(c). In zero field, QFs generate an elliptical
state with the smallest amplitude away from the anisotropy
axis. At high fields, QFs act predominantly to suppress the
down-spin amplitude.

This work was motivated by the elliptical spin states
observed in multiferroic MnWO4 (p ≈ 0.82),4 TbMnO3
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(p ≈ 0.72),5,6 CuFeO2 (p ≈ 0.9),7,8 and CuCrO2 (p ≈
0.79)9,10 in zero field. If the ferromagnetic moment of each
hexagonal layer vanishes, then 2M1 cos θ1 − M3 = 0 so that
p = 0.79 corresponds to θ1 = 0.30π and M1/M3 = 0.85.

Using the easy-axis anisotropy D/|J1| ≈ 0.1710 estimated
for CuCrO2, the classical value of p for the triangular-lattice
AF is 0.913 while the quantum value is 0.910. Of course, the
effect of QFs will be reduced compared to the predictions
of this paper for three-dimensional CuCrO2 with its weakly
coupled planes. QFs will also be suppressed by easy-plane
anisotropy, which generates a small spin-wave gap9,10 in
CuCrO2. We conclude that the small ellipticity p ≈ 0.79 of

CuCrO2 cannot be explained by QFs. One possible explanation
for the pronounced ellipticities of CuCrO2 and other materials
is that spin-orbit energies couple to higher-energy manifolds
that preferentially suppress the spins perpendicular to the
crystal-field easy axis.
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4G. Lautenschläger, H. Weitzel, T. Vogt, R. Hock, A. Böhm,
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