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Incommensurability and spin dynamics in the low-temperature phases of Ni3V2O8
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Magnetic order and low-energy spin dynamics in the zero field ground state of Ni3V2O8 are revealed in elastic
and inelastic neutron scattering experiments. Neutron diffraction shows that below T = 2.3 K the Ni2+ moments
(spin S = 1) order in a cycloid pattern with incommensurate wave vector kICM = (0,1,τ ), where τ = 0.4030 ±
0.0004, which is superimposed on a commensurate antiferromagnetic spin arrangement with kCM = (0,0,0).
Three spin wave modes are discerned below E ∼ 3 meV in inelastic measurements and qualitatively described
by a model Hamiltonian that involves near neighbor exchange, local anisotropy, and a small biquadratic coupling
between the spine and cross-tie sites. Results from both elastic and inelastic scattering experiments suggest that
the two sublattices on spine and cross-tie sites are largely decoupled.
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I. INTRODUCTION

Many new multiferroic materials, in which both magnetic
and electric order parameters coexist, have emerged during
the last decade.1–4 The study of these systems, and the new
phenomena associated with the coupling between ferroelectric
polarization and magnetic order, is driven by the immense
technological promise that new types of multifunctional
devices may be developed which are based on these materials,
for example, for information storage.5

Ni3V2O8 is a multiferroic system with an extremely rich
phase diagram. To date, many experimental and theoretical
studies of Ni3V2O8 have been published in the literature, with
techniques including neutron scattering, nonresonant x-ray
magnetic scattering, specific heat, muon spin relaxation, 51V
NMR, electric polarization, and magnetization.6–18 Ni3V2O8

undergoes a series of successive and complex phase transitions
when cooled in zero field, and four different magnetically
ordered phases have been identified below ∼9 K (which were
termed, in order of decreasing temperature, HTI, LTI, C, C′).
In the HTI and LTI phases, magnetic order is incommensurate,
with an ordering wave vector parallel to the H direction,
and a spin reorientation occurs at the transition between
the two phases.10 The LTI phase shows spontaneous electric
polarization which sparked a lot of interest in this compound.
The paraelectric low-temperature C and C′ phases have been
previously described as canted antiferromagnetic phases with
commensurate order but the main difference between the two
phases remained unclear.8,13

Magneto-optical investigations and band structure calcu-
lations show that Ni3V2O8 is a local moment insulator and
that each Ni2+ ion carries spin S = 1 with 2 μB local moment
as expected.11 The Curie-Weiss temperature of Ni3V2O8 is
�W ∼ −30 K,6 and spontaneous magnetic order occurs at

TN ∼ 9 K.7 Thus, by a conventional estimate19 the degree
of geometric frustration in this material is moderate, as
the ratio |�W/TN| ∼ 3 shows. However, the unusually large
number of distinct zero-field phases can still be attributed to
the interplay between the particular lattice geometry, which
features two distinct Ni sites unrelated by symmetry, and the
antiferromagnetic near neighbor interactions. The two sites
have been commonly referred to as “spine” (Wyckoff notation
8e) and “cross-tie” (4a) respectively, their atom positions in
the unit cell can be found in Table I.

In this paper the magnetic interactions in Ni3V2O8 are being
studied with elastic and inelastic neutron scattering measure-
ments, and with supporting model calculations based on a
magnetic Hamiltonian that contains exchange and anisotropy
terms. Despite a large body of work, an understanding of
Ni3V2O8 at this level has been missing so far. In particular,
the difference between the magnetic ordering patterns in the C
and C′ phases can now be understood.

II. EXPERIMENT

Single crystals of Ni3V2O8 were grown from a melt of
BaO/1.17·V2O5 composition, which is between two eutectic
points on the BaO/V2O5 phase diagram.20 The starting
materials BaCO3, NiO, and V2O5 (all in powder form and
of 99.99% purity) were mixed in molar ratio 1:1:1.5 and
placed in a platinum crucible. The mixture was calcined in
air at 900 ◦C. After homogenization of the melt at 1200 ◦C
for 8 h, the temperature in the furnace was decreased down
to approximately 900 ◦C. The remainder of the flux melt was
removed from the crucible and grown crystals were cooled
down to room temperature at the rate 50 ◦C/h for about 15 h.
Typical crystals were of deep dark gray color and had a
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TABLE I. Relative atomic coordinates of atoms of Nis (spine) and
Nic (cross-tie) sites used with Table V in Ref. 10 and tables below.

Atom x y z

Nis1 0.25 0.13 0.25
Nis2 0.75 0.37 0.75
Nis3 0.25 0.37 0.75
Nis4 0.75 0.13 0.25
Nic1 0.00 0.00 0.00
Nic2 0.00 0.50 0.50

rhombic plate habit with up to 2 cm2 square surface of the main
rhombic face of the {010} type and a thickness along the b axis
in the range 1–3 mm. For well shaped single crystals the a

and c axes coincided well with the rhombic face diagonals.
X-ray fluorescent analysis confirmed a desirable cation ratio
in the grown crystals as well as absence of barium at the level
of the detection limit. The orthorhombic space group Cmca
at room temperature and lattice parameters a = 5.931(6) Å,
b = 11.374(8) Å, c = 8.235(5) Å were determined with x-ray
powder diffraction of several samples prepared from crushed
single crystals, and found to be in good agreement with
previously published data.10

Neutron diffraction experiments were performed at the
TRICS instrument at SINQ, Switzerland.21 Measurements
were set up at a neutron wavelength of λ = 2.317 Å in
normal beam geometry (PG monochromator, PG filter), using
a lifting-arm 3He tube detector. The crystal was mounted in
an orange cryostat with base temperature of T = 1.4 K. In
total 309 of the incommensurate (see below) reflections were
measured, 229 of them being independent. For antiferromag-
netic and ferromagnetic commensurate refinements 30 and 149
reflections were used, respectively.

Inelastic neutron scattering experiments were carried out
at the Cold Neutron Chopper Spectrometer (CNCS) at the
Spallation Neutron Source (SNS) in Oak Ridge.22 The sam-
ple was again mounted in an orange cryostat with a base
temperature of T = 1.8 K. Two series of scans were made,
one in (0KL) and the other in (HK0) scattering geometry.
Detector coverage out-of-plane was about ±15◦, so that a
limited Q range out-of-plane could be accessed. Two settings
for the incident energy were chosen: (i) To obtain a map of the
elastic scattering in a larger Q range, Ei = 12 meV was used
(λi = 2.61 Å) with an energy resolution at the elastic line of
�h̄ω = 0.51 meV full width at half maximum (FWHM), and
(ii) to measure the low energy spin waves Ei = 3.3 meV was
used (λi = 4.98 Å) with an energy resolution at the elastic line
of �h̄ω = 0.067 meV (FWHM).

III. ELASTIC SCATTERING RESULTS

An elastic scattering map measured at CNCS at T = 1.8 K
in the C′ phase [in the (0KL) plane] is shown in Fig. 1,
revealing incommensurate Bragg peaks at positions L = ±0.4
relative lattice units (r.l.u.).

After a least-squares refinement of the several hundred peak
intensities measured at TRICS, which was performed with
the FULLPROF suite,23 the following model for the magnetic
structure at T = 1.8 K emerges. There is a commensurate
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FIG. 1. (Color online) Elastic neutron scattering map obtained at
CNCS in the C′ phase at T = 1.8 K, with the (0KL) plane chosen as
the scattering plane. Incommensurate peaks at L = ±0.4, where K

is odd, are of magnetic origin and a characteristic feature of the C′

phase (i.e., absent in higher temperature phases). Some of these new
incommensurate magnetic peaks appear absent, but in fact these peaks
have a very small nonzero structure factor. For example, according to
the refined model, the (0,1,0.6) peak is about 12 times weaker than
the the (0,1,0.4), which is consistent with the CNCS data. The inset
at the bottom left of the figure shows a cut integrated in the boxed
area of the plot (red filled circles). For comparison the same cut at
T = 5.0 K is also shown (blue open circles), revealing the absence of
the incommensurate peaks in a different phase at higher temperature.

part of magnetic order (CM) that persists from the C phase
at higher temperature, T ∼ 4 K, and an incommensurate
part (ICM) that appears at T = 2.3 K and below. The CM
component can be described by the wave vector k = (0,0,0)
and has antiferromagnetic (AFM) as well as ferromagnetic
(FM) contributions. The ICM component orders with the wave
vector kICM = (0,1,τ ), where τ = 0.4030 ± 0.0004, which
will be discussed further below.

The AFM CM component causes new reflections (HK0) to
appear with integer H , K , where both H and K are odd, which
break the general reflection condition (due to the a-glide plane)
that both H , K must be even for nuclear Bragg reflections.
The FM CM component leads to increased intensities of some
nuclear reflections compared to the paramagnetic phase. The
CM component is the best refined within the �7 irreducible
representation (IRR), see Table V in Ref. 10. Magnetic moment
components causing this part of the ordering are mostly on the
spine Ni site (see Table I for the atomic coordinates), the
values are mCM

s = (1.36(1),0,0.25(8)) μB/Ni (spine site) and
mCM

c = (0,0.07(2),−0.04(9)) μB/Ni (cross-tie site).
The ICM component can be described with the wave vector

kICM = (0,1,τ ), where τ changes with temperature, see Fig. 2.
Correspondingly, it leads to the appearance of Bragg peaks
where H + K is an odd integer, and L = ±0.4 (fractional
part of L). In this case kICM and −kICM are not equivalent,
and each of them generates two arms. There are four possible
models of magnetic ordering based on the symmetry analysis
(see Table II) and the �4 IRR gives the best refinement result
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FIG. 2. (Color online) Real-space representation of the magnetic
structure. The c axis is horizontal and the b axis is vertical. One unit
cell is marked with gray lines. Cross-tie moments of the two cycloids
are blue and green, spine moments are red. The three main magnetic
exchange paths in the cross-tie lattice are also marked. The inset gives
diffraction scans over the (1,0,1 − τ ) reflection which clearly show
a temperature dependence and incommensurability below the phase
transition into the C′ phase.

(Table III). The ICM component mainly corresponds
to the cross-tie sites, the magnetic Fourier components
are mICM

s = (0,0.24(3)i,−0.45(4)) μB/Ni (spine site) and
mICM

c = (0,0.67(3)i,1.37(3)) μB/Ni (cross-tie site). Here i

denotes orthogonality of the y and z components. One notes
that, according to this model, the modulation of the cross-tie
magnetic moment is elliptical.

A real-space representation of the magnetic structure is
given in Fig. 2. According to the analysis of the peak position,
τ = 0.4030 ± 0.0004 at base temperature. This analysis in-
volved the positions of several hundred Bragg peaks measured
at TRICS, so it can be concluded with very high confidence that
the ground state structure is incommensurate. Peak positions
of the CNCS measurement depicted in Fig. 1 are consistent
with τ = 0.403 ± 0.003.

IV. THEORETICAL MODELING OF THE SPIN DYNAMICS

The model developed for the spin dynamics calculation
makes two simplifying assumptions. First, it was assumed
that magnetic order on the cross-tie site is commensurate
with a fivefold increase of the unit cell length along the
c direction (in other words, the c∗ component of the magnetic
wave vector kICM equals 0.4 exactly). Second, moments on
the spine site are antiferromagnetically aligned along the
a axis. The 10◦ tilt towards the c axis obtained from the

TABLE II. Irreducible representations for the wave vector k =
(0,1,τ ), phase factor a = exp(iπτ ).

Symmetry operators

2z cy mx

�1 1 a −a −1
�2 1 a a 1
�3 1 −a −a 1
�4 1 −a a −1

TABLE III. Relation between magnetic moment components for
the �1 to �4 irreducible representations, space group Cmca, and wave
vector k = (0,1,τ ). The multiplication phase factor given in Table II
is omitted.

�1 �2 �3 �4

Nis1 (u,v,w) (u,v,w) (u,v,w) (u,v,w)
Nis2 (−u, −v,w) (−u, −v,w) (u,v,−w) (u,v, −w)
Nis3 (u,−v,w) (−u,v, −w) (u,−v,w) (−u,v,−w)
Nis4 (−u,v,w) (u, −v, −w) (u, −v, −w) (−u,v,w)
Nic1 (0,u,v) (u,0,0) (u,0,0) (0,u,v)
Nic2 (0, −u,v) (−u,0,0) (u,0,0) (0,u, −v)

analysis of the diffraction data was neglected as was the
minor incommensurate modulation of the moment direction
on the spine site. Thus, in the spin dynamics calculation, the
ICM/CM components will be exclusively associated with the
cross-tie/spine sites, respectively.

Ni spins (S = 1) on the cross-tie site order in two cycloids,
each with a period of ∼5 lattice constants along the c direction.
One cycloid rotates clockwise within the bc plane and
the other rotates counterclockwise. A Dzyaloshinskii-Moriya
(DM) interaction with D pointing along a for one cycloid
and along −a for the other could generate this type of
spin configuration. However, the DM interaction is usually
very weak, an order of magnitude smaller than the exchange
interactions. Therefore, the DM interaction would be expected
to produce a cycloid with a very long period, much longer than
the short period observed in Ni3V2O8. On the other hand, it is
noted that counter-rotating cycloids are fully consistent with
the symmetry of the crystal in the presence of the observed
magnetic ordering wave vector. The magnetic interactions
stabilizing the magnetic structure do not require an additional
symmetry breaking as is the case in the ferroelectric phase.
Consequently, each cycloid was modeled by taking AFM
interactions Jc (between R and R + cz, where R is an atom
position) and J ′

c (between R and R + 2 · cz) along z. This
results in a cycloid with wave vector Qz given by

cos(Qzc) = − Jc

4J ′
c

. (1)

The observed wave vector Qzc = 0.8π is used to set |J ′
c/Jc| =

0.309. The cross-ties are also considered to have exchange
interactions Ja along the a axis and Jb along the b axis,
but both turn out to be zero. Different layers separated by
b interact with AFM exchange Jab (taken between R and R +
1/2 · ax + 1/2 · by). In addition, an easy-plane anisotropy Ea

is included in the model to keep the cross-ties in the bc

plane.
Ni spins (S = 1) on the spine site are antiferromagnetically

ordered along the a axis. Because they are aligned perpen-
dicular to the cross-ties, a biquadratic coupling Jbq is taken
between the spines and cross-ties. The spine site spins interact
with AFM exchange interactions Ka along the a axis, Kb along
the b axis, and Kc along the c axis. A K ′

a term for next nearest
neighbors along the a axis was also included, and an easy
axis anisotropy Da for the spines along the a axis. Thus the
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Hamiltonian can be written as

H = −
∑

ij

Jij Si · Sj −
∑

ij

Kij S′
i · S′

j

+ Jbq

∑

〈i,j 〉
(Si · S′

j )2

+Ea

∑

i

S2
ix − Da

∑

i

S ′2
ix , (2)

where Si are the cross-ties and S′
i are the spines. The only

interaction between the cross-ties and spines is given by the
biquadratic coupling Jbq . Because Ea keeps the cross-ties in
the bc plane, Jbq indirectly also helps to keep the spines aligned
along the a axis.

To formulate the equations of motion, a unit cell with 60
sites is taken: 10 cross-ties in each of two layers, and 20 spines
in each of two layers. Using a methodology outlined earlier,24

both the mode frequencies and intensities are evaluated. The
latter is essential considering that there may be as many as
120 modes per Q point. To ensure that the best fit—within
the vast parameter space of the model considered here—was
found, a two-step strategy was employed. Modes were first
calculated at a small number of high-symmetry points in
Q space and compared to the data. This allowed for fast
searching through large ranges for all parameters. In a second
step model parameters were then refined by analyzing cuts
through the data along high symmetry directions as shown in
the next section. The overall best fit to the data, discussed in the
next section, is achieved for the following parameter values:
Jc = −0.20 meV, J ′

c = −0.062 meV, Jab = −0.02 meV,
Ka = −1.00 meV, K ′

a = −0.45 meV, Kb = −0.22 meV,
Kc = −0.10 meV, Jbq = −0.05 meV, Ea = +3.00 meV, and
Da = +0.13 meV.

It is noted that the calculation can be split to handle the
two sites separately (cross-ties and spines) with little overall
change, because the only connection between the two sites
is the weak biquadratic coupling. This enabled us to identify
which modes are caused by which site, an assignment which
one can also make from arguments based on symmetry.

V. INELASTIC SCATTERING RESULTS

Figure 3 shows the magnetic Bragg peak positions that
were covered in the high resolution inelastic measurements
at CNCS. In the L direction the range ±0.6 r.l.u. was fully
covered. The figure also shows how the first Brillouin zone of
the magnetic lattice intercepts the plane. Cuts of the spin wave
spectrum along different directions in reciprocal space are
discussed below, starting with the sublattice of the cross-ties.

Figure 4 shows a cut through the inelastic spectrum S( Q,ω)
along a straight line through the � and S points, at L = +0.4
which is appropriate for the cross-ties. The integration depth in
the perpendicular direction along H was 0.1 r.l.u. The top left
shows the data at base temperature, T = 1.8 K in the C′ phase,
and the top right at T = 3.0 K in the C phase. While the spin
wave spectra look much the same at the two temperatures,
the main difference between the two phases is the absence
of Bragg peaks at L = +0.4 in the C phase. The bottom
right panel shows the computed spin wave spectrum. Since
the model calculation gives the spin waves without energy or

FIG. 3. (Color online) Location of magnetic Bragg peaks in the
(HK0) plane, at CNCS in the high resolution setting at 3.3 meV, with
finite coverage in the out-of-plane direction. Peaks due to moments on
the cross-tie lattice (left panel) obey H + K = odd, while peaks due
to moments on the spines (right panel) are at L = 0 and obey H +
K = even. Data are elastic scattering only, integrated over energy
transfer ±0.07 meV. The figure also depicts the intersection of the
magnetic Brillouin zone with the L = 0 plane and shows how cuts
are taken that are discussed further below. For the two lattices the
zones are shifted by 1 r.l.u. in the K direction. Here � denotes the
magnetic zone center.

Q resolution, the computational results were convoluted with
both energy and directional Q resolution corresponding to the
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FIG. 4. (Color online) Spin waves along the (−1,K,+0.4)
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the C′ and C phases at T = 1.8 K and T = 3 K. Bottom right:
Model of the spin wave spectrum. Bottom left: Cuts along K at
the elastic line, showing the absence of the magnetic Bragg peaks in
the higher temperature phase. These cuts are background corrected
with a reference measurement, so the baseline is at zero.
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experimental conditions. The resolution was computed from
base principles that apply to direct geometry time-of-flight
spectrometers.22

Comparing the data and the model calculation, several
observations can be made. The lowest mode is gapped (see
below) and extends up to ∼1.0 meV at the zone boundary (the
S point). A second mode is seen between ∼1.0 and ∼1.7 meV
and comes out of the model calculation a little too low. A pair
of modes seen between ∼1.8 and ∼2.5 meV is “out of phase”
along the K direction, which means that it must be associated
with the spines rather than the cross-ties, because, as Fig. 3
shows, the magnetic Brillouin zone for the spine lattice is
shifted by 1 r.l.u. in the K direction. A cut at L = 0 is more
appropriate for spine modes and will be discussed further
below. Finally, it can also be seen that the modes as measured
are somewhat broader than expected. This will be discussed in
Sec. VI.

Particular attention was given to the question whether or
not there is a gap at the zone center in the lowest mode.
Figure 5 shows a cut along the energy axis at another reciprocal
lattice vector position with odd H + K , at Q = (0,−3,+0.4).
The data are consistent with a pair of low lying modes at
E1 ∼ 0.2 meV on both sides of the elastic line. For the
fit shown in the figure, a pair of Lorentzian lines at ±E1

was convoluted with the experimental resolution, and the
intensities were weighted with the thermal population (Bose)
factor. In a truly incommensurate order, it is plausible to see
that a small easy-plane anisotropyy for the cross-tie site in
the bc plane would lead to a gap in the lowest spin wave
mode.

In a similar manner, cuts through a line connecting the �

and Y points are computed, modeled and displayed in Fig. 6
for both temperatures. The two lowest modes, associated with
the cross-ties, extend between ∼0 and ∼0.7 meV and between
∼1.0 and ∼1.3 meV, respectively. The lowest mode associated
with the spines can be seen as well.

Figure 7 shows a cut through the inelastic spectrum S( Q,ω)
along a straight line through the � and S points for the spine
lattice, at L = 0. Two modes due to the spines (minima at
odd K for H = −1), seen as one in the data, extend between
∼1.3 and ∼2.0 meV, whereas the model calculation has them
somewhat higher, between ∼1.5 and ∼2.6 meV. A comparison
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FIG. 6. (Color online) Spin waves along the (H,H − 1, +0.4)
direction through the � and Y points. Top row panels: Data in the C′

and C phases at T = 1.8 K and T = 3 K. Bottom right: Model of the
spin wave spectrum. Bottom left: Cuts at the elastic line, showing the
absence of the magnetic Bragg peaks in the higher temperature phase.
These cuts are background corrected with a control measurement, so
the baseline is at zero.

with Fig. 4 suggests that these modes are not very dispersive
along L. The lower energy cross-tie modes have moved up
to around ∼2.0 meV. The data also show the top of one (or
two) lower energy modes around ∼1.0 meV not reproduced
in the calculation with sufficient intensity. These modes are
associated with the cross-tie site, which means that the model
does not reproduce their dispersion along the L direction
very well. This may be due to the starting assumption of
commensurability along this direction.
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FIG. 7. (Color online) Spin waves along the (−1,K,0) direction
through the � and S points. Left panel: Data in the C′ phase at
T = 1.8 K. Right panel: Model of the spin wave spectrum. The
lowest mode is due to the cross-ties, but the high intensity upper two
modes are clearly due to the spine lattice, as their minimum is at the
zone center for that lattice.

214418-5



G. EHLERS et al. PHYSICAL REVIEW B 87, 214418 (2013)

VI. DISCUSSION

The experimental results show that a good starting point
for analysis is to assume that the spines and cross-ties are
independent with the exception of a weak biquadratic coupling
Jbq between them. This apparent lack of coupling between
the two sites was already alluded to in Ref. 10, and is
supported by our analysis of the diffraction data. The spins
on the cross-tie site order in two cycloids with a period of
five lattice constants along the c direction, and lie in the bc

plane, whereas spins on the spine site are antiferromagnetically
ordered along the a axis. Using this model one can achieve a
qualitative description of the low energy spin dynamics below
∼3 meV. However, the model is clearly oversimplified and the
interaction between the spines and cross-ties are likely more
complex.

In order to achieve a consistent modeling of the diffraction
data, one must assume that cross-ties on alternate sites
have cycloids with opposite helicities. Only a subset of
the incommensurate Bragg peaks would be observed if the
cycloids had the same helicity. Counter-rotating cycloids
require that the net exchange between the two is nearly zero. In
other words, cross-tie moments on the site with right-handed
helicity create a near zero mean field on the neighboring
cross-tie site and vice versa, by virtue of a near perfect
cancellation of shorter-range exchange interactions due to the
triangular arrangement of the cross-tie interactions paths. A
small nonzero mean field on the cross-tie site will cause the
helicities of the two cycloids to be the same, and must be
overcome by a small DM interaction D (it must be opposite
on the two cross-tie sites) in order to explain the opposite
helicities. Again, the model is oversimplified in this regard, as
a DM interaction has not been included.

A comparison with the experimental Q and energy resolu-
tions shows that all observed spin wave modes are significantly
broadened. The finite integration range of the data in reciprocal
space adds to the width as the modes are dispersive, but this
cannot fully explain the observed widths. It may be concluded
that in both the C and C′ phases the modes have a fairly short
lifetime and short correlation length in space.

It is also unexpected to see that the phase transition
between the C and C′ phases only appears in the diffraction
data, through the disappearance of the incommensurate Bragg
peaks, but is not visible in the inelastic measurements (the spin
waves are unaltered or at best change only very subtly). As the
spin waves which reflect the incommensurate kICM = (0,1,τ )
wave vector are preserved in the C phase, one would also
expect to see evidence, at least, for short range spatial order at
the same wave vector. The associated diffuse elastic scattering
is perhaps just very weak.

To summarize, quantitative modeling of elastic as well as
inelastic neutron scattering data taken with a single crystal
specimen of Ni3V2O8 has been achieved with satisfactory
accuracy. The focus was on the two low temperature phases
of the material which had not been studied in great detail
up to this point. It is revealed that the magnetic order in
C′ phase is incommensurate (or near commensurate) along
the L direction with a magnetic propagation vector kICM =
(0,1,τ ), where τ = 0.4030 ± 0.0004. Both the static order
and the spin dynamics observed in the scattering experiments
are extremely complex and complicated models with many
parameters are needed to describe the measurements. The
underlying lattice geometry certainly plays a role here, as the
case of the analogous spin 3/2 system Co3V2O8 shows which
also features four distinct low-temperature phases in zero
field.25
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