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Field dependence of the spin state and spectroscopic modes of multiferroic BiFeO3
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The spectroscopic modes of multiferroic BiFeO3 provide detailed information about the very small anisotropy
and Dzyaloshinskii-Moriya (DM) interactions responsible for the long-wavelength, distorted cycloid below
TN = 640 K. A microscopic model that includes two DM interactions and easy-axis anisotropy predicts both the
zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field applied along a cubic
axis. While only six modes are optically active in zero field, all modes at the cycloidal wave vector are activated
by a magnetic field. The three magnetic domains of the cycloid are degenerate in zero field but one domain
has lower energy than the other two in nonzero field. Measurements imply that the higher-energy domains are
depopulated above about 6 T and have a maximum critical field of 16 T, below the critical field of 19 T for
the lowest-energy domain. Despite the excellent agreement with the measured spectroscopic frequencies, some
discrepancies with the measured spectroscopic intensities suggest that other weak interactions may be missing
from the model.
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I. INTRODUCTION

Due to the coupling between their electric and magnetic
properties, mutliferroic materials have intrigued both basic and
applied scientists for many years. Multiferroic materials would
offer several advantages over magnetoresistive materials in
magnetic storage devices. Most significantly, information
could be written electrically and read magnetically without
Joule heating.1 Hence, a material that is multiferroic at room
temperature has the potential to radically transform the mag-
netic storage industry. As the only known room-temperature
multiferroic, BiFeO3 continues to attract intense scrutiny.

Because BiFeO3 is a “proper” multiferroic, its ferroelectric
transition temperature2 Tc ≈ 1100 K is significantly higher
than its Néel transition temperature3 TN ≈ 640 K. Below TN,
a long-wavelength cycloid3–6 with a period of 62 nm enhances
the electric polarization7,8 by about 40 nC/cm2. Although the
induced polarization is much smaller than the polarization9

P = 100 μC/cm2 above TN but below Tc, an applied electric
field can be used to switch between magnetic domains.10,11

The availability of single crystals for both elastic10,11

and inelastic12–14 neutron-scattering measurements has stim-
ulated recent progress in unraveling the microscopic inter-
actions in BiFeO3. Based on a comparison with the pre-
dicted spin-wave (SW) spectrum, inelastic neutron-scattering
measurements12–14 were used to obtain the antiferromagnetic
(AF) nearest-neighbor and next-nearest-neighbor exchanges
J1 ≈ −4.5 meV and J2 = −0.2 meV, which are indicated in
the pseudocubic unit cell of Fig. 1(a) with lattice constant15

a ≈ 3.96 Å. When weaker interaction energies are suppressed
by strain,16 nonmagnetic impurities,17 or magnetic fields7,8

above Hc ≈ 19 T, the exchange interactions produce a G-type
antiferromagnetic with ferromagnetic (FM) alignment of the
S = 5/2 Fe3+ spins within each hexagonal plane. In pseudocu-
bic notation, the AF wave vector is Q0 = (π/a)(1,1,1).

Below Hc, the much weaker anisotropy and Dzyaloshinskii-
Moriya (DM) interactions produce the distorted cycloid of
bulk BiFeO3. For most materials with complex spin states,
neutron scattering can be used to determine the compet-
ing interactions. But for BiFeO3, the cycloidal satellites at

q = (2π/a)(0.5 ± δ,0.5,0.5 ∓ δ) with δ ≈ 0.0045 lie ex-
tremely close to Q0. Because it lacks sufficient resolution in q
space, inelastic neutron-scattering measurements at Q0 reveal
four broad peaks below 5 meV. Each of those peaks can be
roughly assigned to one or more of the SW branches averaged
over the first Brillouin zone.13,18

By contrast, THz spectroscopy19,20 provides very precise
values for the optically active SW frequencies at the cycloidal
wave vector Q. With polarization along z′ = [1,1,1] (all unit
vectors are assumed normalized to 1), the three magnetic do-
mains have wave vectors Q1 = (2π/a)(0.5 + δ,0.5 − δ,0.5)
(domain 1), Q2 = (2π/a)(0.5 + δ,0.5,0.5 − δ) (domain 2),
and Q3 = (2π/a)(0.5,0.5 + δ,0.5 − δ) (domain 3). The local
coordinate system {x ′,y ′,z′} for each domain is indicated in
Fig. 1(c).

In zero field, the four spectroscopic modes observed below
45 cm−1 were recently predicted by a model21 with easy-axis
anisotropy K along z′ and two DM interactions. While the DM
interaction D along y′ is responsible for the cycloidal period,
the DM interaction22–25 D′ along z′ produces the small tilt24

τ in the plane of the cycloidal spins shown in Fig. 1(b). The
tilt alternates in sign from one hexagonal plane to the next. In
the AF phase above Hc, D′ produces a weak FM moment7,8

perpendicular to z′ due to the canting of the moments within
each hexagonal plane.

This microscopic model with parameters D, D′, and
K also predicts the mode splitting and evolution of the
spectroscopic modes with field. Due to mode mixing, all of
the SWs are optically active in a magnetic field. Comparing
the predicted and observed field dependence allows us to
unambiguously assign the spectroscopic modes of BiFeO3.
Despite the remarkable agreement between the predicted and
measured mode frequencies, however, discrepancies between
the predicted and measured spectroscopic intensities suggest
that other weak interactions may be missing from the model.

We have organized this paper into five sections. Sec. II
discusses the spin state of BiFeO3 in a magnetic field, with
results for the wave vector, domain energies, and magnetiza-
tion. In Sec. III, the spectroscopic frequencies are evaluated
as a function of field and compared with measurements. The
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FIG. 1. (Color online) (a) The pseudocubic cell with S = 5/2
Fe3+ ions are at the corners. The exchange interactions J1 and J2 as
well as the polarization direction z′ cutting through two hexagonal
planes are indicated. (b) For any of the three magnetic domains, a
schematic of the spins in zero field showing their rotation about y′.
Due to the DM interaction D′ = D′z′, spins rotate by τ about z′ in the
x ′y ′ plane. (c) The magnetic domains and THz field orientations. (d)
The wave vector parameter δ versus field with vertical lines showing
their critical fields. (e) The energy per site E/N versus field. (f) The
magnetization M along the field direction. The thin dashed line shows
the nonzero intercept M∗. For (d), (e), and (f), the field is applied along
[0, 0,1]; domain 1 is indicated by solid curves and domains 2 or 3 by
dashed curves.

spectroscopic selection rules and intensities are discussed in
Sec. IV. Section V contains a summary and conclusion. A
short description of the theory for the spectroscopic modes
was recently presented by Nagel et al.20

II. SPIN STATE

In a magnetic field H = Hm, the spin state and SW
excitations of BiFeO3 are evaluated from the Hamiltonian

H = −J1

∑

〈i,j〉
Si · Sj − J2

∑

〈i,j〉′
Si · Sj − K

∑

i

(Si · z′)2

−D
∑

Rj =Ri+a(x−z)
y′ · (Si × Sj )

−D′ ∑
Rj =Ri+ax,ay,az

(−1)Riz′ /c z′ · (Si × Sj )

−2μBH
∑

i

Si · m. (1)

The nearest- and next-nearest-neighbor exchange interactions
J1 = −4.5 meV and J2 = −0.2 meV can be obtained from
inelastic neutron-scattering measurements12–14 between 5.5
and 72 meV. On the other hand, the small interactions D,
D′, and K that generate the cycloid can be obtained from
spectroscopic measurements19,20 below 5.5 meV (44.3 cm−1).

For a given set of interaction parameters, the spin state of
BiFeO3 is obtained by minimizing the energy E = 〈H〉 over
a set of variational parameters. With the same spin states in
hexagonal layers n and n + 2, the spin states in layers n = 1
and 2 are parameterized as

Sx ′ (R) = A(n)(R) sin μ cos τ (n) sin
(
2πδRx ′/a + γ

(n)
1

)

+ s0p
(n)
x ′ , (2)

Sy ′ (R) = A(n)(R) sin μ sin τ (n) sin
(
2πδRx ′/a + γ

(n)
2

)

+ s0p
(n)
y ′ , (3)

Sz′ (R) = A(n)(R) cos μF (n)(R) + s0p
(n)
z′ , (4)

where

F (n)(R) =
∑

l=1

C2l−1 cos(2(2l − 1)πδRx ′/a)

+
∑

l=1

C2l cos(4lπδRx ′/a + �(n)) (5)

and we take C1 = 1. Notice that the unit vectors p(n) and tilt
angles τ (n) can be different for layers 1 and 2. Four different
phases γ

(n)
1 and γ

(n)
2 enter Sx ′ (R) and Sy ′ (R). In zero field,

the higher odd harmonics C2l+1>1 in F (n)(Rx ′) are produced
by either the anisotropy K or the DM interaction D′. Even
harmonics C2l are produced by the magnetic field. Because Cl

falls off rapidly with l, we neglect harmonics above l = 4. For
each layer, �(n) allows the even and odd harmonics to be out of
phase. On layer n and site R, the amplitude A(n)(R) is fixed by
the condition that |S(R)| = S, which is satisfied by a quadratic
equation for A(n)(R). The lower root is used for layer 1; the
upper root is used for layer 2.

Fixing δ = 1/q, where q � 1 is an integer, E is minimized
over the 17 variational parameters (μ, τ (n), γ (n)

i , �(n), p(n), Cl�4,
and s0) on a unit cell with q sites along x′ and two hexagonal
layers. An additional minimization loop is then performed over
q to determine the cycloidal wave vector as a function of field.
In zero field, q = 222. We verify that the corresponding spin
state provides at least a metastable minimum of the energy
E by checking that the classical forces on each spin vanish.
Another check is that the SW frequencies are all real.

Bear in mind that the variational parameters are not free
but rather are functions of the interaction parameters D, D′,
and K , and the magnetic field H . In zero field, the spin state
reduces to the one used in Ref. 21. A much simpler variational
form for the spin state would have been possible were the field
oriented along the high-symmetry axis z′ = [1,1,1] rather than
along a cubic axis.

Although the number of variational parameters is far
smaller than the 4q ≈ 888 degrees of freedom for the spins
in a unit cell, it may be possible to construct a more compact
form for the spin state with fewer variational parameters.
Unlike a variational state with too few parameters, however, a
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variational state with too many parameters does not incur any
penalty aside from the additional numerical expense.

With m = [0,0,1], |m · x′| and |m · y′| are the same for
domains 2 and 3. Therefore, the equilibrium and dynamical
properties of domains 2 and 3 are identical. Fig. 1(d) plots
δ versus field for the three domains. The predicted critical
field H (2)

c = 16.3 T for domains 2 and 3 is lower than H (1)
c =

20.2 T for domain 1. Just below H (2)
c , the cycloid for domains

2 and 3 has a significantly longer period than the cycloid for
domain 1. The variation of H (1)

c with m was predicted26 for a
purely harmonic cycloid and recently reported8 for BiFeO3.

In zero field, all three domains have the same energy.
But in a nonzero field, domain 1 has lower energy than
domains 2 and 3, as seen in Fig. 1(e). At 5 T, the energy
difference between domains is about 0.9 μeV/site. Based on a
comparison between the measured and predicted spectroscopic
frequencies discussed below, we conjecture that domains 2 and
3 are depopulated above about 6 T.

Assuming that the magnetic field is perpendicular to z′, the
weak FM moment M0 of the AF phase can be obtained by
extrapolating the linear magnetization M(H > H (2)

c ) back to
H = 0. In Ref. 21, the presumed moment M0 = 0.03μB of the
AF phase was used to fix D′ = M0J1/μBS = 0.054 meV. For
the tilted cycloid in zero field, the spin amplitude parallel to y′
is then given by S0 = M0/2μB = 0.015 and the tilt angle τ is
0.34◦.

But neither experimental group7,8 applied a magnetic field
perpendicular to z′. As seen in Fig. 1(f) for m = [0,0,1] and
D′ = 0.054 meV, the intercept M∗ = 0.025μB is then slightly
smaller than the measured intercept7 M∗ = 0.03μB. Unlike
M0, M∗(m) = M0|m × z′| depends on the orientation m of
the magnetic field and reaches a maximum of M0 only when
m · z′ = 0 or when the field is in the (1,1,1) plane. Although
a slightly larger value D′ = 0.065 meV would produce the
observed M∗(m) for m = [0,0,1], we retain the smaller value
both because measurements of M∗ are rather imprecise and
because the predicted spectroscopic frequencies evaluated
using D′ = 0.054 meV agree quite well with the measured
frequencies. We shall return to this issue in the conclusion.

As also indicated in Fig. 1(f), the magnetization M(H ) of
domains 2 and 3 is lower than that of domain 1. A hump in
the magnetic susceptibility χ = dM/dH observed8 below 6
T may signal the depopulation of domains 2 and 3.

III. SPECTROSCOPIC FREQUENCIES

Generally, the spin-spin correlation function Sαβ(q,ω) may
be expanded in a series of delta functions at each SW frequency
ωm(q):

Sαβ(q,ω) =
∑

m

δ(ω − ωm(q))S(m)
αβ (q), (6)

which assumes that the SWs are not damped. The mode
frequencies ωm(q) and the corresponding intensities S

(m)
αβ are

solved by using the 1/S formalism outlined in Ref. 27 and in
Appendix A of Ref. 21. With δ = 1/q, the unit cell contains
2q sublattices.

Some of the SW modes are optically active with non-zero
magnetic dipole (MD) matrix elements 〈δ|M|0〉, where M =
2μB

∑
i Si is the magnetization operator, |0〉 is the ground

state with no SWs, and |δ〉 is an excited state with a single
SW mode at the cycloidal wave vector Q. A subset of the
MD modes have nonzero electric dipole (ED) matrix elements
〈δ|Pind|0〉, where the induced electric polarization

Pind = λ
∑

Ri ,Rj =Ri+eij

{x′ × (Si × Sj )}, (7)

of BiFeO3 is produced by the inverse DM mechanism.28–30

Within each (1,1,1) plane, eij = √
2ax′ connects spins at sites

Ri and Rj . In the absence of tilt, 〈0|Si × Sj |0〉 is parallel
to y′ and 〈0|Pind|0〉 is parallel to z′. Analytic expressions for
〈δ|Mα|0〉 and 〈δ|P ind

α |0〉 are provided in Appendix B of Ref. 21.
There is no simple relationship between the SW intensities
S(m)

αα (δ) at the cycloidal wave vector and the matrix elements
〈δ|M|0〉 and 〈δ|Pind|0〉.

For zero field with δ = 1/222, we adjusted21 the interaction
parameters of BiFeO3 to fit the four spectroscopic mode
frequencies ν0 observed by Talbayev et al..19 Fixing D′ =
0.054 meV, we obtained the parameters D = 0.107 meV and
K = 0.0035 meV. We now employ those same parameters to
describe the field dependence of the spectroscopic modes in
BiFeO3.

To label the spectroscopic modes at q = Q or η = δ, we
have modified the notation of de Sousa and Moore,31 who
studied the case where D′ = K = 0 so that the cycloid is
coplanar and purely harmonic. In an extended zone scheme,
they labeled the SW modes at wave vector nQ as �n and �n.
Corresponding to excitations within the cycloidal plane, �n =
�1|n| is a linear function of n. The out-of-plane modes satisfy
the relation �n = �1

√
1 + n2. Due to the higher harmonics

of the cycloid18,21 produced by D′ or K , �n and �n (n > 0)
each split into two modes that we label as �(1,2)

n and �(1,2)
n .

Any mode with a nonzero MD matrix element 〈δ|Mα|0〉
must also have a nonzero SW intensity S

(m)
ββ (δ) at the cycloidal

wave vector. When D′ = 0 and H = 0, the cycloid is coplanar
and there is a sharp distinction between in-plane and out-of-
plane modes. For a coplanar cycloid, the in-plane �n modes
may have nonzero MD matrix elements with component α =
y ′ and nonzero SW intensities with components β = x ′ and
z′. By contrast, out-of-plane �n modes may have nonzero MD
matrix elements with components α = x ′ or z′ and nonzero SW
intensities with component β = y ′. When D′ �= 0, the cycloid
is tilted out of the x ′z′ plane but the distinction between the
in-plane and out-of-plane modes is maintained, at least for the
relatively small tilting angles considered here: the �n modes
only have SW intensities S

(m)
ββ (δ) with β = x ′ and z′ while the

�n modes only have SW intensity with β = y ′. Of course, the
distinction between in-plane and out-of-plane modes is lost in
a magnetic field.

In Fig. 2, the SW frequencies are plotted versus q =
(2π/a)(0.5 + η,0.5 − η,0.5) for domain 1 and H = 0 or 6.9
T. The gaps between the �

(1,2)
n>0 and �

(1,2)
n>0 modes at η = δ

are enlarged in a magnetic field but the mode splittings fall
rapidly off with increasing n and cannot be seen for �

(1,2)
3 and

�
(1,2)
3 . Repulsion between SW branches also occurs away from

η/δ = 0 or 1, such as at η/δ = 1/2. For frequencies above a
few meV, the hierarchy of modes predicted by de Sousa and
Moore31 with �(1,2)

n > �(1,2)
n is restored.
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FIG. 2. (Color online) The mode frequencies versus q for (a)
0 T and (b) 6.9 T in domain 1. Optically-active modes at η = δ are
denoted by filled circles, inactive ones by white circles. Recall that
1 meV = 8.065 cm−1.

As shown in Fig. 2(a) for zero field, only the six modes
�0, �0, �

(1)
1 , �

(2)
1 , �

(1)
1 , and �

(1)
2 are optically active at η =

δ. At a very small but nonzero frequency, �0 is outside the
range of THz measurements. For either D′ �= 0 or K �= 0, the
anharmonicity of the cycloid splits �

(2)
1 (ν0 = 10.7 cm−1) from

�
(1)
1 (ν0 = 16.5 cm−1) and �

(2)
1 (ν0 = 20.4 cm−1) from �

(1)
1

(ν0 = 22.2 cm−1). Besides �0, only �
(1)
1 has a nonzero ED

matrix element in zero field. While �
(1)
2 (ν0 = 27.4 cm−1) is

activated by the 3Q harmonic of the cycloid, which mixes �
(1)
2

with �0, �0 and �
(1)
1 are activated by the tilt of the cycloid out

of the x ′z′ plane, which mixes �0 with �
(1)
1 and �

(1)
1 with �0.

The nearly degenerate �0 and �
(1)
1 modes are responsible for

the observed spectroscopic peak19,20 at ν0 = 16.5 cm−1.
In nonzero field, all of the SW modes at the cycloidal

wave vector Q are optically active with nonzero MD matrix
elements, as indicated in Fig. 2(b) for 6.9 T. Notice that the near
degeneracy between �

(1)
1 and �0 is broken by the magnetic

field.
With m = [0,0,1], the predicted spectroscopic frequencies

are plotted versus field in Fig. 3(a) for domains 1, 2, and
3. As mentioned earlier, the frequencies for domains 2 and
3 are identical. For all three domains, �

(1)
1 (H ) and �0(H )

(ν0 = 16.4 cm−1) are split linearly by the field below about
4 T. For domain 1, �

(1)
1 (H ) ≈ ν0 + 0.9μBH and �0(H ) ≈

ν0 − 0.9μBH ; for domains 2 and 3, the frequencies are
slightly higher with �

(1)
1 (H ) ≈ ν0 + 1.1μBH and �0(H ) ≈

ν0 − 0.7μBH . Some magnon softening at Q occurs close to
the critical fields H (i)

c for each domain.
Spectroscopic frequencies measured by Nagel et al.20,32 are

plotted in Fig. 3(b). The THz magnetic field was aligned along
either h1 = [1, − 1,0] or h2 = [1,1,0], with corresponding
THz electric field aligned along either e1 = [1,1,0] or e2 =
[1, − 1,0]. These THz fields couple to the MD matrix elements
〈δ|hi · M|0〉 and the ED matrix elements 〈δ|ei · Pind|0〉. The
observed transition to the AF phase occurs at about 18.9 T. Due
to instrumental limitations, no THz data is available for fields
above 12 T and frequencies below about 12 cm−1. We believe
that the energy difference between domains is responsible for
depopulating domains 2 and 3 above about 6 T, indicated by a
dashed vertical line. To reflect this behavior, we have cut off
the predicted mode frequencies of domains 2 and 3 in Fig. 3(b)
above 6 T.
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FIG. 3. (Color online) (a) The predicted spectroscopic frequen-
cies for domain 1 (solid) and domains 2 and 3 (dashed). The critical
fields are indicated by dashed vertical lines. (b) The measured
spectroscopic frequencies with THz field h1 (circles) or h2 (triangles).
The predicted mode frequencies from domain 1 (solid) and domains
2 and 3 (dashed) are also shown. We argue that contributions from
domains 2 and 3 stop at 6 T, indicated by a dashed vertical line.

The agreement between the measured and predicted mode
frequencies in Fig. 3(b) is astonishing. For small fields,
the slopes of �

(1)
1 (H ) and �0(H ) are quite close to the

predicted slopes for all three domains. The predicted splitting
of �

(1,2)
2 (H ) (ν0 = 27.4 cm−1) is clearly seen in Fig. 3(b). Also

in agreement with predictions, �
(1)
1 (H ) (ν0 = 22.2 cm−1) is

slightly lower in domains 2 and 3 than in domain 1.
However, our model cannot explain the field-independent

excitation at about 16.5 cm−1 midway between �
(1)
1 (H ) and

�0(H ). Spectroscopic modes never cross with field due to
their coupling and mixing (although the coupling becomes
very weak for some higher-frequency modes). Since it appears
immune to mode repulsion, the 16.5 cm−1 excitation may have
some other origin, such as an optical phonon.

In contrast to the domain depopulation indicated by THz
measurements, domains 2 and 3 appear to survive up to about
16 T in electron spin resonance (ESR) measurements.33 As
reported in Ref. 20, the predicted �

(2)
1 (ν0 = 10.8 cm−1) for

domains 2 and 3 agrees quite well with a mode detected by
ESR measurements.

We predict that the AF phase has two low-frequency modes
labeled α and β in Fig. 3. As expected, α and β do not depend
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on the domain of the cycloid below the critical field. Notice
that β(H ) is quite close to the Larmor frequency 2μBH for
an isolated spin.34 For domains 2 and 3, α(H ) is predicted to
vanish at the critical field H (2)

c = 16.3 T.
But ESR measurements33 indicate that α(H ) ≈ 7.5 cm−1

at 16 T and that α(H ) is projected20 to vanish between 10 and
12 T. This suggests that the true critical field H (2)

c for domains
2 and 3 may be as low as 10 T and that the spin state in those
domains is metastable between 10 and 16 T. Even if the critical
field for domains 2 and 3 is 16 T, the depopulation of domains
2 and 3 at 10 T would explain the optical anomalies35 observed
at that field. Above H (1)

c , α(H ) ∼ (H − H (2)
c )1/2 is sensitive to

the precise location of H (2)
c , which may be shifted by quantum

fluctuations or other interactions not included in our model.

IV. SPECTROSCOPIC SELECTION RULES AND
INTENSITIES

In zero field, each optically-active mode is associated with
a single MD component 〈δ|Mα|0〉. Besides �0, the optically
active modes are

�0 (ν0 = 16.4 cm−1) : |〈δ|Mx ′ |0〉|/μB = 2.50,

�
(1)
1 (ν0 = 16.5 cm−1) : |〈δ|My ′ |0〉|/μB = 1.86,

�
(2)
1 (ν0 = 20.4 cm−1) : |〈δ|Mz′ |0〉|/μB = 3.96,

�
(1)
1 (ν0 = 22.2 cm−1) : |〈δ|Mx ′ |0〉|/μB = 4.59,

�
(1)
2 (ν0 = 27.4 cm−1) : |〈δ|My ′ |0〉|/μB = 1.01.

Other modes including �
(2)
1 (ν0 = 10.8 cm−1) and

�
(2)
2 (ν0 = 27.4 cm−1) are not optically active in zero field.
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FIG. 4. (Color online) The field dependence of (a) the SW
intensities Sαα(δ) (with a different scale used for α = y ′) and (b) the
matrix elements |〈δ|Mα|0〉|/μB, where α = x ′ (solid), y ′ (medium
dash), or z′ (small dash) for �

(2)
1 in domain 1.

The only mode with a nonzero ED matrix element in zero field
is �

(1)
1 with |〈δ|P ind

y ′ |0〉|/λ = 12.2.
In a nonzero field, the distortion of the cycloid mixes the

in-plane and out-of-plane cycloidal modes and activates all
of the spectroscopic modes at wave vector Q. For example,
�

(2)
1 (ν0 = 10.8 cm−1) is not optically active and has no SW

intensity in zero field. But the SW intensities Sαα(δ) plotted in
Fig. 4(a) for domain 1 grow like H 2. As shown in Fig. 4(b),
�

(2)
1 develops significant matrix elements |〈δ|Mx ′ |0〉| ∝ H 2

and |〈δ|My ′ |0〉| ∝ H . Despite the distortion of the cycloid in
a magnetic field, �

(2)
1 remains primarily an in-plane cycloidal

mode: Sy ′y ′ (δ) is quite small and 〈δ|My ′ |0〉 is the dominant
MD matrix element. But the significant matrix element
〈δ|Mx ′ |0〉 indicates that �

(2)
1 mixes with the nearby �0 mode.

Experimentally, �
(2)
1 appears above about 3 T.

Similar conclusions hold for �
(1,2)
3 (ν0 = 40.7 cm−1) and

�
(1,2)
3 (ν0 = 43.7 cm−1), which are also activated by the field

and appear above about 5 T. The predicted splitting of both
modes can be observed above 10 T.

Generally, the spectroscopic intensities of any mode in THz
fields hi and ei (i = 1 or 2) are given by

MD(hi) = |〈δ|hi · M|0〉/μB|2, (8)

ED(ei) = |〈δ|ei · Pind|0〉/λ|2. (9)

These expressions generalize those given in Ref. 21 for zero
field, when each mode was associated with only a single
matrix element 〈δ|Mα|0〉. The total spectroscopic intensity
is a function of MD(hi) and ED(ei) that may also involve
the nonreciprocal cross term36 containing the product 〈δ|hi ·
M|0〉 〈0|ei · Pind|δ〉. We expect that MD(hi) dominates the
spectroscopic intensity because the induced polarization for
BiFeO3 is so small. But measurement of noncircular magnetic
dichroism36 under an external magnetic field along z′ can, at
least in principle, be used to isolate ED(ei) for any mode.

To evaluate the spectroscopic weights, we must express hi

and ei in terms of the local coordinate system {x ′,y ′,z′} of the
cycloid in each domain:

h1 = x′, h2 = (y′ +
√

2z′)/
√

3, (10)

in domain 1 with x′ = [1, − 1,0] and y′ = [1,1, − 2];

h1 = x′/2 −
√

3y′/2, h2 = x′/2 +
√

3y′/6 +
√

2/3z′,
(11)

in domain 2 with x′ = [1,0, − 1] and y′ = [−1,2, − 1]; and

h1 = −x′/2 −
√

3y′/2, h2 = x′/2 −
√

3y′/6 +
√

2/3z′,
(12)

in domain 3 with x′ = [0,1, − 1] and y′ = [−2,1,1]. For all
three domains, e1 = h2 and e2 = h1.

The MD and ED weights of the first seven modes above
�0 are plotted versus field in Fig. 5. Because they have
no appreciable ED matrix elements, the ED weights of
�

(2)
1 and �0 are not shown. In domain 1 with e2 = x′,

ED(e2) = 0 because Pind has no component parallel to x′.
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FIG. 5. (Color online) The spectroscopic intensities MD(hi) and
ED(ei) versus field for the lowest 7 modes. Domain 1 (solid) and
domains 2 and 3 (dashed) are indicated along with THz fields
polarizations i = 1 (thick curve) and 2 (thin curve). Side by side
MD and ED plots refer to the same mode, indicated on the left.

The sharp features in these figures can be attributed to the
avoided crossings of the spectroscopic modes with field.
Experimentally, the contributions of domains 2 and 3 can be
suppressed20 by applying and then removing a high field above
H (1)

c .

As shown in Fig. 5(a) for �
(2)
1 (ν0 = 10.8 cm−1), MD(hi)

is much larger for domains 2 and 3 than for domain 1.
Within domain 1, MD(hi) is stronger for THz field h2

due to the dominant matrix element |〈δ|My ′ |0〉| plotted
in Fig. 4(b). Since |〈δ|My ′ |0〉| grows linearly with field,
MD(h2) ≈ |〈δ|My ′ |0〉|2/3μ2

B grows quadratically with field.
In zero field, the only modes with significant ED intensity

are �0 and �
(1)
1 . By 10 T, the ED intensity of �

(1)
1 has fallen by

about 66% while the ED intensities of several other modes have
become significant. For domain 1, we predict that the ED inten-
sity of �

(2)
2 becomes comparable to that of �

(1)
1 at about 10 T.

However, a close comparison with measurements reveals
that the intensities of some activated modes are underestimated
by our model.20 For example, after averaging over domains,
MD(h1) for �

(1,2)
2 is predicted to be about 25 times smaller

than MD(h1) for �
(1)
1 . But experimentally, �

(1,2)
2 has twice

the intensity of �
(1)
1 . For THz field orientation h1, Fig. 5(e)

predicts that the MD intensity of �
(2)
1 should vanish at H = 0.

But experiments20 indicate that �
(2)
1 survives for THz field

orientation h1 in zero field, albeit with the h1 intensity reduced
by about 90% compared to the h2 intensity.

Experimentally,20 the h1 intensities of �
(1)
2 and �

(2)
2 at

H = 0 are larger for the field-treated sample than for the
non-field-treated sample. This implies that MD(h1) is larger
for domain 1 than for domains 2 and 3. But the only nonzero
MD matrix element for �

(1)
2 in zero field is 〈δ|My ′ |0〉. So as

shown in Figs. 5(h) and 5(j) for �
(1)
2 and �

(2)
2 , MD(h1) =

|〈δ|Mx ′ |0〉|2/μ2
B → 0 as H → 0 in domain 1.

V. CONCLUSION

The remarkable agreement between the predicted and mea-
sured spectroscopic mode frequencies of the cycloidal phase
leaves no doubt that a model with DM interactions along y′ and
z′ and easy-axis anisotropy along z′ provides the foundation for
future studies of multiferroic BiFeO3. In particular, the relative
positions of the field-activated �

(2)
1 (ν0 = 10.8 cm−1) and the

tilt-activated �0/�
(1)
1 (ν0 = 16.4 cm−1) modes confirms our

earlier conjecture21 that K overcomes the effects of D′ to favor
easy-axis anisotropy along z′. For S0 = 0.015, this requires
that K > 0.001 meV. If S0 = 0.015 and K < 0.001 meV, then
easy-plane anisotropy would be favored and �

(2)
1 would lie

above �0/�
(1)
1 .

However, the previous section exposed several discrep-
ancies between the predicted and observed mode intensities
which must be addressed. Specifically, modes that are activated
by the anharmonicity and tilt of the cycloid are still too weak
compared to measurements. Whereas our model predicts that
�

(1,2)
2 should not appear in zero field for domain 1 with THz

field h1, experiments20 indicate that �(1,2)
2 are actually stronger

in domain 1 than in domains 2 and 3.
As mentioned above, we have used a smaller value of D′

than warranted by the observed, weak FM moment M0 of
the AF phase. For magnetic field along a cubic axis, D′ =
0.054 meV corresponds to the zero-field intercept M∗ =
0.025μB, smaller than the intercepts 0.03μB and 0.04μB

obtained by Tokunaga et al.7 and Park et al.8 respectively.
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Our value S0 = 0.015 for the cycloidal spin amplitude parallel
to y′ is roughly half what Ramazanoglu et al.37 estimated from
elastic neutron-scattering measurements. Recall that the weak
FM moment of the AF phase is predicted21 to be M0 = 2μBS0.

A larger value for D′ requires a commensurately larger
value for the anisotropy K to preserve the same zero-field
splittings of �

(1,2)
1 and �

(1,2)
1 produced by the anharmonicity

of the cycloid. For example, when S0 = 0.025 and D′ =
0.090 meV, the best fits to the zero-field frequencies are
obtained with K = 0.0052 meV. In comparison with the
zero-field tilt angle τ = 0.34◦ when S0 = 0.015, τ = 0.57◦
when S0 = 0.025.

Earlier work21 found that the matrix elements 〈δ|Mx ′ |0〉
and 〈δ|My ′ |0〉 of the tilt-activated modes �0 and �

(1)
1 (ν0 =

16.4 cm−1) scale like S0 in zero field. So the intensities
MD(hi) of �0 and �

(1)
1 are larger by a factor of 25/9 ≈ 2.8 for

S0 = 0.025 than for S0 = 0.015. But larger D′ and K do not
resolve the most serious discrepancies between the predicted
and measured intensities in zero field. In particular, they do not
generate nonzero matrix elements 〈δ|Mx ′ |0〉 for the in-plane
�

(1,2)
2 modes or for the out-of-plane �

(2)
1 mode at H = 0.

Another set of weak interactions may possibly explain the
enhanced spectroscopic intensities. There are at least two
candidates for such interactions. The small rhombohedral

distortion15 (α = 89.3◦) of BiFeO3 will change the next-
nearest-neighbor exchange J2 within each hexagonal plane
compared to the interaction between different planes. Due to
magnetoelastic coupling, easy-plane anisotropy perpendicular
to y′ may compete with the D′ interaction, permitting much
larger values for D′ consistent with the observed moment M0

of the AF phase. Either set of additional interactions may
modify the MD matrix elements and change the spectroscopic
intensities of the activated modes.

To conclude, the spectroscopic frequencies and intensities
provide very sensitive probes of the weak microscopic inter-
actions that control the cycloid and induced polarization in
BiFeO3. We are confident that future work based on the model
presented in this paper will lay the groundwork for the eventual
technological applications of this important material.
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