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Orientation dependence of the critical magnetic field for multiferroic BiFeO3
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Multiferroic BiFeO3 undergoes a transition from a distorted spiral phase to a G-type antiferromagnet above
a critical field Hc that depends on the field orientation m. We show that Hc(m) has a maximum when oriented
along a cubic diagonal parallel to the electric polarization P and a minimum in the equatorial plane normal to
P when two magnetic domains with the highest critical fields are degenerate. The orientational dependence of
Hc(m) is more complex than indicated by earlier work, which did not consider the competition between magnetic
domains. Some recent measurements might be explained by a mixture of magnetic domains.
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I. INTRODUCTION

Multiferroic materials offer the tantalizing prospect of
controlling magnetic properties with an electric field and
electric properties with a magnetic field. Because of their
technological promise, multiferroic materials remain the sub-
ject of intense interest. Of all known multiferroic materials,
only BiFeO3 exhibits multiferroicity at room temperature. As
a type-I or “proper” multiferroic, BiFeO3 has a ferroelectric
transition temperature1 Tc ≈ 1100 K significantly higher than
its Néel transition temperature2 TN ≈ 640 K. Although the
ferroelectric polarization is only slightly enhanced3–5 by the
formation of a distorted spin cycloid, the magnetic domain
distribution of BiFeO3 can be manipulated with an applied
electric field.6,7

The unwinding of the cycloid with magnetic field as it
transforms into an antiferromagnet provides insight about
the nature of the interactions that produce the multiferroic
behavior in BiFeO3 and about the competition between
magnetic domains. This paper evaluates the critical magnetic
field Hc(m), above which the cycloid for a particular domain
is destroyed, as a function of the field orientation m.

Using single crystals of BiFeO3 that have recently become
available, inelastic neutron-scattering measurements8–10 of the
spin-wave spectra determined the nearest and next-nearest
antiferromagnetic (AF) exchange interactions J1 ≈ −4.5 meV
and J2 ≈ −0.2 meV on the psuedocubic unit cell with
lattice constant11 a = 3.96 Å sketched in Fig. 1. Because
the wavelength λ ≈ 62 nm of the cycloid is so long,2,6,12–14

however, inelastic neutron-scattering measurements9,15 are
unable to resolve excitations about the magnetic satellites
(2π/a)(0.5 ± δ,0.5 ∓ δ,0.5) (δ = a/(

√
2λ) ≈ 0.0045), on

either side of the antiferromagnetic (AF) Bragg wave vector
Q0 = (π/a)(1,1,1). Consequently, inelastic neutron scattering
cannot determine the very small interaction energies of less
than 1 meV that control the cycloid.

By contrast, the spin-wave modes at the ordering wave
vectors Q of the cycloid can be measured very pre-
cisely with Raman16 or THz spectroscopy.17,18 The excellent
agreement18,19 between the observed and predicted THz modes
confirms that a microscopic model20 with easy-axis anisotropy
K ≈ 0.0035 meV along the electric polarization direction
z′ = (1,1,1) (all unit vectors are assumed normalized to 1) and
two Dzalyoshinskii-Moriya (DM) interactions can describe the

multiferroic behavior of BiFeO3. Whereas the DM interaction
D ≈ 0.107 meV normal to the cycloidal plane fixes the cy-
cloidal wavelength, the DM interaction21–24 D′ ≈ 0.054 meV
along z′ = (1,1,1) produces a small cycloidal tilt23 that
alternates in sign from one [1,1,1] hexagonal plane to the next.

If the DM and anisotropy interactions were absent, then
J1 and J2 would stabilize a G-type AF with ferromagnetic
(FM) order within each [1,1,1] hexagonal plane. The distorted
cycloid can be destabilized in favor of this antiferromagnet
by chemical impurities,25 strain,26 and magnetic3–5 or electric
fields.27 In the AF phase, the DM interaction D′ produces
a weak FM moment4,5,28 M0 between 0.03 and 0.06 μB per
S = 5/2 Fe3+ ion due to the canting of the moments within
each hexagonal plane.

With the electric polarization P = P z′ along any
of the eight equivalent cubic diagonals, the three
magnetic domains of BiFeO3 have wave vectors
Qn = Q0 + qn where q1 = (2π/a)(δ,−δ,0), q2 = (2π/a)
(δ,0 − δ), and q3 = (2π/a)(0,δ,−δ). For domain n, we
construct a coordinate system with x′

n along qn and
y′

n = z′ × x′
n. For z′ = (1,1,1), the coordinate axis for each

magnetic domain is given in Fig. 1. In the zero field, the three
domains of bulk BiFeO3 are degenerate and equally occupied.

In a magnetic field, however, the degeneracy of the domains
may be lifted. Generally, the domain with the lowest energy in
a magnetic field H = Hm has the largest value of |y′

n · m|, so
that the spins of that domain lie predominantly perpendicular
to the field. For a hemisphere of m with polarization P
along z′ = (1,1,1), the solid curves in Fig. 2 denote the
boundaries between the domains with the lowest energies and
the highest critical fields. Domains 1, 2, and 3 are degenerate
when m = ±z′. For m = (0,0,1), domain 1 has the lowest
energy and domains 2 and 3 remain degenerate with higher
energies.19 THz measurements18 indicate that domains 2 and
3 are then depopulated above about 6 T. Those measurements
also indicate that it may be possible to reduce the population
of the metastable domains by first applying a field far above
Hc and then reducing it to H < 6 T.

The microscopic model used to solve for the critical fields is
presented in Sec. II. Section III provides results for the critical
fields H (n)

c (m) of each domain (both stable and metastable)
and Sec. IV compares those results with measurements. A
short conclusion is provided in Sec. V.
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FIG. 1. (Color online) The exchange interactions J1 and J2 on
the pseudocubic lattice for BiFeO3 with Fe3+ ions at the corners and
the notation for the three magnetic domains with electric polarization
along z′ = (1,1,1).

II. MICROSCOPIC MODEL

The Hamiltonian for spins in domain n is given by

H = −J1

∑

〈i,j〉
Si · Sj − J2

∑

〈i,j〉′
Si · Sj

−D1

∑

Rj =Ri+
√

2au±
n

y′
n · (Si × Sj )

−D2

∑

Rj =Ri+
√

2ax′
n

y′
n · (Si × Sj )

−D′ ∑

Rj =Ri+ax,ay,az

(−1)Riz′ /c z′ · (Si × Sj )

−K
∑

i

(Si · z′)2 − 2μBH
∑

i

Si · m, (1)

where u±
n = x′

n/2 ± √
3y′

n/2. Among the nearest neighbors
in the hexagonal plane normal to z′, D1 couples Ri to Ri +√

2au±
n and D2 couples Ri to Ri + √

2ax′
n.

To the order of ϑ(δ2) < 10−4, the same static and dynamic
properties are produced by any values for D1 and D2 with
the sum D = D1 + D2. As found earlier,15 D ≈ 0.107 meV
produces the observed period λ = a/

√
2δ ≈ 62 nm in zero

field. For m = (0,0,1), changing D1 = 0 to D2 = 0 but keep-
ing D1 + D2 = 0.107 meV shifts the critical field by about
0.01%. In previous work,15,19,20 we followed the convention
of Ref. 8 by taking D2 = 0.107 meV and setting D1 = 0.
Without D′, the Hamiltonian of Eq. (1) was first proposed by
Sosnowska and Zvezdin.29

For each domain, the inverse DM mechanism30–32 induces
the cycloidal polarization

Pind = λ1

∑

Rj =Ri+
√

2au±
n

u±
n × (Si × Sj )

+ λ2

∑

Rj =Ri+
√

2ax′
n

x′
n × (Si × Sj ), (2)

FIG. 2. (Color) The variation of Hc over a hemisphere of m, with a maximum along the polarization direction z′ = (1,1,1). Gray lines are
the borders between magnetic domains (denoted by 1, 2, or 3) with the highest Hc. The dashed line is the equator when the north pole coincides
with z′.
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which is parallel to z′ = (1,1,1). In analogy with the re-
sults for the D1 and D2 terms in the Hamiltonian, the
induced polarization P ind ≈ 4πS2λcδ along z′ only depends
on the sum λc = λ1/2 + λ2. Compared to the ferroelectric
polarization33 P ≈ 100 μC/cm2 above TN or Hc, the induced
polarization4,5 P ind ≈ 40 nC/cm2 below TN or Hc is quite
small. Using this value for P ind gives λc ≈ 113 nC/cm2 or
4.38 × 10−11 e cm/site.

With the same spin state in hexagonal layers m and m + 2,
layers m = 1 and 2 are parameterized as

Sx ′ (R) = A(m)(R) sin μ cos τ (m) sin
(
2πδRx ′/a + γ

(m)
1

)

+ s0p
(m)
x ′ , (3)

Sy ′ (R) = A(m)(R) sin μ sin τ (m) sin
(
2πδRx ′/a + γ

(m)
2

)

+ s0p
(m)
y ′ , (4)

Sz′ (R) = A(m)(R) cos μF (m)(R) + s0p
(m)
z′ , (5)

where

F (m)(R) =
∑

l=1

C2l−1 cos[2(2l − 1)πδRx ′/a]

+
∑

l=1

C2l cos(4lπδRx ′/a + �(m)), (6)

and we take C1 = 1. The unit vectors p(m), tilt angles τ (m),
phases γ

(m)
1 , γ

(m)
2 , and �(m) can be different for layers 1 and

2. In a magnetic field, F (m)(R) contains both even and odd
harmonics Cl , which may be out of phase due to �(m). On
layer m and site R, the amplitude A(m)(R) is fixed by the
condition that |S(R)| = S, which is satisfied by a quadratic
equation for A(m)(R). The lower root is used for layer 1; the
upper root is used for layer 2.

Because Cl falls off rapidly with l, we neglect harmonics
above l = 4. Fixing δ = 1/p, where p � 1 is an integer,
the energy E = 〈H〉 is minimized over the 17 variational
parameters (μ, τ (m), γ

(m)
i , �(m), p(m), Cl�4, and s0) on a

unit cell with p sites along x′
n and two hexagonal layers. An

additional minimization loop over p determines the cycloidal
wave vector as a function of field. In zero field, p = 222 and
λ = ap/

√
2 ≈ 62 nm. Although they do not diverge at the

first-order transition between the cycloidal and AF phases, λ

and p increase by roughly a factor of two between H = 0
and Hc.

III. CRITICAL FIELD

We use Eq. (1) to evaluate the critical magnetic field
Hc as a function of its orientation m. Beginning with the
variational parameters known for zero field, H is increased
in increments of about 0.015 T until the AF phase achieves
a lower energy than the cycloidal phase, at which point
the energies of both phases are interpolated to solve for
Hc(m). This time-consuming procedure is required by the large
number of variational parameters that determine the spin state
in Eqs. (3)–(5).

Results for the critical field as a function of m are given by
the contours of Fig. 2 over a hemisphere of m with z = (0,0,1)
at the top. In agreement with Ref. 34, Hc(m) depend only

on the angles ζ = cos−1(m · z′) and ψ = cos−1(m · x′
1) of the

magnetic field with respect to the electric polarization. While
Hc achieves a maximum when m lies along z′ (ζ = 0), it is a
minimum in the equatorial plane normal to z′ (ζ = π/2) when
the two magnetic domains with the highest critical fields are
degenerate. We find that Hc(m) varies by about 4 T, from a
minimum of 18.4 T to a maximum of 22.4 T. Since Hc(m) =
Hc(−m), the results of Fig. 2 can also be used to obtain Hc(m)
around (0,0,−1) with another maximum at −z′.

By contrast, Tokunaga et al.4 argued that Hc(m) is a
function only of ζ and is independent of ψ . Assuming a purely
harmonic and coplanar cycloid, Le Bras et al.34 obtained a
simple expression for the dependence of Hc(m) on both ζ and
ψ . However, they did not consider the competition between
cycloids in different magnetic domains. Due to the complexity
of our model, we are unable to directly compare our numerical
results for Hc(m) with the analytic expression of Ref. 34 for a
given domain.

The competition between magnetic domains produces the
complex dependence of Hc(m) on ζ and ψ . Along the dashed
equator (ζ = π/2) sketched in Fig. 2, the critical fields
H (n)

c (m) for each domain are separately plotted versus ψ

in Fig. 3. While the individual critical fields H (n)
c (m) vary

from 15.0 to 20.4 T, the maximum critical field Hc(m) varies
from 18.4 to 20.4 T. In the equatorial plane, H (n)

c (m) is a
maximum when m = ±y′

n, corresponding to azimuthal angles
ψ = −π/6 + nπ/3 or 5π/6 + nπ/3. When H (n)

c (m) reaches
a maximum value, the critical fields for the other two domains
reach their minimum values. Because Le Bras et al.34 restricted
consideration to a single magnetic domain, their predicted
critical field has a period of �ψ = π , rather than �ψ = π/3
as found here.

For m along a cubic axis such as z, several experimental
groups4,5,18 reported that Hc = 18.8 T, which is about 1.4 T
lower than our result. To explain this disagreement, we exam-
ine the limitations of our variational approach. In equilibrium,
the classical energy Ei at each Fe3+ site must be a minimum
so that the forces Fi = ∂Ei/∂Si on the spin Si vanish. The
forces are quite small above Hc, indicating that the variational

FIG. 3. (Color online) The critical fields for domains 1 (circles),
2 (squares), and 3 (diamonds) vs ψ in the equatorial [1,1,1] plane
normal to the polarization.
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state provides an excellent description of the AF phase. With
increasing field below Hc, the forces grow in magnitude as the
variational spin state of the cycloid becomes compromised.
Because it provides an upper bound to the cycloidal energy,
our variational approach will therefore underestimate rather
than overestimate the critical field. Hence, the limitations of
this approach cannot explain the overestimation of the critical
field for m = z.

But our classical model does not account for quantum spin
fluctuations, which will differently affect the energies of the
cycloidal and AF phases. For the geometrically frustrated
antiferromagnet CuCrO2, quantum fluctuations suppress the
critical field35 for the transition from a cycloidal to a collinear
phase when the easy-axis anisotropy is small. In BiFeO3,
quantum fluctuations should also lower the critical field Hc(m)
from the classical values provided in this paper. For S = 5/2,
the 1/(2S + 1) effects of quantum fluctuations may possibly
suppress the critical field by about 17%.

IV. COMPARISON WITH MEASUREMENTS

The comparison of predictions for Hc(m) with mea-
surements is complicated by two factors. As found in the
polarization measurements of Tokunaga et al.,4 hysterisis
may be produced by the first-order transition between the
cycloidal and AF phases. Due to the competition between
magnetic domains, measurements may also yield different
results depending on which domain is probed. Perhaps as a
consequence, Park et al.5 reported that the jump in the electric
polarization can occur at a slightly lower or higher field than
the drop in the magnetization. By providing the critical fields
for all three domains, our results may help to separate these
two complicating factors.

For m between z = (0,0,1) and (1,1,0), Tokunaga et al.4

observed that Hc(m) peaks at z′ = (1,1,1) with a value of
24 T. On the other hand, Fig. 4(a) indicates that Hc(z′) =
22.4 T when θ = cos−1(z′ · z) = 0.304π (54.7◦). Notice that
domain 1 has the lowest energy and highest critical field
for all angles θ = cos−1(m · z) along this longitude. But
even a sample with a distribution of magnetic domains 1,
2, and 3 should still exhibit a maximum critical field at
θ = 0.304π . Tokunaga et al. also observed that Hc(m) = 18 T
for m = (−1,1,0), which is a bit smaller than our prediction of
18.4 T. Hence, their measurements yield a net range in Hc of
roughly 6 T, which is about 50% larger than predicted in this
paper. By contrast, Park et al.5 compared the critical fields for
three different orientations m and found that Hc(m) = 19 T is
smallest when m = z′.

Just as puzzling, Tokunaga et al.4 did not observe the
predicted minimum in Hc(m) between (0,0,1) and (−1,1,0)
for θ = 0.166π (30◦), at the border between domains 1 and 3
in Fig. 4(b). This suggests that their sample is evenly divided
between domains 1 and 3 so that the measured critical field is
an average of H (1)

c (m) and H (3)
c (m). If that is the case, then the

width of the magnetic transition should increase away from
θ = 0.166π . It may still be possible to observe the predicted
minimum by applying and then removing a field far above
Hc(m) prior to each measurement. In Fig. 4(b), the critical
field for domain 1 is terminated at about 15.3 T, below which
the AF phase is not stable and H (3)

c (m) is not defined.

FIG. 4. (Color online) The critical field for two longitudes
connecting z = (0,0,1) with (0,0,−1) through either (a) (1,1,0) or
(b) (−1,1,0) with θ = cos−1(m · z). The insets show the two
trajectories for the cubic unit cell.

V. CONCLUSION

To conclude, we have shown that the competition between
magnetic domains produces a complex dependence of the criti-
cal field Hc(m) on orientation m. In some cases, measurements
of the critical field may average over the susceptibility or
polarization of more than one magnetic domain. We hope that
this work will inspire more comprehensive measurements of
the orientation dependence of Hc(m) for this highly important
material.
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25P. Chen, Ö. Günaydın-Sen, W. J. Ren, Z. Qin, T. V. Brinzari,
S. McGill, S.-W. Cheong, and J. L. Musfeldt, Phys. Rev. B 86,
014407 (2012).

26F. Bai, J. Wang, M. Wuttig, J. F. Li, N. Wang, A. P. Pyatakov,
A. K. Zvezdin, L. E. Cross, and D. Viehland, Appl. Phys. Lett. 86,
032511 (2005).

27R. deSousa, M. Allen, and M. Cazayous, Phys. Rev. Lett. 110,
267202 (2013).

28M. Ramazanoglu, M. Laver, W. Ratcliff, II, S. M. Watson, W. C.
Chen, A. Jackson, K. Kothapalli, S. Lee, S.-W. Cheong, and
V. Kiryukhin, Phys. Rev. Lett. 107, 207206 (2011).

29I. Sosnowska and A. K. Zvezdin, J. Mag. Mag. Matter. 140–144,
167 (1995).

30H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95,
057205 (2005).

31M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
32I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
33D. Lebeugle, D. Colslon, A. Forget, and M. Viret, Appl. Phys. Lett.

91, 022907 (2007).
34G. Le Bras, D. Colson, A. Forget, N. Genand-Riondet, R. Tourbot,

and P. Bonville, Phys. Rev. B 80, 134417 (2009).
35R. S. Fishman, Phys. Rev. B 84, 052405 (2011).

104419-5

http://dx.doi.org/10.1016/0038-1098(70)90262-0
http://dx.doi.org/10.1016/0038-1098(70)90262-0
http://dx.doi.org/10.1088/0022-3719/15/23/020
http://dx.doi.org/10.1088/0022-3719/15/23/020
http://dx.doi.org/10.1143/JPSJ.79.064713
http://dx.doi.org/10.1143/JPSJ.79.064713
http://dx.doi.org/10.1143/JPSJ.80.114714
http://dx.doi.org/10.1103/PhysRevLett.100.227602
http://dx.doi.org/10.1063/1.2930678
http://dx.doi.org/10.1063/1.2930678
http://dx.doi.org/10.1103/PhysRevB.78.100101
http://dx.doi.org/10.1103/PhysRevB.78.100101
http://dx.doi.org/10.1103/PhysRevLett.108.077202
http://dx.doi.org/10.1103/PhysRevLett.109.067205
http://dx.doi.org/10.1103/PhysRevLett.109.067205
http://dx.doi.org/10.1103/PhysRevB.86.174419
http://dx.doi.org/10.1103/PhysRevB.86.174419
http://dx.doi.org/10.1016/S0022-3697(71)80189-0
http://dx.doi.org/10.1016/S0022-3697(71)80189-0
http://dx.doi.org/10.1103/PhysRevB.83.174434
http://dx.doi.org/10.1088/0953-8984/22/25/256001
http://dx.doi.org/10.1088/0953-8984/22/25/256001
http://dx.doi.org/10.1103/PhysRevB.84.144404
http://dx.doi.org/10.1103/PhysRevB.86.220402
http://dx.doi.org/10.1103/PhysRevLett.101.037601
http://dx.doi.org/10.1103/PhysRevB.83.094403
http://dx.doi.org/10.1103/PhysRevLett.110.257201
http://dx.doi.org/10.1103/PhysRevLett.110.257201
http://dx.doi.org/10.1103/PhysRevB.87.224419
http://dx.doi.org/10.1103/PhysRevB.87.134416
http://dx.doi.org/10.1134/1.1787107
http://dx.doi.org/10.1103/PhysRevB.71.060401
http://dx.doi.org/10.1140/epjb/e2009-00281-5
http://dx.doi.org/10.1140/epjb/e2009-00281-5
http://dx.doi.org/10.1143/JPSJ.80.125001
http://dx.doi.org/10.1143/JPSJ.80.125001
http://dx.doi.org/10.1103/PhysRevB.86.014407
http://dx.doi.org/10.1103/PhysRevB.86.014407
http://dx.doi.org/10.1063/1.1851612
http://dx.doi.org/10.1063/1.1851612
http://dx.doi.org/10.1103/PhysRevLett.110.267202
http://dx.doi.org/10.1103/PhysRevLett.110.267202
http://dx.doi.org/10.1103/PhysRevLett.107.207206
http://dx.doi.org/10.1016/0304-8853(94)01120-6
http://dx.doi.org/10.1016/0304-8853(94)01120-6
http://dx.doi.org/10.1103/PhysRevLett.95.057205
http://dx.doi.org/10.1103/PhysRevLett.95.057205
http://dx.doi.org/10.1103/PhysRevLett.96.067601
http://dx.doi.org/10.1103/PhysRevB.73.094434
http://dx.doi.org/10.1063/1.2753390
http://dx.doi.org/10.1063/1.2753390
http://dx.doi.org/10.1103/PhysRevB.80.134417
http://dx.doi.org/10.1103/PhysRevB.84.052405



