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The dynamical-mean-field method is applied to investigate the transport properties of heterostructures
consisting of a strongly correlated electron system connected to metallic leads. The spectral function
inside the correlated region is sensitive to the change of the interaction strength and bias voltage. Because
of this sensitivity, current vs voltage characteristics of such heterostructures are rather nonlinear regardless
of the detail of the potential profile inside the correlated region. The electronic properties such as the
double occupancy are also changed by the bias voltage.
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Fabrication and characterization of heterostructures in-
volving transition-metal oxides are one of the main topics
of current materials science [1-7]. In many transition-
metal oxides, the electron-electron and/or electron-lattice
interactions are comparable to or larger than the electron
kinetic energy [8]. Therefore, a variety of exotic properties,
such as high-T,. superconductivity in cuprates [9] and
colossal magnetoresistance in manganites [10], occur. In
order to realize ‘“‘oxide electronics™ devices utilizing such
bulk properties [11-13], theoretical understanding of the
transport properties of correlated heterostructures is of
crucial importance.

In a closely related subject, quantum transport through
interacting-electron systems has been one of the most
active fields in nanoscience. A variety of correlation ef-
fects, such as the Kondo effect and Coulomb blockade,
have been intensively studied. However, most theoretical
techniques developed in these areas deal with a small
number of orbitals connected to reservoirs [14-18].
Therefore, theoretical techniques remain to be developed
for the bulklike effects of correlation on transport through
heterostructures, including the correlation-induced Mott
transition and symmetry breaking.

In this Letter, [ undertake theoretical investigation of the
transport properties of strongly correlated heterostructures.
As a simple model for such heterostructures, I consider
several layers of a strongly correlated system connected to
two metallic reservoirs. I focus on the steady-state non-
equilibrium properties of such structures under finite bias
voltage. For this purpose, I apply a layer extension of the
dynamical-mean-field theory [19] (layer DMFT) combined
with the Keldysh Green’s function technique [20], a
method recently proposed by the author [21]. The layer
DMEFT consists of mapping the lattice problem to quantum
impurity models subject to the self-consistency condition.
To solve quantum impurity models, I apply the noncrossing
approximation (NCA) [22,23]. This impurity solver is far
more accurate than the equation of motion decoupling
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scheme (EOM) used in the previous study [21]. This allows
one to study the nonequilibrium steady-state properties of
correlated heterostructures over a relatively wide range of
parameters covering the bulk Mott metal-insulator transi-
tion. It is revealed that the current-voltage characteristics
of correlated heterostructures are rather nonlinear regard-
less of the detail of the potential profile. This originates
from the close interplay between carrier injections and
strong-correlation effects, while the electronic properties,
such as spectral functions and double occupancy, depend
on the potential. In some cases, applied bias voltage pro-
duces gapped spectral functions. This behavior differenti-
ates the correlated heterostructures and other small systems
such as the quantum dots.

First, I outline the formalism of the present DMFT
scheme (for more detail see Ref. [21]). I consider electrons
moving on a cubic lattice with discrete translational invari-
ance in the xy plane. Each site is labeled by 7 = (7, z). A
Hubbard-type interaction U is introduced at a number N of
layers (sample S) located from z = 1 to N, and noninter-
acting leads are located at z =0 (lead L) and z = N + 1
(lead R). I consider the nearest-neighbor transfer 7 (¢,) of
electrons in the sample (lead «), the hybridization v,
between the sample and lead «, and the layer-dependent
potential £(z) (see Fig. 1). Thus, the Hamiltonian for this
system is written as H = Hg + Y ,_; p(H, + Hs_,) with
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FIG. 1. Schematic view of the model heterostructure.

(a) Linear potential profile for a sample with weak screening
and (b) flat potential for strong screening.
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Here, c;, is an elec”tron annihilation operator at position 7
with spin o, and n;, = C}L(Tc;g. The position 7 in each term
is constrained as explained above and Z = (0, 0, 1).

The hybridization v, and the interaction U are turned on
adiabatically [24,25]. The chemical potentials of two leads
up and up and the site potentials £(z =< 0) = g; and
e(z = N + 1) = g are assumed to be unchanged. In gen-
eral, the potential profile in the sample should be computed
self-consistently by including long-range Coulomb inter-
actions [26]. Further, several layers of two leads should be
considered as a part of the sample because the proximity
effect would modify the electronic properties [27,28]. 1
defer such self-consistent calculations for future work
since it requires more parameters specific to the system
under consideration. Instead, two extreme cases are con-
sidered as shown in Fig. 1. A realistic potential profile is
expected to be between these two.

After integrating out the lead degrees of freedom, one
focuses on the sample in which the electron self-energy has
two sources; electron correlations and the coupling with
the leads. In the layer DMFT [21,27-29], the self-energy
due to correlations is approximated to be diagonal in layer
index z and independent of in-plane momentum k. Thus,

the lattice self-energy is written as EZZ,(lgn, w) =

5. A2 (w) + vig] (k) w)d,, + vigh(k), w)5_ y}, where
v = r and K stand for the retarded and Keldysh compo-
nents of the Green’s function, respectively, and gl(lgn, )
the surface Green’s function of lead «.

The correlation part of the self-energy is computed by
introducing a number N of quantum impurity models sub-
ject to the self-consistency condition of DMFT; the impu-
rity Green’s function G (w) and the local part of the

imp,z

lattice Green’s function G|/ (w) are identical:

loc,
_ [ &Ky
Glop(@) = Gl = [

The lattice Green’s function matrix GV(I:”, w) is given by
Gr(k”, o) =[w+i0, — [:I;g(k”; U=0)— Er(k”, w)]™!,
and GX(k), o) = G"(ky, 0)2% (K}, @)G™ (ky, ). The im-
purity model at layer z is now characterized by the hybrid-
ization function AY(w) and the effective distribution
function of electrons fg (). These are fixed by Eq. (1)
as  Al(w) = o —&(z) — 2i(w) — {G[..(0)}"'  and
GE, (@) = 2i{1 = 2f e (@) IMGY,,, () [30].

In order to solve the impurity model by NCA [22,23],
four kinds of auxiliary particles are introduced: bosonic

Y(kp, ). (1)

e(d) representing an empty (doubly occupied) state and
fermionic f, a single occupied state by an electron with
spin o and a local constraint efe + dtd + ng,tfl, =1.
The local constraint is treated by introducing a complex
chemical potential [31]. The retarded, advanced, and lesser
Green’s functions of the auxiliary particles are computed
self-consistently to update the electron self-energy 2} (w)
which will be used in the next iteration. After the self-
consistency is obtained, the lattice Green’s functions are
used to compute physical quantities.

The EOM used in Ref. [21] was found to underestimate
the critical interaction U, for the metal-insulator transition;
for the N — oo limit of my model (3-dimentional Hubbard
model), U = 10t gives an insulating solution. A more
accurate exact diagonalization (ED) impurity solver [19]
with 8-site cluster estimates U, = 16¢. The present NCA
reproduces U, of ED within a few percent.

In the following, I mainly use parameters v, gz = f,
g = 2.5t. Numerical results do not depend on these
parameters in a significant way for |eV| < 67, r beyond
which the finite band width of leads starts to contribute. I
focus on the half-filled case at eV = O taking €, p = . r
with 7 = 0.1¢ and only consider paramagnetic states.

Figure 2 plots the current vs bias voltage for an N = 6
heterostructure with several choices of on-site interaction:
U= 12«(<U,), 15¢(= U,), 18t(>U,), and 0 as a refer-
ence. Although there is a quantitative difference, two
choices of potential profile give similar curves for all finite
U’s. In particular, two curves overlap at small bias voltage
where the transport is governed by (induced) quasiparticle
band. In this region, clear crossover between the metallic
and insulating regions can be seen in the linear conduc-
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FIG. 2. Current-voltage characteristics of N = 6 heterostruc-
ture with U = 12t (triangle), 15¢ (circle), 18¢ (square). Filled
(open) symbols are the results for linear (flat) potential, and the
light line corresponds to the linear potential with U = 0 multi-
plied by 0.01. For comparison, EOM results are also shown for
the linear potential with U = 15¢ and 18t as light symbols. Inset:
Linear conductance at V = 0 as a function of U. Filled (open)
symbols are for the linear (flat) potential.
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tance G (inset of Fig. 2). Compared with the result for U =
0, the current and the conductance are reduced substan-
tially corresponding to the reduction of the quasiparticle
weight. The conductance decreases nearly linearly with
increasing U in this window and, above the critical value,
becomes exponentially small. In the insulating region, G
decreases exponentially with N because of the exponential
decay of the induced quasiparticle weight. By increasing a
bias voltage, carriers are injected and the quasiparticle
weight grows causing an upturn in the /-V curve for U =
18z. At the intermediate bias, there appear “‘plateaus’ for
small U. In this region, chemical potentials of two leads
touch the Hubbard bands. Thus, electrons in the less-
developed quasiparticle bands suffer from strong
scattering.

When the chemical potentials of the two leads enter the
Hubbard bands further, larger spectral weight overcomes
the effect of scattering. This causes a further upturn in the
current, and the two curves start to deviate. In this region,
tunneling between neighboring Hubbard bands was found
to carry the current for the linear potential [21]. As shown
by light symbols, the EOM reproduces the position and
magnitude of the current density well. For flat potential,
carriers are more strongly injected into the Hubbard bands.
Thus the tunneling picture no longer holds in this region.

For flat potential, one encounters a well-known problem
of NCA, the breakdown of analyticity (the imaginary part
of the retarded self-energy becomes positive), at very large
bias; eV = 7t for U = 12t, eV = 10t for U = 15¢ and
eV = 13¢ for U = 18¢. This prevents one from further
computation. Including the vertex correction for the self-
energies of auxiliary particles is expected to remedy this
problem. Even at eV ~ 7t for U = 12¢, ¢V ~ 10t for U =
15t, and eV ~ 13¢ for U = 18¢, some parts of Im3.(w) are
found to be positive. However, coupling with leads gen-
erates an additional negative imaginary part of the self-
energy producing causal solutions.

Although two choices of potential give rather similar
I-V curves, the electronic properties were found to differ
significantly at the intermediate-to-large bias region.
Figure 3 plots the position-dependent double occupancy
D, =(nsn,) = (d;fdz> with U = 15t < U, for (a) linear
potential and (b) flat potential. At eV =< 5¢ (roughly the
distance between the upper and lower Hubbard bands), the
double occupancy gradually increases at layers near lead L
and decreases near lead R for both choices of potential. For
the flat potential, this trend continues until eV ~ 7¢ beyond
which the electron injection into the upper Hubbard band
near lead R becomes significant. On the other hand, for the
linear potential, the double occupancy in all layers starts to
decrease beyond eV ~ 5t until eV ~ 12¢. Similar phe-
nomena are observed at a bulk Mott metal-insulator tran-
sition [19].

To further clarify the difference between the two poten-
tials, I plot in Fig. 4 the imaginary parts of the local Green’s
function and the retarded self-energy, as well as the effec-
tive distribution function for N = 6 heterostructure with
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FIG. 3 (color online). Position-dependent double occupancy
for N = 6 heterostructure with U = 15¢ as a function of bias
voltage. (a) Linear potential and (b) flat potential.

the linear potential. At each bias voltage, one observes
signals of ‘“‘quasiparticle” peaks at the Fermi levels of
two leads, w = *eV/2. Strikingly, the spectral weight
between the upper and lower Hubbard bands is suppressed
for layers 2 = z = 5 when the bias voltage is increased.
This also accompanies the divergence of Im2X”. Although
some amount of carriers are already injected and the
electric current is flowing inside the Hubbard bands, the
suppression of the spectral function has stronger effects on
the double occupancy (compare ImGj,. . and fey,.). Close
inspection of the distribution function reveals that such a
behavior is due to the increase in the “‘effective tempera-
ture” that electrons feel. As shown in Fig. 4(f), f.s . varies
over a rather wide range of w of the order of the applied
voltage. The gapped spectral functions explain why EOM
and NCA give similar /-V curves at large bias. Similar
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FIG. 4 (color online). Imaginary parts of the local Green’s
function Gy . and the self-energy !, and effective distribution
function f , for N = 6 heterojunction with U = 15¢ and linear
potential profile. Applied bias voltage is (a—c) eV = 5¢ and (d—

f) eV = 10t

116807-3



PRL 101, 116807 (2008)

PHYSICAL REVIEW LETTERS

week ending
12 SEPTEMBER 2008

0.3

(@) ev=5t

eV=104]

connected to metallic leads by using the layer DMFT. The
current vs bias voltage characteristics of such heterostruc-
tures are found to be nonlinear. This originates from the
sensitivity of the single particle spectral function inside the
correlated region against the bias voltage. These effects
may also become crucial for interpreting or predicting
phenomena in which a correlated system is necessarily
driven out of equilibrium.

The author thanks J. E. Han, B. K. Nikoli¢, S. Onoda,
and Z.Y. Zhang for their valuable discussions. This work
was supported by the Division of Materials Sciences and
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FIG. 5 (color online). Same as in Fig. 4 with flat potential.
enhancement of the self-energies is also observed for flat
potential [compare Figs. 5(b) and 5(e)]. But the spectral
functions do not have a well-defined gap. Instead, one
observes very strong quasiparticle peaks at o = *eV/2
because a large number of carriers are injected. Further, the
effective temperature looks even reversed at |w| < =eV/2
[see Figs. 5(c) and 5(f)].

So far, the simple potential profiles are considered,
linear and flat, and nonlinear current-voltage character-
istics were found to be rather insensitive to the profile.
Thus, similar behavior is expected even for a realistic
potential profile determined self-consistently. On the other
hand, the electronic properties were dependent on the
potential profile. Thus, in the realistic situation, smooth
transition between the two solutions is expected to occur as
follows: the potential gradient will be suppressed near the
interface because of the screening by the injected carriers,
leading to the sharp quasiparticle peaks. The finite slope is
expected to remain deep inside the sample where the
injected electrons and holes are nearly balanced, thus the
gapped spectral functions would be realized at the large
bias voltage.

Aside from the complexity associated with self-
consistent potential calculations, several extensions of the
present work are desirable. Magnetic symmetry breaking, a
characteristic of correlated systems, can be included in the
present formalism. Possible melting of magnetic ordering
by an applied voltage and its effect on the transport prop-
erties is an interesting problem. The present procedure can
be also applied to Anderson and Kondo type models, and
multiorbital and multisite models. Including d-wave super-
conducting correlations for a multisite model [32] is an
interesting application for the transport properties of junc-
tions involving high 7, cuprates. Since the present formal-
ism is simple, combining it with the density functional
theory would not be difficult.

To summarize, I investigated the transport properties of
heterostructures consisting of a strongly correlated system

Engineering, the U.S. Department of Energy.
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