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This Letter examines the relation between the spin-wave instabilities of collinear magnetic phases and

the resulting noncollinear phases for a geometrically frustrated triangular-lattice antiferromagnet in the

high-spin limit. Using a combination of phenomenological and Monte Carlo techniques, we demonstrate

that the instability wave vector with the strongest intensity in the collinear phase determines the

wave vector of a cycloid or the dominant elastic peak of a more complex noncollinear phase. Our results

are related to the observed multiferroic phase of Al-doped CuFeO2.
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It is well known that the transition between different
magnetic ground states may be signaled by the softening of
a spin-wave (SW) mode [1]. In the simplest case of a
conventional square-lattice antiferromagnet, the softening
of a SW mode at wave vectors (�, 0) and (0, �) signals the
spin flop and canting of the magnetic moments at a critical
field. In the manganites [2], the SW instabilities of the
ferromagnetic state have been used to construct the phase
diagram for the antiferromagnetic (AFM) phases that ap-
pear with Sr doping. The softening of a SW excitation at
(�, 0) signals the instability of the Néel state and the
canting of the spins in a spin-1=2 union-jack lattice [3].
But the relation between the SW instabilities of a collinear
phase and a resulting noncollinear phase is less clear
when multiple SW instabilities occur simultaneously or
when the noncollinear phase has a complex magnetic
structure with several elastic peaks. This Letter explores
the relation between the SW instabilities of the collinear 4
and 8-sublattice (SL) phases of a geometrically frustrated
triangular-lattice antiferromagnet (TLA) and the non-
collinear phases that appear with decreasing anisotropy
D. We show that when multiple SW instabilities of the
collinear phase occur at once, the instability wave vector
with the largest intensity determines the dominant ordering
wave vector of the resulting noncollinear phase [4]. One of
the predicted noncollinear phases may be related to the
multiferroic phase that appears in CuFeO2 with Al dop-
ing [5].

Frustrated TLAs with AFM nearest-neighbor exchange
J1 < 0 exhibit a remarkable number of competing ground
states [6]. With interactions Ji up to third nearest neighbors
(denoted in Fig. 1) and assuming Ising spins along the z
direction, Takagi and Mekata [7] obtained a phase diagram
with ferromagnetic (FM), 2-SL, 3-SL, 4-SL, and 8-SL
phases. A portion of that phase diagram is sketched in
Fig. 1. For the geometrically frustrated TLA CuFeO2 in

fields below 7 T, the ground state is the 4-SL phase [8,9]
and the black dot in Fig. 1 denotes the estimated ratio of
exchange parameters J2=jJ1j � �0:44 and J3=jJ1j �
�0:57 [10,11].
As demonstrated by the small SW gap of about 0.9 meV

[5,10] on either side of the ordering wave vector q ¼ �x,
the spin fluctuations ofCuFeO2 are much softer than would
be expected for Ising spins. With Heisenberg spins, the
collinear magnetic phases of a TLA become locally un-
stable below a critical anisotropy Dc that depends on the
exchange parameters Ji. The observed softening of the SW
modes in CuFe1�xAlxO2 with Al doping [5] can be repro-
duced by lowering D towards Dc [12] in the 4-SL I region
of Fig. 1. For Al concentrations above about xc � 0:016,

FIG. 1 (color online). A portion of the TLA phase diagram for
large D and J1 < 0. The dashed (red) curve divides the 4-SL
phase into 4-SL I and 4-SL II regions. For the 4 and 8-SL phases,
light red circles denote up spins and dark blue circles denote
down spins; the solid (gray) line defines the unit cell. The dashed
(blue) line obeys the relation J3 ¼ 1:3J2, the black circle is the
estimated location of the exchange parameters for CuFeO2, and
the white circle lies on the boundary between the 4-SL I and
4-SL II regions.
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the magnetic ground state of CuFe1�xAlxO2 becomes non-
collinear and displays multiferroic properties [13–15].

We have determined the ground-state magnetic phases
of the TLA using a combination of Monte Carlo (MC)
simulations and phenomenological techniques. The TLA
Hamiltonian is

H ¼ � 1

2

X

i�j

JijSi � Sj �D
X

i

S2iz; (1)

where Jij includes first, second, and third-neighbor inter-

actions (shown in Fig. 1). The nearest-neighbor distance

has been set to 1. The SW frequencies !ðtÞ
k of the collinear

phases are obtained by performing a Holstein-Primakoff
1=S expansion about the classical limit. The SW intensities

WðtÞ
k are the prefactors in the spin-spin correlation function

Sðk; !Þ ¼ P
tW

ðtÞ
k �ð!�!ðtÞ

k Þ [16]. The intensities WðtÞ
k

correspond to the strength of the spin fluctuations associ-
ated with the wave vector k and SW branch t. Above the
critical anisotropy Dc, a collinear phase is locally stable if
the SW frequencies are positive and real for every
wave vector.

MC simulations were used to find the noncollinear
magnetic phases of the TLA. The simulations were started
at a temperature high enough to rule out metastable states.
To mimic the process of thermal annealing, the system was
slowly cooled to a final temperature (in units of jJ1jS2)
ranging from 4� 10�3 to 1� 10�4. Lowering the final
temperature further did not significantly change the result-
ing noncollinear phase. Using lattices of varying sizes with
periodic boundary conditions, we found that there was no
substantial change for lattices greater than 16� 16.

In Fig. 1, the 4-SL phase is separated into regions I and II
by the curve J1=J2 � 2 ¼ J2=J3. In region 4-SL II, the
instability wave vectors are given by k ¼ ð�� �=3Þx,
independent of the exchange parameters; in region
4-SL I, the instability wave vectors depend on the ex-
change parameters [4]. With the exchange parameters
corresponding to the black circle in region 4-SL I, we
determined the stable magnetic phases as a function of
D. As shown in Fig. 2, the 4-SL phase is stable down to
D=jJ1j � 0:27, below which MC simulations obtain the
complex noncollinear (CNC) phase shown on the top of
Fig. 2. While the CNC phase is translationally invariant in
the y direction, it retains some of the FM correlations
present in the 4-SL phase: the same up or down spin

frequently occurs at sitesR ¼ mxþ n
ffiffiffi
3

p
y andR0 ¼ Rþ

x=2þ ffiffiffi
3

p
y=2 or R00 ¼ R� x=2þ ffiffiffi

3
p

y=2. Although the
MC boundary conditions prevent a definitive determi-
nation, the CNC phase is probably incommensurate in
the x direction.

Below a second threshold value of D=jJ1j � 0:08, a
cycloid like the one sketched in the bottom panel of
Fig. 2 [17] has a lower energy than the CNC phase. As
discussed below, the wave vector of the cycloid is inde-

pendent of D. If the CNC phase were removed, then the
cycloid would achieve a lower energy than the 4-SL phase
below D=jJ1j � 0:2, still above the critical value
Dc=jJ1j � 0:15 for the local stability of the 4-SL phase.
The cycloid energy in Fig. 2 was obtained numerically with
the cycloid restricted by finite boundary conditions.
To gain a better understanding of the phases stabilized

within the TLA, we have evaluated the magnetic phases
along the line with J3=J2 ¼ 1:3 drawn through the black

FIG. 2 (color online). Energy as a function of D=jJ1j for the
4-SL (black dashed), CNC (blue diamonds), and cycloid I (red
circles) phases with J3=J2 ¼ 1:3 and J1=J2 ¼ 2:28. The bottom
diagram shows the cycloid for arbitrary q. The top diagram
shows the CNC phase, where local moments range from red
(purely up, þz) to blue (purely down, �z) and arrows indicate
moment direction.

FIG. 3 (color online). Phase diagram for the TLA as a function
of jJ1j=D and jJ2j=D with J3 ¼ 1:3J2 containing five regions:
4-SL (dark blue), 8-SL (light green), CNC (light violet),
cycloid I (variable green-orange), and cycloid II (solid red).
The dashed (white) line separates regions 4-SL I and 4-SL II.
The dotted (black) curves denote the metastable boundaries for
the 4-SL and 8-SL regions. Cycloid I has wave vectors q that
range from 0:684� to 0:923� in intervals of 0:016�.
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dot in Fig. 1. Five stable phases are presented as a function
of jJ1j=D and jJ2j=D in Fig. 3. The 4-SL phase is stable
along a strip through the diagonal of this plot. Although not
indicated by this figure, the 4-SL region disappears above
jJ1j=D � 40. Close to the origin or for large D, a collinear
8-SL region is indicated in Fig. 1. Two cycloids are also
obtained: in the upper left, cycloid II with wave vector
4�x=3; in the lower right, cycloid I with the variable
wave vector indicated in the figure [17]. Finally, a CNC
phase appears just below the 4-SL phase and disappears
above jJ1j=D � 20. Regions of local stability for the col-
linear phases are indicated in Fig. 3 by the dashed black
curves [4]. The results in Fig. 2 can be obtained from Fig. 3
by drawing a line from the origin with slope 2.28 (dashed
red or gray) (so that J2=jJ1j ¼ �0:44), which passes from
the 4-SL phase through the CNC phase into cycloid I.

The classical energies of each of these phases can be
written as E=NS2 ¼ A1J1 þ A2J2 þ A3J3 � ADD, with
coefficients given in Table I. Only a noncollinear phase
with 0:5<AD < 1 can intercede between a collinear phase
with AD ¼ 1 and a cycloid with AD ¼ 0:5. For the CNC
phase with AD � 0:71, the error bars indicate the range of
parameters obtained from MC simulations near jJ1j=D ¼
5:7 and jJ2j=D ¼ 2:5. Using the resulting MC spin con-
figurations, the CNC energy is close to a linear function of
the exchange interactions and anisotropy, allowing us to
obtain the phase space in Fig. 3. Table I indicates that the
CNC phase is characterized by rather weak next-neighbor
correlations with small jA2j.

The stability of cycloids I and II in Fig. 3 have been
confirmed using MC simulations. The ordering
wave vector q ¼ qx of cycloid I is evaluated by minimiz-
ing E with respect to q, where q depends only on the ratios
J2=J1 and J3=J2, as indicated by the diagonal lines in
Fig. 3. Cycloid II with q ¼ 4�=3 corresponds to the
120� Néel state found in a classical TLA with D ¼ 0 and
J3 ¼ 0 [18]. Although slightly distorted, the Néel state
remains stable for nonzero D over the range of exchange
parameters in Fig. 3.

With decreasing D or moving away from the origin of
Fig. 3 along a diagonal, the 4-SL phase becomes unstable
either to cycloid II or to the CNC phase. The white line
bisecting the 4-SL region in Fig. 3 corresponds to the white
point in Fig. 1 at the border between the 4-SL I and 4-SL II
regions with J2=jJ1j ¼ �0:36. In region 4-SL II or above
the white diagonal line, the 4-SL phase has instabilities at

the wave vectors ð�� �=3Þx. The SW intensity at the
larger of these two wave vectors always dominates and
the 4-SL phase evolves into cycloid II with wave vector
4�x=3.
In region 4-SL I, the 4-SL phase has three unique SW

instabilities: one at wave vector k1 along the x axis,
another at k2 rotated by �=3, and a third at k3 rotated by
��=3. All three have the same magnitude with �=2<
ki < �. Other SW instabilities in the 4-SL I region can be
related by a symmetry operation to one of these three. We
find that the instability at k1 always has a larger intensity
than the ‘‘twins’’ at k2 or k3 or than any of the other
wave vectors related by symmetry. Correspondingly,
cycloid I along any diagonal in Fig. 3 has the same
wave vector q as the dominant instability of the 4-SL
phase.
Similar conclusions are reached for the 8-SL phase,

which switches to cyloid I along any diagonal in Fig. 3.
Although the SW instability of the 8-SL phase occurs
simultaneously at several wave vectors, the dominant
wave-vector instability of the 8-SL phase coincides with
the wave vector q of cycloid I along any diagonal in Fig. 3.
However, the CNC phase that intercedes between the

4-SL and cycloid I phases is characterized by several
elastic peaks shown in Fig. 4(c). Within the precision of
our MC simulations, the dominant wave vector k �
0:87�x of the CNC phase coincides with the dominant
instability wave vector of the 4-SL phase that preceeds it.
To demonstrate how the magnetic ground state evolves

from cycloid II into the 4-SL phase and then into cycloid I,
we plot in Figs. 4(a) and 4(b) the SW frequencies and
intensities versus wave vector for the 4-SL phase with
J1=D ¼ �5:5, J3=J2 ¼ 1:3, and jJ2j=D varying from
1.30 to 2.67. As jJ2j=D approaches the lower limit for
the stability of the 4-SL phase, the SW intensity dominates
at the cycloid II wave vector q ¼ 4�x=3. At the upper
limit, the cylcoid I wave vector q � 0:83�x dominates.
We concluded that the wave vectors of the SW instabilities
for the collinear phases correspond to the ordering
wave vectors of the noncollinear phases.
The CNC phase may be related to the multiferroic phase

observed in Al-doped CuFeO2 [5], which was recently
investigated by Nakajima et al. [19]. Based on neutron-
scattering measurements, those authors concluded that the
ground state is a modified cycloid with the same spin on
sites R and R0 (see above). This phase has peaks at

TABLE I. Energy coefficients for collinear, cycloid, and CNC phases.

Phase A1 A2 A3 AD

4-SL 1 �1 1 1

8-SL 0 1 1 1

Cycloid I �ð cosðqÞ þ 2 cosðq=2ÞÞ �ð1þ 2 cosð3q=2ÞÞ �ð cosð2qÞ þ 2 cosðqÞÞ 1=2
Cycloid II 3=2 �3 3=2 1=2
CNC 0:595� 0:001 �0:097� 0:001 1:159� 0:001 0:712� 0:001
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wave vectors on either side of �x, in agreement with the
neutron measurements. However, a modified cycloid can-
not be stabilized by a Hamiltonian with the form of Eq. (1),
regardless of the exchange and anisotropy parameters.
With an additional phase slip � for the spins at sites R0,
a pure cycloid with � ¼ 0 and a single elastic peak always
has lower energy than the phase proposed in Ref. [19] with
� ¼ �q=2. This conclusion has been verified by MC
simulations.

Like the noncollinear phase proposed earlier [19], the
CNC phase also contains FM correlations between sites R
and R0 or R00. So the CNC phase also has elastic peaks on
either side of �x at kx � 0:87� and 1:13�, as shown in
Fig. 4(c). Because the FM correlations are not perfect and
vary along the x direction, the CNC phase contains several
other elastic peaks that may allow it to be experimentally
distinguished from the phase proposed in Ref. [19].

To summarize, we demonstrate for the first time that the
dominant ordering wave vector of a noncollinear phase
corresponds to the dominant instability wave vector of

the preceding collinear phase. Thus, complex noncollinear
phases can be more easily characterized by studying the
SW instabilities of collinear phases with stronger anisot-
ropy. While the connection between the SW instabilities
and the dominant wave vector of the noncollinear phases
was demonstrated numerically for a frustrated TLA, we
hope to establish that connection more generally in future
work. We also argue that the CNC phase sketched in Fig. 2
is a more reasonable candidate for the multiferroic phase
observed in Al-doped CuFeO2 than the one previously
proposed.
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FIG. 4 (color online). (a),(b) SW frequency and intensity ver-
sus wave vector kx for the 4-SL phase with jJ1j=D ¼ 5:5, J3 ¼
1:3J2, where jJ2j=D varies from 1.30 to 2.67. (c) Fourier trans-
form for the Sx, Sy, and Sz components of the CNC phase with

the same exchange parameters as above and jJ2j=D ¼ 2:5.
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