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The magnetic susceptibility and Edwards-Anderson order parameter q of the spin-glass-like (SGL)
phase of the double-exchange model are evaluated in the weak-coupling or RKKY limit. Dynamical
mean-field theory is used to show that q � M�T=TSGL�

2, where M is the classical Brillouin function and
TSGL is the SGL transition temperature. The correlation length of the SGL phase is determined by a
correlation parameter Q that maximizes TSGL and minimizes the free energy. The magnetic susceptibility
has a cusp at TSGL and reaches a nonzero value as T ! 0.
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Models that exhibit spin-glass-like (SGL) behavior for
classical spins in the absence of quenched disorder have
attracted a great deal of theoretical attention [1] since the
experimental discovery of spin ice [2] in rare-earth pyro-
chlores. In geometrically frustrated magnets [3] like spin
ice, ferromagnetic (FM) interactions are frustrated by con-
straints on the spin directions. Because these systems are
not amenable to analytic calculations, they are typically
studied using Monte Carlo techniques [4]. In this Letter, we
examine the SGL phase of a very different model that, like
spin ice, contains no quenched disorder. Analytic results
are now obtained for the SGL phase of a model with
classical spins but without geometric frustration.

One of the most important models of itinerant systems,
the double-exchange (DE) model is believed to describe
many physical systems ranging from the manganites [5] to
dilute magnetic semiconductors [6]. In the weak-coupling
limit, the DE model becomes equivalent [7] to a RKKY
model with competing antiferromagnetic (AF) and FM
Heisenberg interactions between classical spins at every
site. In a typical spin glass, such as CuMn [8], the RKKY
interactions between randomly alloyed Mn ions produce a
disordered ground state with a massive degeneracy. Recent
work [9] on the DE model has revealed that the competing
RKKY interactions between magnetic moments on a Bethe
lattice can stabilize a phase with short-range but not long-
range magnetic order [10]. We now show that the magnetic
susceptibility of this SGL phase has a cusp at TSGL, mark-
ing the onset of short-range order, and reaches a nonzero
value as T ! 0. The Edwards-Anderson (EA) order pa-
rameter q [12,13] of the SGL phase is identical to the
square of the classical Brillouin function M�T=TSGL�.

The DE model contains a kinetic term that describes the
hopping of electrons between neighboring sites and a
potential term that aligns the electronic spins with the
classical local moments at every site. There is no quenched
disorder in the DE Hamiltonian (also called the FM Kondo
Hamiltonian when the coupling is finite)

 H � �t
X
hi;ji

�cyi�cj� � c
y
j�ci�� � 2JH

X
i

si � Si; (1)

where cyi� and ci� are the creation and destruction opera-
tors for an electron with spin � at location Ri, si �
cyi����ci�=2 is the electronic spin, and Si � Smi is the
classical spin of the local moment. Repeated spin indices
are summed. When JH > 0, Hund’s coupling favors the
alignment of the local moments with the electronic spins.
Because of the electron-hole symmetry of the DE model,
we shall only consider electron concentrations p between 0
and 1 carriers per site. For small p, the hopping of electrons
between neighboring sites favors the alignment of the local
moments and the FM phase is stable. Since electrons with
parallel spins cannot hop between singly occupied sites
due to the Pauli exclusion principle, the AF phase is
favored over the FM phase near p � 1. But as shown in
Ref. [9] using dynamical mean-field theory (DMFT), the
competing FM and AF interactions may actually favor a
SGL phase over the ordered phases for small JH.

Developed in the late 1980’s by Müller-Hartmann [14]
and Metzner and Vollhardt [15], DMFT exploits the mo-
mentum independence of the electronic self-energy in
infinite dimensions. Even in three dimensions, DMFT is
believed to capture the physics of correlated systems in-
cluding the narrowing of electronic bands and the Mott-
Hubbard transition [16]. Within DMFT, the local effective
action on any site is parameterized by a Green’s function
that regulates the hopping of correlated electrons from
other sites. We will use DMFT to study the DE model on
a Bethe lattice in infinite dimensions. The bare density-of-
states of a Bethe lattice with z� 1 nearest neighbors is

N0��� � �4=�W�
����������������������������
1� �2�=W�2

p
, where W � 4

���
z
p
t is the

bandwidth and� is the chemical potential. Since the Bethe
lattice is not translationally invariant, q � 0 is the only
well-defined wave vector [9].

In infinite dimensions, the high-temperature nonmag-
netic (NM) phases of the Heisenberg and DE models
have a vanishing correlation length �. The SGL phase is
a bulk solution of the DE model with some of the same
characteristics as conventional spin glasses: a finite local
magnetization and spin-spin correlations that decay expo-
nentially over distance [8]. The SGL phase is characterized
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by a correlation parameter Q, defined as the average over
all neighbors of sin2��i=2�, where �i is the angle between
the central spin and a neighboring spin. Overall, the neigh-
boring spins describe a cone with angle 2 arcsin�

����
Q
p
�

around the central spin. The FM and AF phases have,
respectively, Q � 0 and 1. The magnetization about
every site decays exponentially with a correlation length
� � �a= logj2Q� 1j, where a is the lattice constant.
Notice that �=a diverges in the FM and AF phases but
vanishes in the NM state obtained by setting Q � 1=2.
Mathematically, the SGL phase was first introduced by
Chattopadhyay et al. [17], although its physical signifi-
cance was not recognized until later. In lower dimensions,
the SGL phase evolves into the phase with incommensurate
correlations obtained in Monte Carlo simulations [18].
Detailed discussions of the T � 0 phase diagram and
magnetic instabilities of the DE model, including the issue
of phase separation, are contained in Ref. [9].

As shown earlier [9], the transition temperature
TSGL�p;Q� of the SGL phase may be evaluated from
coupled Green’s function equations. In the weak-coupling
limit JHS� W and T 	 �JHS�2=W, TSGL�p;Q� is implic-
itly given by the expression TSGL�p;Q� � Jeff�p;Q�=3
where
 

Jeff�p;Q� � �2�JHS�
2�2Q� 1�T



X
n

Rn
�zn � Rn�

2�zn � 2�1�Q�Rn�
; (2)

with Rn � ��zn �
�����������������������
z2
n �W2=4

p
�=2, zn � i�n ��, and

�n � �2n� 1��T. Since T � W, the sum T
P
nF��n� is

equivalent to the integral �1=2��
R
dvF�v� and Jeff�p;Q�

is independent of temperature. The relation TSGL�p;Q� �
Jeff�p;Q�=3 correctly reduces to the FM (Q � 0) result
first derived in Refs. [19,20]. Another derivation of
TSGL�p;Q� was recently provided in Ref. [21]. Of course,
TSGL�p;Q� vanishes in the NM state with Q � 1=2.

After TSGL�p;Q� is maximized with respect to Q,
TSGL�p� exceeds the Curie and Néel temperatures in the
concentration range 0:26<p< 1. The correlation pa-
rameter Q changes discontinuously at TSGL�p� from 1=2
in the NM phase above to a value less than or greater than
1=2 in the SGL phase below. The ground state is NM with
Q � 1=2 for a single concentration close to p � 0:5.

The temperature dependence of the local SGL order
parameter M � jhmiij on site i may be evaluated in a lo-
cal environment fixed by the correlation parameter Q by
integrating the local action over the Fermion variables.
The probability for mi to point at an angle cos� with
respect to the local quantization axis is proportional to
exp�MJeff� cos�� � exp��3M cos��=	�, where 	 �
T=TSGL. Consequently, M has the solution

 M�	� � coth
�
3M
	

�
�

	
3M

; (3)

which is just the Brillouin function in the S! 1 or

classical limit [11], plotted in Fig. 1. The result for the
FM order parameter (taking Q � 0 and TSGL � TC) is not
surprising considering the weak-coupling equivalence be-
tween the DE model and a Heisenberg model with RKKY
interactions between classical spins. What is surprising is
that with a simple change in critical temperature, the short-
range order parameter of the SGL phase is identical to the
long-range order parameter of the FM phase. For small 	,
M�	� � 1� 	=3� 	2=9� #�	3�.

To zeroth order in JHS=W, p is given in terms of � by
p�1=2��1=��f


�������������
1�
2
p

�sin�1
g, where 
 � 2�=W.
Carefully accounting for the dependence of the chemical
potential ��p� on JHS=W for a fixed p, we have general-
ized the T � 0 relation derived in Ref. [9] for the energy
difference �E�p;Q� between the SGL and NM phases:
�E�p;Q�=N � ��3=2�M�	�2TSGL�p;Q�, where both
sides are evaluated analytically to order �JHS�2=W. This
relation is precisely the same as the MF result for the FM
phase of a classical Heisenberg model. By integrating the
specific heat to obtain the entropy, we have formally con-
structed the free energy difference �F�p;Q� [22] between
the SGL and NM phases. Because �1=N�@�F=@Q �
��3=2�M�	�2@TSGL=@Q, the free energy is minimized by
the same correlation parameter Q that maximizes the
transition temperature.

We now evaluate the magnetic susceptibility of the FM
and SGL phases in the weak-coupling limit by utilizing the
formalism developed by Fishman and Jarrell [23]. Treating
the electronic susceptibility as a 2n�-dimensional matrix,
the local-moment susceptibility as a scalar, and the cross
terms as 2n�-dimensional vectors in Matsubara space,
��q � 0; i!m� can be written as a �2n� � 1� 
 �2n� � 1�

supermatrix. The total susceptibility ��q � 0; i!m� is ob-
tained by taking n� ! 1 and summing ��q � 0; i!m�

FIG. 1. The Brillouin function M�	� and EA order parameters
q�	� versus 	 � T=TSGL.
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over all matrix elements for a fixed external frequency
!m � 2m�T. As discussed in Ref. [23], ��q � 0; i!m�

satisfies the Bethe-Salpeter equation
 

��q � 0; i!m� � ��0��q � 0; i!m� � ��0��q � 0; i!m�


 ��i!m���q � 0; i!m�; (4)

where ��i!m� is the vertex function and ��0��q � 0; i!m�

is the bare susceptibility. Within DMFT, momentum con-
servation at the internal vertices of irreducible graphs is
disregarded so that internal Green’s functions are replaced
by their local values. Consequently, ��i!m� is independent
of momenta and may be evaluated from an identical Bethe-
Salpeter equation where ��q � 0; i!m� and ��0��q �
0; i!m� are replaced by local susceptibilities at a site i.
Because the total spin

P
i�Si � si� is conserved, the q � 0

susceptibility ��q � 0; i!m� is proportional to 
m;0. So we
shall henceforth take !m � 0 to evaluate the elastic sus-
ceptibility ��q � 0�.

The magnetic field is taken to lie along the magnetiza-
tion direction in the FM phase but is averaged over all
orientations in the SGL phase, which has no net magneti-
zation. For example, the bare local-moment susceptibility
on site i is given by �S2fhm2

i�i � hmi�i
2g ) �S2�1�

q�=3, where q � M2 in the SGL phase and q � 3M2 �
2�1� T=TC�> 0 (T < TC) or 0 (T > TC) in the FM phase.
Following the derivation in Ref. [23], we find that the total,
elastic susceptibility is given by

 ��q � 0� �
S2

eff

3

1� q
T � TC�1� q�

�
N0���

2
; (5)

where Seff � S� JHSN0���. Since N0��� / 1=W, the
electronic contribution JHSN0��� is much less than the
local-moment contribution S to Seff in the weak-coupling
limit [24]. The electronic contribution enlarges or dimin-
ishes Seff depending on the sign of JH. The final term in
Eq. (5), N0���=2, is just the electronic Pauli susceptibility.
Since it does not depend on JH and exhibits only weak
temperature dependence, we shall neglect the Pauli sus-
ceptibility in the subsequent discussion. For a FM, the
Curie-Wess susceptibility of Eq. (5) with Seff � S is pre-
cisely the same as the MF result for a classical Heisenberg
model [11]. Bare in mind that the broad analogies between
the (D)MF theories of the DE and classical Heisenberg
models only exist in the weak-coupling limit and disappear
once JHS becomes of orderW. In the strong-coupling limit
JHS� W, the magnetic susceptibility is more complex
than Eq. (5) with a Curie constant that deviates from S2=3
in the large S limit [23].

Using the low-temperature behavior of M�	�, we find
that qFM ! 1� 	2=3 and ��q � 0� ! �S2

eff=9�T=T2
C as

T ! 0 in the FM phase. By contrast, qSGL ! 1� 2	=3
and ��q � 0� ! �S2

eff=3�=�3TSGL=2� TC� as T ! 0 in the
SGL phase. Because the SGL phase has no long-range
order and the local moments have no preferred orientation

for any Q between 0 and 1, the zero-temperature suscep-
tibility does not vanish as p! 0:26 and TSGL ! TC. The
magnetic susceptibility in the SGL phase is plotted versus
	 for several different concentrations in Fig. 2. As ex-
pected, the SGL susceptibility has a cusp at TSGL, which
develops into a divergence as p! 0:26 andQ! 0. Notice
that the normalized susceptibility TSGL��q � 0�=S2

eff van-
ishes asQ! 1=2 and TSGL ! 0 in the vicinity of p � 0:5.

Comparing Eq. (5) with the parameterization of
Sherrington and Kirkpatrick (SK) [13], we conclude that
q is the EA order parameter [12]. We have plotted qSGL and
qFM versus 	 in Fig. 1. Our result qSGL � hmii

2 should be
compared with the SK expression q � hhSii2iJ, where the
inner expectation value is a thermal average for a given set
of exchange couplings and the outer is an ensemble aver-
age over the distribution of exchange couplings. For the
DE model, the EA order parameter is the same at every site
even without an average over quenched disorder. The
DMFT result for the DE model differs from the SK result
for the random S � 1=2 Ising model in at least one im-
portant respect: the SK prediction for

���
q
p

is not identical to
the S � 1=2 Brillouin function whereas

����������
qSGL
p

is equiva-
lent to the S � 1 Brillouin function. Our result for qSGL is
qualitatively similar to the EA order parameter of spin ice,
evaluated with Monte Carlo simulations [4].

To summarize, we have calculated the total, magnetic
susceptibility and EA order parameters of the SGL phase in
the weak-coupling or RKKY limit. We find that the SGL
susceptibility has a cusp at TSGL and reaches a nonzero
constant as T ! 0, as expected for a phase with only short-
range magnetic order. The SGL phase is characterized by
the absence of long-range order in hmii but by the nonzero
value of hmii

2. These were the original SK criteria [13] for
the existence of a spin glass. Unlike the spin glass ground
state of the random Ising model or the SGL ground state of
spin ice, the SGL phase of the DE model can be studied
analytically in the absence of quenched disorder and with-
out geometric frustration.

FIG. 2. The elastic, q � 0 susceptibility versus T=TSGL for
several electron concentrations p.
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