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Theory of orbital state and spin interactions in ferromagnetic titanates
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A spin-orbital superexchange Hamiltonian in a Mott insulator witht2g orbital degeneracy is investigated.
More specifically, we focus on a spin ferromagnetic state of the model and study a collective behavior of
orbital angular momentum. Orbital order in the model occurs in a nontrivial way—it is stabilized exclusively
by quantum effects through the order-from-disorder mechanism. Several energetically equivalent orbital order-
ings are identified. Some of them are specified by a quadrupole ordering and have no unquenched angular
momentum at low energy. Other states correspond to a noncollinear ordering of the orbital angular momentum
and show the magnetic Bragg peaks at specific positions. Order parameters are unusually small because of
strong quantum fluctuations. Orbital contribution to the resonant x-ray scattering is discussed. The dynamical
magnetic structure factor in different ordered states is calculated. Predictions made should help to observe
elementary excitations of orbitals and also to identify the type of the orbital order in ferromagnetic titanates.
Including further a relativistic spin-orbital coupling, we derive an effective low-energy spin Hamiltonian and
calculate a spin-wave spectrum, which is in good agreement with recent experimental observations in YTiO3.
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I. INTRODUCTION

Many transition-metal oxides fall into the category
Mott insulators,1 in which the large degeneracy of atom
states remain unquenched down to low energies. Of part
lar importance here is the role being played by orbital deg
eracy inherent to perovskite lattices. An additional deg
eracy of low-energy states and the extreme sensitivity of
chemical bonds to the spatial orientation of orbitals lead
frustrating interactions and a variety of competing pha
that are tunable by moderate external fields.2

As ‘‘orbital physics’’ has started to become an essen
ingredient of the physics of transition-metal oxides, mo
efforts are necessary to develop quantum many-body th
of coupled spin-orbital systems in order to understand s
cific features of the orderings and fluctuations in these m
els. Earlier work has emphasized a ‘‘classical part’’ of t
problem, focusing mainly on the strong interplay betwe
classical spin and orbital configurations. It is implicitly a
sumed that at low temperature orbitals are frozen in a cer
static pattern that optimizes both superexchange~SE! and
orbital-lattice~JT! couplings. Such a classical approach h
been used with a great success as a theoretical guide in
ies of magnetism of transition-metal oxides.

Recent experimental developments indicate, however,
limitations of this standard picture. It has been argued t
quantum fluctuations of orbitals might sometimes be of c
cial importance, hence quantum version of the orbital ph
ics is needed. New concepts, such as three-dimensiona
bital liquid in LaTiO3 ~Refs. 3 and 4! and one-dimensiona
orbital chains showing Heisenberg-like orbital dynamics
cubic vanadates~Ref. 5!, have been proposed. It is not acc
dental that these ideas emerge from a study of titanates
vanadates havingt2g

1 and t2g
2 electronic configurations, re

spectively. This is because of~i! large, threefold degenerac
0163-1829/2003/68~20!/205109~24!/$20.00 68 2051
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and~ii ! a special rotational symmetry oft2g orbitals. Another
crucial point is that~iii ! the JT coupling is relatively weak
for t2g systems. Indeed, JT-like elongation of octahedra
titanates and vanadates is much smaller compared with t
cal JT distortions in manganites witheg orbitals. One may
therefore think thatt2g orbital states are much less affecte
by electron-lattice coupling, and an intrinsic dynamics
coupled spin-orbital system governed by electronic supe
change interaction becomes the decisive factor in a
place. Effects of lattice distortions~which are always
present! can then be accounted for in a next step. This po
has actually been emphasized long ago by Kugel
Khomskii6 indicating also very peculiar specific features
t2g spin-orbital models.7

The aim of this paper is twofold. First, we study the o
bital state and orbital quantum dynamics in the ferrom
netic state of superexchange model witht2g orbital degen-
eracy in a cubic lattice. Second, we discuss the result
context of the magnetic properties of YTiO3, a rare example
of a ferromagnetic Mott insulator.8,9 Recent spin-wave data
show that the ferromagnetic~F! state of this material is
highly isotropic having the same exchange couplings in
cubic directions.10 This is in sharp contrast with expectation
from the conventional orbital ordering picture resulting co
monly in a strong spatial anisotropy of the spin-exchan
bonds.11,12 This observation already indicates a rather u
usual orbital state in YTiO3. We would like also to under-
stand a mechanism which stabilizes such a isotropic F s
in YTiO3, having in mind that its sister compound LaTiO3
shows a completely different, antiferromagnetic~AF! state.
Curiously enough, spin-exchange couplings in LaTiO3 are
also of cubic symmetry and spin gap is also small,3 and these
observations were understood in terms of fluctuat
orbitals.4,13

We argue that AF and F states int2g SE model are actu-
©2003 The American Physical Society09-1
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ally very close in energy and strongly compete. This is
cause in both states there are large-scale orbital fluctua
gaining almost the same amount of the superexchange
ergy. Yet the AF state is slightly lower because of an ad
tional, composite spin-orbital fluctuation. However, an ext
nal parameter, namely, a larger distortion of Ti-O-Ti bon
due to a small size of Y ion in the case of YTiO3 induces an
additional ferromagnetic coupling in all three directions, a
stabilizes the spin F state. This distortion induces also a
for orbital excitations. The orbital order pattern is very sp
cific, and it supports exactly the same ferrocouplings in
three directions. We derive an effective spin Hamiltoni
which includes effects of the relativistic spin-orbital couplin
as well, and show that this Hamiltonian leads to spin-wa
dispersion and spin gap consistent with experimental ob
vations. Some of these results were presented in Ref. 14

The following part of this paper is structured as follow
Section II presents superexchange Hamiltonian int2g

1 Mott
insulator; Sec. III presents orbital ordering and fluctuatio
in the F state; Sec. IV presents stabilization of the F state
Ti-O-Ti bond distortion; Sec. V presents orbital gap induc
by Ti-O-Ti bond distortion; effective spin Hamiltonian an
magnons are given in Sec. VI; Sec. VII lists predictions
resonant x-ray scattering; Sec. VIII gives orbital angular m
mentum contribution to the neutron scattering cross sect
and Sec. IX contains summary and discussion. The App
dixes A–C contain some lengthy equations; Appendix
shows magnon softening by orbital fluctuations; Appendix
shows spin interactions in a previously reported orbital s
for YTiO3.

II. HAMILTONIAN

A. Superexchange interaction int2g orbital system

We start with a discussion of the model Hamiltonian.
Mott insulators, the competition between kinetic and pot
tial energies is resolved in favor of strong correlations t
lead to a localized electron picture. Charge localization
however not perfect: electrons still make virtual excursio
to neighboring sites in order to retain their kinetic energy
least partially. In terminology of Mott-Hubbard insulators1

the zero-point charge motion is described as a high-ene
virtual transition across the Mott gap. Kinetic energy asso
ated with these transitions leads to superexchange inte
tions, which in orbitally degenerate systems strongly
pends on the orbital structure. In general, it can be written

HSE
i j 5~SW i•SW j1

1
4 !Ĵi j

(g)1 1
2 K̂ i j

(g) , ~1!

where the orbital operatorsĴi j
(g) and K̂ i j

(g) depend on bond
directionsg(5a,b,c). In a t2g system like the titanates the
are given by the following expressions:13

Ĵi j
(g)5JSE@

1
2 ~r 11r 2!Ai j

(g)2 1
3 ~r 22r 3!Bi j

(g)

2 1
4 ~r 12r 2!~ni1nj !

(g)#, ~2!
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K̂ i j
(g)5JSE@

1
2 ~r 12r 2!Ai j

(g)1 1
3 ~r 22r 3!Bi j

(g)

2 1
4 ~r 11r 2!~ni1nj !

(g)#, ~3!

where JSE54t2/U. The coefficients r 151/(123h), r 2
51/(12h), and r 351/(112h) originate from the Hund’s
splitting of the excitedt2g

2 multiplet via h5JH /U. Refer-
ence 15 givesJH;0.64 eV and the multiplet averaged Co
lomb interaction (5U2 20

9 JH) ;4 eV, from which repre-
sentative valuesU;5.4 eV andh;0.12 follow.

The operatorsAi j
(g) , Bi j

(g) , and ni
(g) can conveniently be

represented in terms of constrained particles~orbitons! ai ,
bi , ci with nia1nib1nic51 corresponding tot2g levels of
yz, xz, xy symmetry, respectively.~This notation is moti-
vated by the fact that eacht2g orbital is orthogonal to one o
the cubic axesa, b, c.! Namely,

Ai j
(c)5nianja1nibnjb1ai

†bibj
†aj1bi

†aiaj
†bj , ~4!

Bi j
(c)5nianja1nibnjb1ai

†biaj
†bj1bi

†aibj
†aj , ~5!

ni
(c)5nia1nib ~6!

for the pair along thec axis. Similar expressions are obtaine
for the exchange bonds along the axesa andb, by replacing
orbitons (a,b) in Eqs. ~4!–~6! by (b,c) and (c,a) pairs,
respectively.16 Another useful representation of orbital e
change operators is via the angular momentum operator
t2g level,7 using the following relations:

l x5 i ~c†b2b†c!,l y5 i ~a†c2c†a!,l z5 i ~b†a2a†b!.
~7!

In terms of these angular momentum operators,Ai j
(g) , Bi j

(g) ,
andni

(g) are represented as

Ai j
(c)5@~12 l x

2! i~12 l x
2! j1~ l xl y! i~ l yl x! j #1@x↔y#, ~8!

Bi j
(c)5@~12 l x

2! i~12 l x
2! j1~ l xl y! i~ l xl y! j #1@x↔y#, ~9!

ni
(c)5 l iz

2 . ~10!

Expressions of these operators fora and b bonds are given
by replacing two component of the angular momentu
( l x ,l y) in Eqs. ~8!–~10! with ( l y ,l z) and (l z ,l x), respec-
tively. Angular and quadrupole momentum representation
the t2g superexchange has recently been used also in Ref
In addition to Eqs.~4!–~5! and ~8!–~9!, it is also useful to
representAi j

(g) and Bi j
(g) in terms of auxiliary orbital pseu-

dospins:

Ai j
(g)52S tW i•tW j1

ninj

4 D (g)

, ~11!

Bi j
(g)52S tW i ^ tW j1

ninj

4 D (g)

. ~12!

HeretW i
(g) is a pseudospin one-half operating on the subsp

of orbital doublet (a,b)(g) active on a giveng bond.
Namely, pseudospintW i

(c) operates on the subspace spann
9-2
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THEORY OF ORBITAL STATE AND SPIN . . . PHYSICAL REVIEW B68, 205109 ~2003!
by (a,b) pair of orbitons, whiletW i
(a) and tW i

(b) act on (b,c)
and (c,a) doublets, respectively. A symbol̂ denotes a
producttW i ^ tW j5t i

zt j
z1(t i

1t j
11t i

2t j
2)/2.

B. Ferromagnetic state

The ferromagnetic state of a Mott insulator is usua
thought due to a particular orbital ordering that optimizes
intraatomic Hund’s exchange of electrons in doubly occup
virtual states. This is not the whole story, however. Negl
for a moment the Hund’s coupling terms in Eqs.~2! and ~3!
~considerh→0 limit!. The Hamiltonian obtains then the fo
lowing structure:

H05JSE(̂
i j &

2S SW i•SW j1
1

4D S tW i•tW j1
1

4
ninj D (g)

. ~13!

~The unessential energy shift,2JSE, is not shown here!.
Regarding a single bond, one notices that spin coupling m
be of either sign, depending on the intersite orbital corre
tions. Singlet correlations of orbital pseudospins tend to a
spins ferromagnetically, hence cooperating with Hund’s r
effects. In systems with large, classical spins~e.g.vanadates!,
such a quantum orbital singlet controls the ground state5,18

In quantum spin one-half case of titanates, however,~spin
triplet!3~orbital singlet! and ~spin singlet!3~orbital triplet!
configurations are degenerate and compete. In a lattice, q
tum resonances between these configurations are poss4

In general,t2g superexchange Hamiltonian~1! represents a
highly frustrated many-body problem. We will return to th
interplay between antiferromagnetic and ferromagnetic st
later on, while focusing now on the ferromagnetic state re
ized in YTiO3.

In the spin saturated state, Eqs.~1!–~3! are simplified to

Horb52r 1JSE1
1

2
r 1JSE(̂

i j &
Ai j

(g) , ~14!

whereAi j
(g) is given by either of Eqs.~4!, ~8!, and ~11!. We

consider the orbital order and dynamics in this Hamiltoni
The effects of the dynamical coupling between spin exc
tions and orbitals that is present in Eq.~1! will also be dis-
cussed in the context of magnon spectra.

III. ORBITAL ORDERING AND EXCITATIONS

A. Discussion of possible orderings

Even though spin as well as composite spin/orbital
namics is ‘‘switched off’’ in Hamiltonian~14!, it still con-
tains nontrivial physics.

It is useful to look at the structure ofHorb from different
points of view

~i! On a given bond, the operatorAi j
(g) acts within a par-

ticular doublet of equivalent orbitals. Spinlike physics, th
is, the formation of orbital singlets is therefore possible.

~ii ! On the other hand, interactions on different bonds
competing: they involve different doublets, thus frustrati
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each other. This brings about a Potts-model-like frustrati
from which the high degeneracy of classical orbital config
rations follows.

~iii ! Finally, we observe inAi j
(g) a pseudospinl 51 inter-

action of pure biquadratic form@see Eq.~8!#. Would lW be a
classical vector, it could change its sign at any site indep
dently. Such a local~so-calledZ2) symmetry and the assoc
ated degeneracy of the classical states tell us that ang
momentum ordering, if any, must be of pure quantum orig

The above points~i!–~iii ! govern the underlying physic
of the orbital Hamiltonian. We need to find such classic
states that provide best zero point energy when we switch
the quantum fluctuations. In other words, certain class
orbital patterns will be selected and stabilized by quant
effects via the order-from-disorder mechanism.19 Normally,
these orderings are expected to be along symmetric orie
tions of the crystal depending on symmetry of the underly
interactions.

By inspection of the global structure ofAi j
(g) @Eq. ~8!#, one

observes that the noncross terms, such as (12 l x
2) i(12 l x

2) j ,
are definitely positive. However, the cross term
( l xl y) i( l yl x) j and (l yl x) i( l xl y) j @which change the ‘‘color’’ of
orbitals, see Eq.~4!#, can be made negative onall the bonds
simultaneously, if ~i! on every bond, two particular compo
nents of lW i and lW j are antiparallel, and~ii ! remaining third
components are parallel. Forc bonds the rule reads as:l izl jz
andl ixl jx are both negative, whilel y components are paralle
~In terms of orbitons:ci andcj are in antiphase,ai andaj as
well; but bi andbj have the same phase.! We find only two
topologically different arrangements@called ~a! and ~b!#,
which can accommodate this curious mixture of ‘‘2/3 an
ferro’’ plus ‘‘1/3 ferro’’ correlations~see Figs. 1 and 2!. In the
state~a!, sublattice unit vectors are along the cubic diagon
@111#, while in state~b!, sublattice unit vectors are@110# and
@002#.

For technical reasons, it is useful to introduce new qu
tization axes. This is done in two steps. First, we introdu
local, sublattice specified quantization axes~see Fig. 2!:

1:~x,y,z!→~x,y,z!,

2:~x,y,z!→~2x,2y,z!,

3:~x,y,z!→~2x,y,2z!,

FIG. 1. Two kinds of four-sublattice structure for orbital orde
ings in spin ferromagnetict2g superexchange model.
9-3



he
ls
-
ha

-

m

By
n

the
-
on-

ors

an
e
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4:~x,y,z!→~x,2y,2z!. ~15!

After corresponding sign transformations ofl ia and orbitons,
one obtains

Ai j
(c)5nianja1nibnjb2ai

†bibj
†aj2bi

†aiaj
†bj ~16!

5@~12 l x
2! i~12 l x

2! j2~ l xl y! i~ l yl x! j #1@x↔y#. ~17!

From now on, a sublattice structure will not enter in t
excitation spectrum. From the above observations it is a
clear that all the components oflW are equally needed to op
timize all the three directions. We anticipate therefore t
the cubic diagonals are ‘‘easy’’~or ‘‘hard’’ ! axes for lW
fluctuations/orderings~recall that the Hamiltonian has no ro
tational symmetry forlW vector!. Therefore, it is convenient to
further rotate the quantization axis so that newz axis ~de-
noted asz̃) corresponds to@111# direction. This is done as
follows:

lW i5R̂l̃W i , ~18!

where l̃W i5( l̃ ix , l̃ iy , l̃ iz) and R̂ is given by

R̂5
1

A3 S c1s c2s 1

c2s c1s 1

21 21 1
D , ~19!

with c51/2 ands5A3/2. Here, newx̃ and ỹ axes are taken
to be symmetric with respect to the@110# direction. Annihi-
lation operators for constrained particles obey the sa
transformation:

S a

b

c
D 5R̂S ã

b̃

c̃
D . ~20!

Explicit expressions for the wave functionscã are obtained
by reversing Eq.~20! as follows:

FIG. 2. Arrangement of the local quantization axes in states~a!
and ~b!. Arrows indicate the quantization axes at each site,
represent also a snapshot of local correlations of angular mom

tum: on every bond, two out of three components oflW are correlated
antiparallel.
20510
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c ã5
1

A3
@~c1s!dyz1~c2s!dxz2dxy#,

c b̃5
1

A3
@~c2s!dyz1~c1s!dxz2dxy#,

c c̃5
1

A3
~dyz1dxz1dxy!. ~21!

In Fig. 3, we show schematic pictures of these orbitals.
construction,c c̃ is symmetric with respect to the rotatio
around @111# direction, having simply 3z̃22r 2 symmetry,
while c ã andc b̃ are symmetric with respect to@110# axis. At
the end, the orbital Hamiltonian in a rotated basis obtains
following form ~symbol ‘‘tilde’’ denoting rotated axes is im
plied for angular and quadrupole operators below, and c
stant energy shift is dropped out!:

Horb5
1

2
r 1JSE(̂

i j &
Ai j

(g) , ~22!

with

3Ai j
(g)5 2

3 ~12QizQjz!2 1
2 l izl jz1 1

2 ~QxT211T21Qx2T0T1

2T1T0! i j 1
1
2 ~QxQx2T0T01T21T21! i j

(g)1 2
3 Qiz~T0

1cT1! j
(g)1 2

3 ~T01cT1! i
(g)Qjz1 1

2 l iz~ l x1 l y! j
(g)

1 1
2 ~ l x1 l y! i

(g)l jz2 1
2 ~ l x1 l y! i

(g)~ l x1 l y! j
(g) , ~23!

whereQz andQx represent the quadrupole moment operat
with eg symmetry, 3z22r 2 and x22y2, respectively.T0
5Tz , and T615Ty6Tx , whereTz , Ty , and Tx represent
the quadrupole moment operators witht2g symmetry ofxy,

d
n-

FIG. 3. ~Color online! Orbitals in a new basisx̃ỹz̃ specified by
transformation~19!.
9-4
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THEORY OF ORBITAL STATE AND SPIN . . . PHYSICAL REVIEW B68, 205109 ~2003!
xz, and yz, respectively. These operators are expresse
terms of angular momentum and orbiton operators as
lows:

Qz5
1
2 ~ lW223l z

2!5nc̃2 1
2 ~nã1nb̃!,

Qx5 l x
22 l y

25nb̃2nã ,

Tz5 l xl y1 l yl x52~ ã†b̃1b̃†ã!,

Tx5 l yl z1 l zl y52~ b̃†c̃1 c̃†b̃!,

Ty5 l xl z1 l zl x52~ c̃†ã1ã†c̃!. ~24!

g dependence of quadrupole moment operators is obta
by changingl x,y in Eq. ~24! to

l x
(g)5H 2clx6sly for g5a~b!

l x for g5c,

l y
(g)5H 2cly7slx for g5a~b!

l y for g5c.
~25!

Explicit expressions forQa
(g) andTa

(g) are given in Appendix
A. It should be noted that, among eight operators, nam
five quadrupole moment and three angular momentum op
tors, only four operators are independent of each other
cause of the local constraint among orbiton operators.

Although it looks a bit complicated, the rotated Ham
tonian obtains a well-structured form. The first and seco
terms of Eq.~23! represent ‘‘Ising’’-like interaction for quad
rupole moments and angular momenta. This part of
Hamiltonian stabilizes the ordering~condensation! of an ap-
propriate orbiton. On the other hand, the other terms re
sent fluctuations ofQx , Tx , Ty , Tz and transverse compo
nents of angular momental x and l y . These terms generat
dispersion of the orbital excitations.

Ordered states, promoted by the ‘‘Ising’’ part of intera
tions, can be characterized by the quadrupole momenQ
5^Qz& (Q order may couple to a lattice distortion ofD3d

symmetry!, and the angular magnetic momentml5^ l̃ z&. We
notice that the magnetic,l izl jz term in the first line of Eq.
~23! is generated by quantum commutation rules when
rotateHorb ; this makes explicit that theZ2 symmetry is only
a classical one and emphasizes the quantum origin of or
magnetism.

As it follows from the definition ofQz , quadrupole or-
dering with finiteQ but zerol z corresponds to a condens
tion of thec̃ orbiton. We call this solution state I. Classicall
Q51 in this state. On the other hand, condensation of
complex orbital (ã2 i b̃)/A2 generates a finite magnetic m
ment (ml51 classically!, the state called II. The orbital pa
terns in a classical states I and II are shown in Fig. 4.
now focus on fluctuations of orbitals, and show that the
citation spectra are in fact identical in these states. Moreo
we will obtain that the states I and II can smoothly be co
nected by a continuous phase rotation of the conden
wave function. Noticing that an arbitrary cubic diagon
20510
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could be taken asz̃ and having in mind also two structures
Fig. 1, one obtains a multitude of degenerate states. T
makes, in fact, all the orderings very fragile.

B. Orbital quadrupole order

This state is driven by a condensation ofc̃ orbital, that is,
ordering of the orbitalc c̃ in Eq.~21!. To obtain a linear or-
bital wave Hamiltonian, we resolve a constraint asc̃5 c̃†

5A12nã2nb̃, and expand Eq.~23! up to second order inã
and b̃. The result is~in units of r 1JSE)

HOW5(
i

~niã1nib̃!

1
1

2z (̂
i j &

@Ti 21
(g) Tj 21

(g) 2~ l x1 l y! i
(g)~ l x1 l y! j

(g)#,

~26!

wherez56, and

T6152~ ã†1ã!7~ b̃†1b̃!,

l x5 i ~ b̃2b̃†!, l y5 i ~ ã†2ã!. ~27!

In a momentum space, this linearized Hamiltonian reads

HOW5(
kW

FnãkW1nb̃kW1
1

2
~g11g2!~ ãkW

†
ã

2kW
†

1ãkWã2kW !1
1

2
~g1

2g2!~ b̃kW
†
b̃

2kW
†

1b̃kWb̃2kW !2g3~ ãkW
†
b̃

2kW
†

1ãkWb̃2kW !G , ~28!

where g1 , g2, and g3 are defined asg15(cx1cy1cz)/3,
g25A3(cy2cx)/6, and g35(2cz2cx2cy)/6, respectively,
with ca5coska . The Hamiltonian is diagonalized by usin
Bogoliubov transformation~see for details Appendix B!. One
obtains

HOW5(
kW

~v1kWa1kW
†

a1kW1v2kWa2kW
†

a2kW !1E0 , ~29!

FIG. 4. ~Color online!. Schematic pictures of the orbital orde
ings. Left: Real orbital ordering I~a!. Right: Complex orbital order-
ing II~a!. Here, the absolute values of the wave functions are p
sented. Arrows represent the directions of angular magn
momenta in the orbital magnetic state II~a!.
9-5
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where v1kW5A12(g11k)2 and v2kW5A12(g12k)2 with
k5Ag2

21g3
2. The dispersion relations of orbitons are pr

sented in Fig. 5. Orbital excitations are characterized by
flat dispersion with zero energy along (0,0,kz), (p,p,kz) and
their equivalent directions. As discussed later, interaction
fects open the gap along (p,p,kz) and equivalent ones
while zero modes along (kx,0,0), (0,ky,0), and (0,0,kz) are
protected by the underlying symmetry of the model.

A constantE0 in Eq. ~29! represents the energy gain du
to the quantum fluctuations. It is given by

E05
1

2 (
kW

~v1kW1v2kW !21520.214~r 1JSE!. ~30!

We may compare this result with ground-state energy
the orbital disordered AF state:E0520.33(r 11r 2)JSE/2,4

where the result of Ref. 4 is corrected for the finite values
h. For realistic values of the Hund’s coupling, sayh
5JH /U50.12, this givesE0520.285~in units of r 1JSE) in
AF state. It is noticed that ferromagnetic and AF states
almost degenerate. Still, the ferromagnetic state is hig
than the AF state, so its stabilization in YTiO3 requires an
additional effects as discussed in Sec. IV.

Due to the flat mode, one may expect strong orbital fl
tuations in the ground state. Indeed, number of the exc
bosonsã and b̃ is large even atT50:

^niã1nib̃&5211
1

2 (
kW

S 1

v1kW
1

1

v2kW
D 50.54. ~31!

This reduces the condensate density to^nic̃&50.46. Conse-
quently, the quadrupole order parameter is obtained to

FIG. 5. Upper panel: Orbiton dispersions~in units of r 1JSE),
obtained in a linear spin-wave approximation. Lower panel: Po
tions of soft modes are shown by the thick lines.
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rather small:Q50.19. Reduction of quadrupole orderQ im-
plies that electron density is much less anisotropic than
shown for the classical state in Fig. 4~a!. Including fluctua-
tion effects, that is, finite population ofã and b̃ orbitals,
electron density at site 1 is given byr1(rW)5nc̃c c̃

2
1nãc ã

2

1nb̃c b̃
2 . Using Eq.~21!, one then finds

r1~rW !5 1
3 ~dyz

2 1dxz
2 1dxy

2 !1 2
3 Q~dyzdxz1dyzdxy1dxzdxy!.

~32!

Electron density at other sites is given by a similar equati
where the second, oft2g symmetry, term is different for dif-
ferent sublattices. Namely, it is (dyzdxz2dyzdxy2dxzdxy) for
site 2, (2dyzdxz1dyzdxy2dxzdxy) for site 3, and (2dyzdxz
2dyzdxy1dxzdxy) for site 4. In Fig. 6~b!, we present the
electron distribution given by Eq.~32!. For comparison, we
show in Fig. 6~a! the electron distribution whereã, b̃, andc̃

are equally occupied. At finiteQ, the electron densityr1(rW)
is slightly elongated along@111# direction. Thus, we expec
the quadrupole ordered state to be further stabilized by
electron lattice coupling, although this coupling is expec
to be weak fort2g orbitals.

The anomalous reduction of the order parameter is du
the highly frustrated nature of the interactions in Eq.~14!. A
special, non-spin-like feature of all orbital models is th
orbitals are bond selective, resulting in a pathological deg
eracy of classical states. This leads to soft modes@observe
thatv1,2kW is just flat along (0,0,p) and equivalent directions#.
These soft modes have their origin in special symmetry pr
erties of thet2g orbital model~14!, which result in conser-
vation laws with important consequences. Namely, the to
number of orbitals of each ‘‘color’’ (a,b,c) are conserved
during superexchange process, as can easily be seen
Eq. ~4!. Moreover, ast2g orbitals can hop only along two
directions @say, xy-orbital motion is restricted to (ab)
planes#, the orbital number is conserved on each plane se
rately. Formally, these conservation rules are reflected b
possibility of uniform phase transformation of orbiton oper
tors, e.g.a→a exp(ifa), etc., which leaves the orbital Hamil
tonian invariant. These continuous symmetries are spont
ously broken in above ordered states. The breaking
continuous symmetry is usually followed by the generat
of gapless Goldstone modes. This is precisely what happ
in the t2g orbitally degenerate model. In fact, soft mod

i-

FIG. 6. ~Color online!. Spatial electron distribution in differen
states.~a! Disordered state,na5nb5nc5

1
3 . ~b! Quadrupole or-

dered state,nc̃50.46 andnã5nb̃50.27. ~c!Orbital magnetic state,
nā50.46 andnb̄5nc̃50.27. Arrow shows the direction of angula
momentum.
9-6



m
i

pu
n

ig
io

n-
am

e

tum
is

pa-

ust

e
tic
u-
er-
o-

n
en-
ant-

or
, we

a
by

-
ri-
ge,
par-

first
rs

ram-

ty
-
eld,
a-
m

THEORY OF ORBITAL STATE AND SPIN . . . PHYSICAL REVIEW B68, 205109 ~2003!
obtained above have two-dimensional~2D! feature ~stem-
ming from 2D geometry of thet2g orbital hoppings!. As a
result, long-range orbital order is possible only at zero te
perature, just like in 2D Heisenberg models. Formally, this
manifested as a divergence~as ln 1/T) of the number of ther-
mally excited orbitons,̂nã1nb̃&, if one attempts to calculate
this quantity at finite temperature, including the Bose po
lation factor in the Eq.~31!. Soft modes will be discussed i
more detail later on.

C. Orbital magnetic order

In order to describe the magnetic ordering~denoted above
by state II!, let us introduce orbital states

ā5
1

A2
~ ã2 i b̃ !, b̄5

1

A2
~ ã1 i b̃ !. ~33!

In these states, angular momentum has eigenvaluesl̃ z561
~on local axes!, respectively. A condensation ofā leads there-
fore to the magnetic ordering~with l̃ z51 classically!, and it
is associated with ordering of the complex orbital:

c l5
1

A3
$dyze

i (p/3)1dxze
2 i (p/3)2dxy%. ~34!

On global axes, this order is noncollinear, as shown in F
4~b!. We consider fluctuations of this state. Using the relat
ā5ā†5A12nb̄2nc̃ and expanding interactions in Eq.~23!

up to second order inb̄ and c̃, we obtain the following lin-
earized Hamiltonian:

HOW5(
i

~nib̄1nic̃!1
1

2z (̂
i j &

@QixTj 211Ti 21Qjx2Ti0Ti1

2Ti1Tj 01Qix
(g)Qjx

(g)2Ti0
(g)Tj 0

(g)1Ti 21
(g) Tj 21

(g)

2~ l x1 l y! i
(g)~ l x1 l y! j

(g)#. ~35!

Here, the operatorsl, Q, andT are linear functions ofb̄ and
c̃:

l x52
1

A2
~ c̃†1 c̃!, l y52

i

A2
~ c̃†2 c̃!,

Qx52~ b̄†1b̄!, T052 i ~ b̄†2b̄!,

T6152
1

A2
@~17 i !c̃1~16 i !c̃†#. ~36!

We introduce now new operatorsa,b:

a5
1

A2
~ b̄1eiwc̃!, b5

1

iA2
~ b̄2eiwc̃!, ~37!

with w5p/4. Remarkably, after this transformation the li
earized Hamiltonian obtains in a momentum space the s
form as Eq.~28!, whereã,b̃ are just replaced bya,b, andg2
20510
-
s

-

.
n

e

and g3 are interchanged. Exchange ofg2 and g3 does not
affect the excitation spectrum, however, as they enter inv1,2kW

via the parameterk5Ag2
21g3

2 only. Thus, the ground-stat
energy in the orbital magnetic stateE0 is given again by Eq.
~30!, so the states I and II are degenerate even on quan
level. Similarly, the number of out of condensate bosons
also obtained from Eq.~31!. This giveŝ na1nb&50.54, and
values for the angular and quadrupole momentum order
rameters follow

ml512 3
2 ^na1nb&50.19,

Q52 1
2 1 3

4 ^na1nb&520.095. ~38!

Electron-density distribution in the state II, given by Eq.~32!
with above value ofQ, is shown in Fig. 6~c!. Electron cloud
in the magnetic state is almost of cubic symmetry, being j
slightly contracted along@111# direction~opposite to that in
the state I!. Thus the energy gain from the orbital lattic
coupling is smaller in this state. In principle, orbital magne
order could be supported by a relativistic spin-orbital co
pling; however, in the noncollinear state driven by the sup
exchange interaction, uniform component of the orbital m
ment is zero@see Fig. 4~b!#, hence the coupling to the spi
ferromagnetism vanishes in linear order. The spin-orbital
ergy gain in a second order is possible though, via the c
ing of spins towards orbital magnetic pattern.

D. Soft modes: Density-phase formulation

Having obtained an identical excitation spectrum f
states with apparently different ground-state condensates
would like to unify these states. It is convenient to use
different approach, that is, the density-phase formulation
Popov~Ref. 20!, nowadays called ‘‘radial gauge.’’ This for
malism is particularly useful also to clarify the physical o
gin of the soft modes obtained above. In the radial gau
density and phase degrees of freedom of the constrained
ticles are emphasized. We work in a basis obtained by
transformation, Eq.~15!, and represent the orbiton operato
entering in Eq.~16! as follows:

a i5Ar iaeiu ia ~a5a,b,c!. ~39!

Further, the density and phase degrees of freedom are pa
etrized as

r ia(b)5r01 2
3 ~cri6sl i !,

r ic5r02 2
3 r i , ~40!

and

u ia(b)5V i1cw i6su i ,

u ic5V i2w i , ~41!

respectively. Here,r0(51/3) is an average electron densi
on each orbital. The phaseV i , common to all the three or
bitons, can as usually be absorbed by the constraint fi
while the local constraint itself is explicitly resolved by p
rametrization~40!. The physically active degrees of freedo
9-7



,
he

d
cl
E
e

at
e

-
-
q

in

t
tw
sl
ic
ec

ty-

ng
s

is
ar
-

t

on

s

to
ob-
d
is,
n,
ed

ies

rm
sed

ess

li-
les;
e to
p-
nic

GINIYAT KHALIULLIN AND SATOSHI OKAMOTO PHYSICAL REVIEW B 68, 205109 ~2003!
are thereforer and l fields for the amplitude fluctuations
and u and w for the phase fluctuations. We recall that t
coefficientsc51/2,s5A3/2.

To start with, let use neglect for a moment the amplitu
fluctuations, and focus on the phase dependence of the
sical condensate wave function. In terms of phases in
~41!, it is written as follows~up to unessential overall phas
factor!:

c~u,w!5Ar0$dyze
i (3cw1su)1dxze

i (3cw2su)1dxy%.
~42!

Here, we suppressed site dependence of the phasesw,u, dis-
carding for a while slow space variations of the condens
Now, it is noticed that the quadrupole and magnetic ord
ings @see Eqs.~21! and ~34!# do follow from Eq.~42! when
w5u50, andw5p/3c, u5p/3s, respectively. Next obser
vation is the orbital ‘‘color’’ conservation rule in the ferro
magnetic state. In the radial gauge, it is evident from E
~16!, that the interactions do depend on thedifferenceof the
orbiton phases only, that is onu ia2u ja , etc., so we can
uniformly rotate the condensate function~42! by arbitrary
phasesw,u with no energy cost. By such rotations, we can
fact mix quadrupole~state I! and magnetic~state II! order-
ings. Slow phase rotation of the condensate is precisely
origin of the soft modes obtained above. Because of the
dimensionality oft2g orbitals, the phases can spontaneou
be fixed at zero temperature only. Of course, orbital-latt
and/or spin-orbital couplings may fix the phases, thus sel
ing a particular state even at finiteT.

We now turn to the excitations of the model in densi
phase formulation.Ai j

(g) in Eq. ~16! is expressed as

Ai j
(c)5~Ar iar ja2Ar ibr jb!212Ar iar jaAr ibr jb

3$12cos~f i
(c)2f j

(c)!%, ~43!

wheref i
(c)5u ia2u ib . Ai j

(g) for g5a andb bonds are given
by replacing (a,b) in Eq. ~43! with (b,c) and (c,a), respec-
tively. In terms of the relevant phase degrees of freedomw
andu, we obtain

f i
(g)5HA3~2cu i6sw i ! for g5a~b!

A3u i for g5c.
~44!

The density operatorsr ia are functionals of ther i and l i

fields. We may expand now the operatorAi j
(g) in terms of the

amplitude and phase variablesr ,l,w,u. Keeping quadratic
only terms in the expansion, one arrives at the followi
linearized Lagrangian for the phase-amplitude fluctuation

Lorb5(
i ,w

w~u i ,wl i ,2w1w i ,wr i ,2w!1Huw1Hlr , ~45!

wherev is the Matsubara frequency. The first term in th
equation originates from the time derivative, kinematic p
of the Lagrangian2( i ,aa i

†(]/]t)a i , and produces dynami
cal coupling between the density and phase variables.Huw

represents the phase fluctuations, and it is obtained from
expansion of the second term in Eq.~43!:
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Huw5
1

2
r0

2(̂
i j &

~f i
(g)2f j

(g)!2. ~46!

The fluctuations of the condensate density aboutr0 are con-
trolled by the HamiltonianHlr , which in a linear approxi-
mation reads as

Hlr5
9

8
r0

2(̂
i j &

~d i
(g)1d j

(g)!2. ~47!

Here,d i
(g) is the difference between the electron densities

orbitals that are active on a given direction:d i
(g)5r ia

(g)

2r ib
(g) . Using parametrization~40!, they are expressed viar

andl fields as follows:

d i
(g)55

2

A3
~2cl i6sri ! for g5a~b!,

2

A3
l i for g5c.

~48!

In a momentum space,Huw and Hlr are represented a
follows:

Huw5(
qW

H 1

2
auuuqW u21

1

2
awuwqW u22g2wqWu2qW J , ~49!

Hlr5(
qW

H 1

2
alulqW u21

1

2
ar ur qW u21g2lqWr 2qW J , ~50!

where au512(g11g3), aw512(g12g3), al511(g1
1g3), andar511(g12g3).

Equations~45! and ~49!, ~50! determine the orbital dy-
namics in a harmonic approximation, which is equivalent
the previous linear orbital wave approach. Indeed, the
tained quadratic form in Eq.~45! can easily be diagonalize
giving exactly the same excitation spectrum, that
A12(g16k)2 found in the preceding section. In additio
the origin of zero-energy excitations can clearly be identifi
now. In a classical limit@neglect dynamical term in Eq.~45!#,
the quadratic formsHuw ~49! andHlr ~50! can be diagonal-
ized separately resulting in normal modes with energ
vu

6(kW )5(12g16k) in phase sector, andvr
6(kW )5(11g1

6k) for the amplitude variables.vu
6 vanishes on lines

(kx,0,0),(0,ky,0),(0,0,kz) ~see Fig. 5!. Therefore, zero-
energy excitations on these lines do correspond to unifo
phase rotations of orbitons on different planes as discus
before. On the other hand, the normal modesvr

6(kW ) that are
associated with the density of orbital occupancies poss
zero lines at (kx ,p,p),(p,ky ,p),(p,p,kz). This reflects
softness of thestaggeredfluctuations of orbitals@notice also
that a uniform component, that is,du

(g)5d i
(g)1d j

(g) , only
enters in Eq.~47!#. However, such soft modes in the amp
tude sector are not protected by physical conservation ru
therefore, they are expected to acquire a finite mass du
interaction effects that go beyond linear orbital wave a
proximation. To see this, one should consider unharmo
terms in the expansion of Eq.~43!. Most relevant term in that
9-8
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THEORY OF ORBITAL STATE AND SPIN . . . PHYSICAL REVIEW B68, 205109 ~2003!
expansion is the interaction between the staggered fluc
tions, that is,ds

(g)5d i
(g)2d j

(g) , with uniform components
du

(g) . When such a term is kept, Eq.~47! is replaced by

Hlr5
9

8
r0

2(̂
i j &

H du
21

1

~4r0!2
ds

2du
2J (g)

.
9

8
r0

2(̂
i j &

$~11«s!du
21«uds

2% (g). ~51!

The Hartree decoupling is applied here to the interact
term, with «s,u5(1/4r0)2^ds,u

2 &. These expectation value
are finite due to the presence of quantum fluctuations in
ground state that are particularly enhanced in a stagg
channel. In a momentum space, the above equation rea

Hlr5Z«(
qW

H 1

2
ãlulqW u21

1

2
ãr ur qW u21g2

«lqWr 2qW J , ~52!

where ãl511(g1
«1g3

«) and ãr511(g1
«2g3

«). gn
« (n

51,2,3) are defined asgn
«5(122«)gn with «5«u /Z« , and

Z«5(11«u1«s) is an overall rescaling factor.
Using nowHlr given by Eq.~52! in Lorb @Eq. ~45!#, one

obtains finally the following two eigenfrequencies:

v6~kW !5$12~122«!~g16k!222«~g16k!%1/2 ~53!

in units of AZ« r 1JSE. It should be noted thatv6 recover
the orbiton energyv1,2 when«50. Using bare orbiton dis-
persions, the Hartree decoupling parameters«s,u are calcu-
lated as follows:

«s5
3

4 (
kW

H ~11g1
21k2!1

12~g1
22k2!2

v1kWv2kW
J 1

v1kW1v2kW
,

~54!

«u5
3

4 (
kW

$~12g1
22k2!1v1kWv2kW%

1

v1kW1v2kW
. ~55!

Numerical calculation gives«s51.72 and«u50.59, reflect-
ing that staggered fluctuations of densities are stronger. T
we obtainAZ«51.82 and«.0.18. Dispersion relations o
the orbital excitations, Eq.~53!, calculated using these pa
rameters are presented in Fig. 7~in units of AZ« r 1JSE).
Staggered density fluctuations are gapped, and we are
now with true Goldstone phase modes protected by the s
metry of interactions.

IV. WHY YTiO 3 HAS A FERROMAGNETIC
GROUND STATE

So far, we discussedt2g orbital physics on an ideal cubi
lattice assuming a spin saturated ferromagnetic state. In
remainder of the paper, we apply the theory to the ferrom
netic state of Mott insulator YTiO3. This requires some
modifications of the theory implementing a specific featu
of this material. On empirical grounds, it is well document
that Ti-O-Ti bond angle is an important parameter contr
ling magnetic propertie of titanates RTiO3.8 The bond angle
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u gradually decreases from;157 deg in LaTiO3 to
;142 deg in YTiO3, due to lanthanum contraction effec
that results in deviations of the lattice from an ideal pero
skite structure. It is quite remarkable that such a small va
tion of the bond angle, driven by R-ionic size effect, affec
the magnetic state dramatically: It changes from isotropic
as observed in LaTiO3 to the isotropic ferromagnetic state i
a Y-based compound, indicating strong competition betw
AF and F interactions in titanates.

Ti-O-Ti bond distortion is important because it induces
unfrustrated ferromagnetic interaction, changing thereby
delicate balance between AF and couplings that dynamic
coexist and compete in idealt2g superexchange models lik
in Eq. ~13!. It was found in Sec. III B that the ferromagnet
state is slightly higher in energy thatG-type AF one; the
situation is however reversed when the bond angle is redu
below some critical value, as we argue below.

The bond distortion brings about the following two e
fects.

~i! Reduction of transfer intensity between neare
neighbor ~NN! t2g orbitals as t5Ddp

21tdpp
2 cosu5t0cosu.8

Here, tdpp(tdps) is the transfer between Ti 3d and O 2p
orbitals on thep(s) bond, andDdp is the level difference
between Ti 3d and O 2p states. Superexchange energy sc
is then reduced asJSE5JSE

(0)cos2u with JSE
(0)54t0

2/U.
~ii ! Generation of transfer intensity between NNt2g and

eg orbitals, t85Ddp
21tdpstdppsinu. This transfer induces an

FIG. 7. Orbiton dispersions corrected by interaction effects@Eq.
~53!#. Energy is given in units ofZ«

1/2r 1JSE.1.82 r 1JSE. The am-
plitude fluctuations open the excitation gap around (ppp), while
there still remain gapless Goldstone modes at positions, indic
by the thick lines in the lower panel.
9-9
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GINIYAT KHALIULLIN AND SATOSHI OKAMOTO PHYSICAL REVIEW B 68, 205109 ~2003!
additional SE interaction. Forc bond, we consider the fol
lowing transfer term:

H8t
(c)5t8@~a is

† aj s1H.c.!1~ i↔ j !#. ~56!

a† denotes the creation operator of electron in theeg orbital
with 3z22r 2 symmetry.Ht8 for a andb bonds are given by
replacing (a,a) in Eq. ~56! by @2(a2A3b)/2,b# and
@2(a1A3b)/2,c#, respectively, whereb denotes the elec
tron annihilation operator in theeg orbital with x22y2 sym-
metry. By the second-order perturbation with respect toHt8 ,
one obtains the SE interaction between NNt2g electrons.
Here, energy of the intermediated2 excited states with spin
triplet and singlet states betweeneg andt2g electrons is given
by U23JH1Dcr andU2JH1Dcr , respectively, whereDcr
is a cubic crystal-field splitting betweeneg and t2g levels
~so-called 10Dq). Explicit expression for the new SE inte
action is

H8SE
(c)52

1

8
JSES t8

t D 2U

Ũ

1

~123h̃ !~12h̃ !
~223h̃14h̃SW i•SW j !

3~nia1nja!, ~57!

whereŨ5U1Dcr and h̃5JH /Ũ. HSE8 for a(b) bonds are
given by replacingna in Eq. ~57! by nb (nc). It is stressed
that this SE interaction is of the ferromagnetic sign, beca
t2g and eg orbitals are of the different symmetry, and th
Hund coupling between them favors spin triplet state.
Ti-O-Ti bond angles ina, b, andc directions are almost the
same,8 this interaction supports ferromagnetism equally in
three directions. Here we differ from Ref. 21, which cons
ers t2g2eg hopping channel along thec-axis only.

Either in the orbital-ordered states@I~a! and I~b!# with
c c̃51/A3(dyz1dxz1dxy), or in the orbital-liquid one, aver
age occupation number of eacht2g orbital is given byna
5nb5nc51/3. Thus, the spin interaction~57! in these or-
bital states becomesHspin8 52J8(^ i j &SW i•SW j with

J85
1

3
JSES t8

t D 2S U

Ũ
D 2

h. ~58!

One should notice thatJ8 is proportional to sin2u ~via t8),
and contains also the small numberh5JH /U. This is be-
causeJ8 is caused by the Hund coupling betweent2g andeg

electrons in the virtually excitedd2(eg
1t2g

1 ) state, which is
evoked in SE process only in the presence of Ti-O-Ti bo
angle distortion.

The energy difference between AF and ferromagne
phases stemming fromHspin8 is given byDESE8 5 1

2 J8, while
that from HSE is given by DESE5@20.33(r 11r 2)/2
10.214r 1#JSE ~Sec. III B!. The total SE energy differenc
between AF and ferromagnetic phases is then estimated

DE5F20.33
r 11r 2

2
10.214r 11

1

2 S t8

t D 2S U

Ũ
D 2

hGJSE.

~59!
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Thus,DE obtains the followingu dependence~at represen-
tative valueh50.12 for Hund’s coupling parameter!:

DE5F20.111cos2u1
1

2 S tdps

tdpp
D 2S U

Ũ
D 2

hsin2uGJSE
(0) .

~60!

With the realistic parameters~typically, Dcr is about 2 eV!
U/Dcr52.5 and tdps /tdpp52, the transition from AF
orbital-liquid phase to ferromagnetic orbital-ordered one
curs at the critical angleuc

(0)5136 deg in the SE model. Thi
angle is slightly smaller than that observed in YTiO3 (u
;142 deg). Further, orbital-ordered state should be favo
over the AF orbital-liquid state by orbital-lattice coupling
We simulate this by adding JT energy gaindEJT(,0) to the
energy of the ferromagnetic orbital-ordered state. As sho
in Fig. 8~b!, this increasesuc . A value of dEJT , which is
required to obtain a realistic valueuc5146 deg for titanates
is small (20.04JSE

(0)), so it might be hard to observe th
associatedD3d-type distortion.

V. ORBITAL GAP IN YTiO 3

Effect of TiO6 tilting. In addition to the finite transfer
between NNt2g-eg orbitals, octahedron tilting changes als
the symmetry of NNt2g-t2g hopping matrix, making possible
finite electron transfer between the NN orbitals with differe
symmetry.17 We show now that such a hopping leads to
important modification of the orbital excitation spectrum, r
moving gapless Goldstone modes. Taking into account n
diagonal hoppings between orbitals active on a given dir
tion

t9@~a i
†b j1b i

†a j !1~ i↔ j !# (g) ~61!

up to second order in small ratiot9/t, we obtain the follow-
ing correction to the interaction between NN orbitals in
spin-ferromagnetic state:

H9SE
(g)5r 1JSES t9

t D @t ix
(g)~12nj

(g)!1t jx
(g)~12ni

(g)!#

1
1

2
r 1JSES t9

t D 2

@Bi j
(g)2ni

(g)nj
(g)#. ~62!

Here Bi j
(g) is given by either of Eqs.~5!,~9!, and ~12!. A

crucial point is that this operatorviolatesthe orbital ‘‘color’’
conservation rule even in the fully spin polarized sta
Therefore, uniform phase rotations~separately on each or
bital flavor! are not longer possible, hence the relative pha
will be fixed and orbital gap will be generated.

Let us apply a radial gauge description, and focus
phase fluctuations, as the amplitude fluctuations have a l
gap anyhow. In a local coordinates@defined by Eq.~15!#, we
find

H9uw
(g)5

1

2
r 1JSEr0

2S t9

t D 2

(̂
i j &

~f i
(g)1f j

(g)!2. ~63!
9-10
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THEORY OF ORBITAL STATE AND SPIN . . . PHYSICAL REVIEW B68, 205109 ~2003!
Here, we expanded the function cos(fi
(g)1fj

(g)), which enters
in Bi j

(g) , aboutu,w50 ~this corresponds to the quadrupo
ordered state, which is in fact favored byBi j

(g) term!.
Effect of trigonal TiO6 distortion. Our orbital state would

be supported also by a trigonal (D3d) distortion of TiO6.
When this distortion is treated as a static one, an orbital fe
the following potential:HJT522uEJTuQiz , where EJT,0
represents the total JT energy gain. In a radial gauge,
obtain the following phase Hamiltonian:

Huw
JT5

9

2
r0uEJTu(

i
~u i

21w i
2!. ~64!

Summing up all contributions,Huw @Eq. ~46!#, Huw9 , and
Huw

JT , one obtains the following phase Hamiltonian:

FIG. 8. ~a! t2g-eg transfer originating from Ti-O-Ti bond distor
tion. Ti-O-Ti bond angle is denoted byu. ~b! Energy differenceDE
~in units of JSE

(0)) between spin-AF~G!/orbital-liquid and spin-F/
orbital-ordered states as a function ofu. The solid line is a result of
purely electronic SE interactions. The broken line includes smal
energy gaindEJT in the orbitally ordered ferromagnetic state. P
rameters areh50.12, U/Dcr52.5, tdps /tdpp52, anddEJT /JSE

(0)

520.04. ~c! Schematic energy diagrams atu.uc ~left! and atu
,uc ~right!.
20510
ls

e

Huw
tot5Huw1Huw9 1Huw

JT

5Zf(
qW

H 1

2
ãuuuqW u21

1

2
ãwuwqW u22g2

f wqWu2qW J , ~65!

where Zf5@11(t9/t)213uEJTu# is an overall factor. Here
ãu512(g1

f 1g3
f ) and ãw512(g1

f 2g3
f ), with modified

form factorsgn
f 5(122 f )gn (n51,2,3) wheref 5$(t9/t)2

1 3
2 uEJTu%/Zf .
Using now Eqs.~65! and ~52! for Huw andHlr , respec-

tively, we obtain fromLorb @Eq. ~45!# the following excita-
tion spectrum:

v6~kW !5$12~122«!~122 f !~g16k!2

22~«2 f !~g16k!%1/2. ~66!

This is given in units ofWorb , which is defined as follows:

Worb5AZ«Zfr 1JSE. ~67!

Worb represents the overall energy scale for orbital fluct
tions in the problem. Excitation gaps at (0,0,0) and (p,p,p)
are given by 2Af (12«)Worb and 2A«(12 f )Worb , respec-
tively. Taking t9/t50.2 anduEJTu50.04(r 1JSE) as represen-
tative values, we obtainf 50.086. With «50.18 andAZ«

51.82 estimated above~Sec. III D!, one obtainsWorb
.1.96 r 1JSE, and the lowest gap about 0.53Worb is then
expected at (0,0,0) point. Thus, we expect that the orb
excitations in the modified model for YTiO3 cover the en-
ergy window from;r 1JSE to ;2r 1JSE.

VI. EFFECTIVE SPIN HAMILTONIAN

The spin wave spectrum in YTiO3 shows the ‘‘cubic sym-
metry’’ of the Heisenberg spin couplings:Ja.Jb.Jc .10 The
magnon gap was found to be very small, almost two ord
of value smaller that the magnon bandwidth (;20 meV). It
has been noticed that such an apparent simplicity of s
excitations, showing high isotropy in both real and sp
spaces, is remarkable and puts strong constraints on pos
orbital orderings. Spin wave excitations are examined in t
section. Being a test case for the above theory for orbital
YTiO3, a comparison with experiment gives also an opp
tunity to estimate SE energy scaleJSE in the problem. To
derive an effective Hamiltonian describing magnon exci
tions, we assume that orbital-spin separation occurs at
energies. This is justified when the orbital gap induced
Ti-O-Ti bond distortions~see Sec. V! is larger than magnon
energy. Dynamical coupling between the spin and orbital
grees of freedom via fluctuations of superexchange bo
and also via on-site spin-orbital interactionHso is then con-
sidered as a high-energy process, leading to an effective
Hamiltonian. The parameters of such a Hamiltonian are
tained by integrating out high-energy orbital fluctuations.

A. Isotropic spin-exchange

We start with estimation of coupling constantJ in the
isotropic spin-exchange term,J(SW i•SW j ). As a first step, let us

T
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GINIYAT KHALIULLIN AND SATOSHI OKAMOTO PHYSICAL REVIEW B 68, 205109 ~2003!
consider mean-field approximation, in which the sp
exchange is given by an expectation value of the orbital
erator in Eq. ~2!. Neglecting a small term (r 2

2r 3)/3r 1^Bi j
(g)& and noticing that̂ Ai j

(g)&5 2
3 E0, one obtains

J05$2 2
3 hr 22 2

3 ~12hr 2!uE0u%r 1JSE. ~68!

The first term (;h) is driven by a conventional Hund’s cou
pling, while the second one originates from orbital sing
correlations in the ground state. Forh50.12, these two
~classical and quantum! contributions are of the same ord
and give togetherJ0.20.214(r 1JSE).

However, the actual value ofJ measured experimentall
from magnon spectra could in fact be strongly reduced fr
J0 in Eq. ~68! due to a fluctuation effects. Indeed, AF and
states are strongly competing int2g systems, and large-sca
orbital fluctuations are expected to bring about AF sp
exchange contribution. We, therefore, have to consider
fects of the dynamical spin-orbital interaction:

Hint5(̂
i j &

d~SW i•SW j !d Ĵi j . ~69!

In a ferromagnetic stated(SW i•SW j ).2 1
2 (si

†2sj
†)(si2sj ),

with si
† being a magnon creation operator. Neglecting sm

(r 12r 2)/2r 1 and (r 22r 3)/3r 1 terms in Eq.~2!, exchange
integral fluctuations are given byd Ĵi j .dAi j

(g) ~in units of
r 1JSE). As the coupling constant in Eq.~69! is not small, and
because of spins and orbitals may form bound states4 in an
excited AF states, we will discuss here only a qualitat
picture. We introduce a correlation functionDi j

(g)(t)

5^Ttd Ĵi j (0)d Ĵi j (t)& describing fluctuations of the spin
exchange integral. We assume that its spectral func
r(v)5(1/p)Di j9 (v1 id) is distributed over the characteris
tic energies larger than low-energy coherent magnons
served in the experiment~an adiabatic approximation whic
is valid as far as one is concerned with low-energy s
excitations!. Within this approximation and neglecting verte
corrections we may evaluate the magnon scattering pro
on a given bond as described in Fig. 9. The result implie
renormalization of the coupling constant in the low-ener
spin Hamiltonian bydJe f f5

1
2 Di j (0)5*0

`r(v)dv/v, which
is of AF sign as expected. It is the renormalized excha
coupling J5J01dJe f f that determines magnon spectra. W
can estimateDi j (v) by keeping ind Ĵi j .dAi j @Eq. ~23!# the
orbiton pair excitation terms only:

FIG. 9. Scattering of low-energy magnons on local fluctuatio

of the spin-exchange integrald Ĵi j . Its Green’s function~wavy line!
is taken at zero frequency~adiabatic approximation, see text!. This
results in an additional effective spin-exchange constant~denoted
by a filled circle on the right-hand side!, dJe f f5

1
2 Di j (0) for low-

energy magnons.
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d Ĵi j
(c)~pair!5 1

3 ~ ãi
†ã j

†1b̃i
†b̃ j

†2ãi
†b̃ j

†2b̃i
†ã j

†1H.c.!.
~70!

We expect that orbiton pair fluctuations are rather incoher
and local, and we parametrize their spectral function b
characteristic energyVpair , obtaining

Di j ~ in!5
4

9

2Vpair

Vpair
2 1n2

, ~71!

thus dJe f f5
4
9 1/Vpair . We notice that Eq.~71! means also

that ^(dJi j )
2&5 4

9 , which can be simply understood as fo
lows: on a given exchange bond, e.g., along thec axis, one
may have in general nine orbital configurations. From E
~11! one observes that these are the orbital singlet giv
ferromagnetic spin-exchangeJ521, orbital triplet states
with J511, and five states withni

(g)nj
(g)50 giving zeroJ.

As orbital order is weak, and because of the formation
orbital singlets/triplets at given bond necessarily frustra
other neighboring bonds, all these configurations will
present givinĝ (dJi j )

2&; 4
9 . It is also natural to expect tha

Vpair;Worb , with Worb;2(r 1JSE) as estimated in the pre
ceding section. This gives an estimationdJe f f.

2
9 ~in units of

r 1JSE), resulting finally in effective exchange coupling fo
low-energy spin excitations as follows:

J.$2 2
3 hr 22 2

3 ~12hr 2!uE0u1 2
9 %r 1JSE. ~72!

These qualitative estimations are substantiated in Appen
D, in which we calculate magnon energy renormalizati
within a linear orbital wave theory.

It is observed from Eq.~72! that J is actually positive
~antiferromagnetic! for realistic values ofh;0.12–0.13, in
agreement with the conclusion obtained above from ene
considerations: The ground state of the model is not fe
magnetic in an ideal cubic lattice. At the presence of Ti-O
bond angle distortion,J is however modified as follows: Eq
~72! obtains a prefactor cos2u, and in addition a term2J8
.2 2

3 h sin2u @Eq. ~58!# has to be accounted for. As a resu
a classical Hund’s rule part ofJ remains unchanged, and th
net result

J5@2 2
3 hr 21cos2u$ 2

9 2 2
3 ~12hr 2!uE0u%#r 1JSE

(0) ~73!

gives a small ferromagnetic couplingJ.20.03r 1JSE
(0) for

YTiO3 with u'142 deg Comparing this result~at h50.12)
with experimental oneJexpt522.75 meV,10 we obtain the
overall energy scaler 1JSE

(0).92 meV and JSE
(0)54t0

2/U
.59 meV. Bond distortion effect reduces the energy scal
r 1JSE ; 78 meV and; 57 meV in La and Y based titanate
respectively. Based on the above considerations, we cons
JSE

(0);60 meV andr 1JSE;60 meV as representative energ
scales for YTiO3.

A main message of the above considerations is that
spin-exchange constant as seen by a coherent low-en
magnon excitations in YTiO3 represents in fact only a sma
fraction of the real strength of dynamical spin coupling
Because the sign oft2g-spin exchange is not unique, an
because the orbital order is weak, large fluctuations of
spin couplings are present in titanates.

s
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B. Anisotropic SE interaction

Next, we consider effects of a relativistic spin-orbit co
pling

Hso5l(
i

~SW i• lW i !. ~74!

This interaction introduces anisotropy in the effective s
Hamiltonian, which obtains~besides the rotationally invari
ant Heisenberg part! an additional, so-calledantisymmetric
Dzyaloshinskii-Moriya ~DM! and symmetric anisotropy
interactions.22 The anisotropic interactions select orientati
of the magnetization in the crystal, and lead also to mag
gap~s!. The structure of anisotropic terms is essentially d
termined by orbital state via expectation values and dyn
ics of the angular momentum operator in Eq.~74!. Thus, we
would like to obtain spin-orbit coupling induced correctio
to the spin Hamiltonian, and discuss their consequence
magnon spectra, thereby testing the proposed orbital sta

As usual, anisotropic interactions are obtained by per
bation theory involving both isotropicHSE and Hso . We
mostly discuss the quadrupole ordered orbital state with c
densedc̃ orbitals~see Sec. III B!. In derivation of the anisot-
ropy Hamiltonian, we need to keep in the superexcha
operatorsĴi j

(g) andK̂ i j
(g) in Eq. ~1! such terms that~i! operate

in the ãb̃ excited states and/or~ii ! connect a ground stat
with excited states of orbitals. For instance,

Ĵi j
(c)⇒JSE

r 11r 2

6
@niã1njã1ãi

†ã j
†1ãi ã j2ãi

†b̃ j
†2ãi b̃ j

1~a↔b!#. ~75!

@Here, the terms proportional to small numbers (r 12r 2) and
(r 22r 3) are neglected.#

We consider nearest-neighboring sitesi and j. The local
excitation energy to create an orbitonã or b̃ is denoted as
D loc . It is reasonable to associateD loc with the ‘‘center of
gravity’’ of the orbiton band that covers the energy windo
from ;r 1JSE to ;2r 1JSE as obtained in Sec. V. Thus, w
will consider D loc;1.5r 1JSE in our estimations, when we
compare later on the results with experiment.

To obtain spin anisotropy interactions, it is convenient
work again in a rotated basis, applying transformation~19!
also for the spins. The scalar product of NN spins inHSE is

then expressed asSW i•SW j5S̃W i T̃
(g)S̃W j , where

T̃(a)5
1

3 S 21 2 22

2 21 22

22 22 21
D ~76!

and

T̃(b,c)5
1

3 S 2~172s! 21 162s

21 2~162s! 172s

162s 172s 21
D ~77!
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for the state I~a!. @For the state I~b!, matricesT̃ for bondsa
andb are equal and given by Eq.~76!#.

Third-order perturbation with respect toHso and HSE
gives asymmetricpart of the spin anisotropy Hamiltonia
Hani in a local coordinate:

Hani
(g)52 1

2 AS̃W i M̃
(g)S̃W j , ~78!

with

M̃ (c)5
1

2 S 2 1 c23s

1 2 c13s

c23s c13s 21
D . ~79!

Anisotropy constantA in Eq. ~78! is given by the following
expression:

A5
4

9
JSE

r 11r 2

2 S l

D loc
D 2

. ~80!

Transformation of the spin operator from a local to glob

coordinates is expressed asSW i5R̂i R̂S̃W i . The matricesR̂i ( i
51,2,3, and 4! transforming spin coordinates at four subla
tices are as follows:

R̂15S 1 0 0

0 1 0

0 0 1
D , R̂25S 21 0 0

0 21 0

0 0 1
D ,

R̂35S 21 0 0

0 1 0

0 0 21
D , R̂45S 1 0 0

0 21 0

0 0 21
D .

~81!

Using this transformation, one obtains a symmetric anis
ropy Hamiltonian defined in the global coordinate:

Hani
( i j )52ASW i M̂ i j SW j , ~82!

where M̂ i j depends on the NN bond. For 1-3~2-4! bonds
along thec axis, M̂13(24) is given by

M̂13(24)5
1

4 S 3/2 0 63

0 7/2 0

63 0 23/2
D . ~83!

The interaction matrices for NN spins ona,b bonds have
similar structure:

M̂12(34)5
1

4 S 23/2 63 0

63 3/2 0

0 0 7/2
D ,

M̂14(23)5
1

4 S 7/2 0 0

0 23/2 63

0 63 3/2
D . ~84!
9-13
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GINIYAT KHALIULLIN AND SATOSHI OKAMOTO PHYSICAL REVIEW B 68, 205109 ~2003!
Symmetric anisotropy interactions can be classified
cording to cubic invariants: there are terms ofeg and t2g
symmeties, generated by diagonal and nondiagonal elem
of the matricesM̂ i j , correspondingly. For convenience, w
show the interactions for the state I~a! in Fig. 10 and Fig.
11~a!, in which bond dependence, direction of spins, and
scale of individual anisotropy terms are shown. Theeg sym-
metry anisotropy in the Fig. 10~a! has been discussed in Re
13 under the name of ‘‘cubic’’ anisotropy in context of ma
non gap in LaTiO3. A remarkable feature of this interactio
is its intrinsic frustrations: namely, treated classically, it a
quires a rotational symmetry in spin sector, resulting in
infinite degeneracy of classical states. An accidental pseu
Goldstone mode, which appears in classical limit, can
quire finite gap by quantum fluctuations only. In the pres
orbital ordered states, the symmetry is lowered compa
with the orbital liquid state in LaTiO3. Thus, additional

FIG. 10. Schematic representation of the structure of symme
spin anisotropy interactions ofeg symmetry. Interactions along dif
ferent bonds are denoted bya ia j , which should read asSiaSj a

times an overall interaction constant given below each figure.
instance, a-bond interactions are2

7
8 ASizSjz and 3

8 A(SixSjx

2SiySjy) @note eg(3z22r 2)- and eg(x22y2)-type symmetry#,
where the constantA is defined by Eq.~80!. Overall cubic symme-
try of the interactions is evident for both contributions.

FIG. 11. Left: Schematic representation of the structure of sy
metric spin anisotropy interactions oft2g symmetry. The notation
(ab) i j stands forSiaSj b1SibSj a multiplied by interaction constan
3A/4. Black arrows represent the direction of spins favorable
this interaction when the direction of the uniform moment is tak
along@001#. Right: Antisymmetric DM spin anisotropy interaction

@Eq. ~88!#. Gray arrow denoted bydW i j shows the orientation of DM
vectors on different bonds. A preferred spin pattern for this inter
tion is shown by black arrows.
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terms are generated as shown in Figs. 10~b! and 11~a!. It is
noticed that these terms have a similar frustrated nat
summed over all the bonds, they cancel each other exa
Thus, only a small gap is expected from these interactio

Physically, the structure of anisotropy interactions is d
termined by local correlations of the angular momentum, a
can therefore be traced back to noncollinear arrangemen
these correlations shown in Fig. 2~a!. For instance, the lead
ing, ‘‘cubic’’ term @see Fig. 10~a!# reflects thatl y components
are correlated ferromagnetically along thec axis, while l z
( l x) components are parallel alonga ~b! axes.

In the state I~b!, the leading anisotropy interaction in th
ab plane is given by2Si

zSj
z and that along thec direction is

obtained to be2Si
ySj

y @as can easily be seen also from Fi
2~b!#. The number of bonds with anisotropic interactio
2Si

zSj
z is two times larger than that with2Si

ySj
y . This breaks

the rotational symmetry in a spin sector even in the class
limit, and generates a large magnon gapDmag5

7
4 A2SA.

Antisymmetric DM interaction appears in a second ord
perturbation theory as a combined effect ofHSE and Hso .
The remarkable feature of the orbital state I is that lead
terms in SE interactions, which are proportional to (r 1
1r 2) in Eq. ~2!, do not contribute to the DM interaction
That is because of the classical expectation value ofAi j in
Eqs.~4! and ~8! vanishes in our orbital states. Rather, mu
smaller Hund’s coupling terms proportional to the sm
number (r 12r 2) only give rise to DM interaction. This fea
ture contrasts with that in the orbital state reported in Re
15,23–26, in which a large DM interaction is present~see
Appendix E!.

After somewhat tedious but straightforward calculatio
one obtains the following interaction between NN sites:

HDM
(g) 5DS̃W i Ñ

(g)S̃W j . ~85!

Here, the matrixÑ(c) reads as

Ñ(c)5
1

3 S 2c22s 1 c1s

1 2c12s c2s

c1s c2s 22
D , ~86!

and the interaction constantD is obtained as follows:

D5JSE

r 12r 2

6

l

D loc
. ~87!

Transforming the local spin axes to the global ones, one
rives at the following DM interaction:

HDM
( i j ) 5DdW i j •~SW i3SW j !, ~88!

with dW i j 5â i8 . Here,â i is the unit vector parallel to one o
local axes (xi , yi , andzi) which is perpendicular to thei -j
bond direction and antiparallel to its counterpart at sitej @see
Fig. 2~a!#. For example,dW 135(1,0,0), dW 125(0,1,0), dW 14
5(0,0,1), etc. For convenience, we show the DM interact
for state I~a! in Fig. 11~b!.
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C. Spin waves: Comparison with experiment

Now, we discuss the anisotropic spin interactions in
context of the experimental observations of magnon disp
sion in YTiO3.10

Cubic symmetry of the spin wave dispersion: This pu
zling observation is naturally explained by the pres
theory, as ferromagnetic couplings in all the states I and
are perfectly isotropic,J(a)5J(b)5J(c). The reason is high
symmetry of the orbital ordering patterns, as can be visu
ized from Fig. 4. It is stressed that this result is robust, ‘‘
fine-tuning’’ property of the model.~The isotropy is expected
to be relaxed somewhat by lattice distortions. However,
fects of two types of distortions, that is Ti-O-Ti bond ang
distortion and elongation of TiO6 octahedron, on the aniso
ropy of spin couplings are opposite and almost cancel e
other.27!

Isotropy in spin space, magnon gap: Magnons in YTi3
are almost gapless10 ~upper limit for the gap is 0.3 meV!; this
is a serious test for possible orbital orderings. We show n
that high symmetry of orbital orderings in the present the
resolves this problem as well. The crucial point is the fru
trating nature of the anisotropic spin interactions obtain
above: Even though anisotropic couplings on an individ
bond are substantial, there is cancellation of classical co
butions stemming from different bonds, and one obtains o
small gaps of quantum origin. We illustrate this by consid
ing first the leading cubic term.

Quantum magnon gap by cubic term. Consider the effec-
tive spin Hamiltonian in the state I~a! given as follows:

Hs5Hiso1Hani52(̂
i j &

@JSW i•SW j1ÃSi
(g)Sj

(g)#. ~89!

Here,Hiso represents the isotropic SE Hamiltonian. Coe
cient of the cubic term isÃ57/8A @see Fig. 10~a!#, and axes
in the spin space are changed asSz→Sx, Sx→Sy, and Sy

→Sz such thatg corresponds to the direction of thei -j pair.
Thus, we have2Si

zSj
z for c bonds,2Si

xSj
x for a bonds, and

2Si
ySj

y for b-bonds.
Because the effective spin HamiltonianHs has a discrete

~cubic! symmetry, magnon excitation is expected to hav
gap. However, due to the rotational symmetry of Eq.~89! in
the limit of classical spins, linear spin-wave theory cann
provide finite gap. This problem is resolved by the ord
from-disorder mechanism,19 which selects a particular clas
sical state which provides the largest zero-point energy w
fluctuations are included. This opens also a magnon gap13,28

Thus, we calculate spin-wave contribution to the grou
state energy as a function of the angleu between thec axis
and the uniform moment. First, we rotate the spin quant
tion axes around theb axis:

Si
x5cuS̃i

x1suS̃i
z ,

Si
z52suS̃i

x1cuS̃i
z , ~90!

wherecu5cosu and su5sinu. Second, by using Holstein
Primakoff approximation, we obtain the magnon dispers
which shows explicitu dependence as
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vkW~u!5zSJAXkW@YkW2a~cz2cx!su
2#, ~91!

where XkW5(12g1)1a(12cy), YkW5(12g1)1a(12cx),
and a5Ã/3J represents the ratio between anisotropic a
isotropic interactions. Finally, by calculating the zero-po
magnon energy, we obtain the ground-state energyE0 per
site. In the limit ofu!1,

E0~u!52
1

2
zJS~S11!~11a!1

1

2 (
kW

vkW~u!

52const1Ke f fS
2u2. ~92!

Here,Ke f f represents an effective spring constant. In the c
of a!1 which we are interested in, the spring constant
given byKe f f5Ã2R/zSJwith

R53(
kW

g2
2

12g1
'0.28. ~93!

The potentialE0(u) in Eq. ~92! can be associated with a
effective uniaxial spin anisotropy Hamiltonian

He f f
ani52Ke f f(

^ i j &c

Si
zSj

z , ~94!

generated in the symmetry-broken phase~with spins oriented
along @001#!. Therefore, one finds a magnon gapDmag

52SKe f f52Ã2R/zJ. Note thatDmag is independent ofS
and is proportional toÃ2. We confirmed that the same mag
nitude of the magnon gap is derived fromHs using single
mode approximation29 ~see Appendix C!. Thus, cubic anisot-

ropy gives the magnon gapDmag52( 7
8 A)2R/zJ.

Now, we estimate the coupling constantA. From Eq.~80!
with r 1JSE;60 meV and h;0.12, one finds A
.23(l/D loc)

2. As discussed in the preceding section, w
considerD loc;1.5r 1JSE;90 meV. Using the atomic value
lat519 meV,30 one obtains thenA.1 meV consistent with
the experimental value ofA obtained in Ref. 10 from mag
non spectra. With this value ofA, the magnon gap from the
cubic term is only'0.03 meV in the state I~a!.

On the other hand, a large classical magnon gapDmag

5 7
4 A2SA'1.2 meV is obtained in the state I~b!, as we al-

ready discussed in the preceding section. This allows u
exclude the orbital ordering structure I~b! from possible can-
didates for YTiO3, although we do not know precisely whic
kind of lattice distortions favor state I~a! over configuration
I~b!.

Contributions from the other terms. Anisotropy ofeg(x2

2y2) symmetry@see Fig. 10~b!# can be analyzed similarly
we find that it also supports an easy magnetization axis al
one of the cubic axes, say@001#. Its contribution to the mag-

non gap,Dmag56( 3
8 A)2R/zJ.0.014 meV, is smaller than

that of the cubic term, as expected.
Once the@001# direction is chosen as the direction o

uniform moment, spin anisotropy terms oft2g symmetry and
DM interactions give rise to spin cantings as shown in Fi
11~a! and 11~b!. The canting angleu is given by u
'(3/2A2)(A/4J).0.1 rad fort2g symmetric anisotropy in-
9-15
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teraction, andu'A2(D/4J).0.07 rad for the antisymmetric
DM interaction. @DM interaction constantD'0.57 meV is
estimated from Eq.~87!#. These values are within the exper
mental canting angles.0.17 rad.10 Finally, contributions of
t2g symmetric anisotropy and DM interactions to the magn
gap Dmag are estimated as'4JSu2(t2g);0.05 meV and
'4JSu2(DM );0.03 meV, correspondingly; these numbe
are rather small again. It should be noticed that a more qu
titative analysis of the problem, in particular the prec
structure of the spin canting pattern, requires considera
of all the anisotropy terms on equal footing, which will b
presented elsewhere.

To summarize this section, we have obtained spin ani
ropy interactions induced by the spin-orbit coupling, a
considered their effects on spin-wave spectra. Becaus
high symmetry of the orbital ordering, particularly in th
quadrupole ordered state I~a!, magnon dispersion is found t
have cubic symmetry, magnon gap is small, and there
small cantings of spins away from thec axis. All these ob-
servations are consistent with experiment.

VII. ORBITAL CONTRIBUTION TO THE RESONANT
X-RAY SCATTERING

We turn to the discussion of further experiments wh
may help to verify the proposed orbital state in YTiO3. First,
we consider the resonant x-ray scattering, which has pro
to be a useful method in the study of orbital ord
symmetry.31,32The following section will be devoted to pos
sible ways of detecting orbital excitations.

We focus on the orbital state I~a! @which is the most plau-
sible candidate as discussed in previous sections#. While the
exchange bonds in this state are the same~important for the
isotropy of spin waves!, a local symmetry is lower than
cubic one@see Fig.~4!#. Thus, orbital order may induce spa
tial modulations of the level structure of an excited pho
electron inp states via the so-called Coulomb mechanism32

This may lead to additional weak reflections at orbital ord
ing vectors. Predictions of our theory for such an experim
are as follows. Orbital order shown in Fig. 4~I! is identified
as a three-component quadrupole ordering oft2g symmetry,
Ta(qW ) with a5x,y,z. Each component has its own prop
gation vector: namely,

Tx5^ l yl z1 l zl y&RW 5 2
3 QeiqW 1•RW ,

Ty5^ l xl z1 l zl x&RW 5 2
3 QeiqW 2•RW ,

Tz5^ l xl y1 l yl z&RW 5 2
3 QeiqW 3•RW , ~95!

whereqW 15(p,0,p), qW 25(p,p,0), andqW 35(0,p,p). As or-
der parameterQ is strongly suppressed by quantum fluctu
tions (Q.0.19, see Sec. III B!, we obtain that each compo
nent has only a small amplitude, givinguTau2;0.016. This
implies that the corresponding anomalous Bragg intensit
at least 60 times weaker compared with the classical orb
orderings. It might therefore be very difficult to single o
this contribution. However, new azimuthal (w) and scatter-
ing (us) angular dependencies of an additional intens
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which should show up belowTorb , may help to identify
order symmetry. For (p,p,0) @~100! in orthorhombic nota-
tions# scattering these dependences are obtained as follo

I ss8~p,p,0!} sin22w ~96!

for s-s8 polarization~see Ref. 31 for notations!, and

I sp8~p,p,0!}~cos 2w sinus1sinw cosus!
2 ~97!

for s-p8 polarization.~Azimuthal anglew50 corresponds
to the configuration in which the diffraction plane is paral
to thec axis.! Scattering intensities atqW 1 andqW 3 ~which are
contributed byTx and Tz components, respectively! can be
obtained from symmetry considerations.

It is still a controversial issue whether the resonant x-
scattering, observed in YTiO3,26 is related to orbital order or
lattice distortions~see Refs. 17,26,33!. Either way, we expect
that the orbital order contribution,if present, must be tem-
perature dependent reflecting orbital order/disorder tra
tion, as in the case of manganites with strong orbital ord
Therefore, a careful analysis of theT dependence of reflec
tions at orbital ordering vectors is desirable.

Above discussion brings us to the problem of the orb
ordering temperature in YTiO3. Thus far, there are no report
on the orbital ordering temperature in YTiO3 ~weak struc-
tural change at spin ordering temperature26 is only an indi-
rect indication!. In our SE-model picture, we expect that th
transition should occur at low temperatures only, and
suspect in fact that orbitals in YTiO3 do order at ferromag-
netic spin transitionTC . This is because of the strong spi
orbital coupling, and also because of frustrated nature
orbital-only model itself, which, as we have shown, m
develop long-range order on a cubic lattice at zero temp
ture only. Lattice distortions that open a finite orbital g
allow finite-temperature transition, but this cannot occ
much above the ferromagnetic transition, because of str
disorder introduced by spin fluctuations in the paramagn
phase. In other words, orbital order and isotropic spin fer
magnetism are intimately connected, supporting each ot
Physically, this implies that short-range ferromagnetic cor
lations are of vital importance for orbital ordering, and vi
versa.

A quantitative description of the finite-temperature beha
ior of a realistic spin-orbital model is complicated. We m
give only very rough estimation for the orbital ordering tem
perature based on a mean-field picture. As we are goin
ignore fluctuations completely, this estimation should be
garded as an upper limit, which we would like to know. T
this end, we consider a spin paramagnetic phase and se^SW i

•SW j&50 in Eq. ~1!, neglect in the orbital interactionsAi j
(g) in

Eq. ~23! all the terms except those which contain an eme
ing quadrupole order parameter. This leads to

Horb52
1

3z (̂
i j &

Q̂izQ̂jz⇒2 1
3 ^Q̂&Q̂iz . ~98!

From Eq.~98! we obtainTorb5 1
6 ~in units of r 1JSE), which,

including the Ti-O-Ti bond angle (u.142 deg) correction
for YTiO3, reads as
9-16
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Torb5 1
6 cos2u~r 1JSE

(0)!.0.1~r 1JSE
(0)!. ~99!

On the other hand, spin ordering~mean-field! temperature is
TC5 3

2 uJu, with J.20.03(r 1JSE
(0)) given in Eq. ~73!. Both

Torb and TC should, of course, be reduced by fluctuatio
~indeed, withJexpt522.75 meV,10 one obtains mean-field
TC.48 K instead of observed 27 K!, so it makes more sens
to consider their ratio, which is

Torb /TC.2.2. ~100!

For TC;25–30 K ~which is sample dependent!, this gives
an upper estimationTorb;55–70 K. We would like to think
that local orbital order, accompanied by short-range fer
magnetic correlations, starts to develop at these temp
tures. In fact, the presence of such correlations in YT3
below ;50–60 K has been reported from several expe
ments:~i! sharp drop in NMR relaxation rate, which has be
speculated in terms of orbital ordering,34 ~ii ! electron spin-
resonance line shape changes from typical paramagnetic
nal to the ferromagnetic one,35 ~iii ! weak quasielastic mag
netic scattering is observed aboveTC .10

VIII. ANGULAR MOMENTUM FLUCTUATIONS:
DYNAMICAL MAGNETIC SUSCEPTIBILITY

In this section, we would like to calculate orbital contr
bution to the inelastic neutron-scattering intensity. The po
is that t2g orbitals are magnetically active, as their angu
momentum may directly couple to the neutrons. Of cour
there is a contribution also in nonmagnetic channels: T
orbital quadrupole moment is coupled to the phonons,
hence single or double orbiton~depending on the structure o
this coupling! may be excited by neutrons indirectly via la
tice vibrations. We focus on the magnetic scattering, a
calculate orbital angular momentum dynamical suscepti
ity. If the t2g orbital level is split up by strong lattice distor
tions, one would expect just a local, crystal-field transitio
In SE-driven orbital picture, advocated in this paper, angu
momentum fluctuatios are however of the collective natu
Thus, we expect momentum selected~though strongly
damped! transitions, forming broad bands.

A. Quadrupole order

Consider first local angular momentum susceptibil
x loc(v) in the quadrupole ordered state. It is defined as

x loc~v!5^ lW i• lW i&, ~101!

and its imaginary part describes spectral shape of
momentum-integrated inelastic neutron-scattering cross
tion.

In a linear orbital wave approximation, the imaginary p
of x loc(v) at v.0 is given by

x loc9 ~v!5p(
kW

F 1

v1kW
d~v2v1kW !1

1

v2kW
d~v2v2kW !G .

~102!
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In order to account for a finite gap induced in the orbi
sector by lattice distortions~see Sec. V!, we use hereafter Eq
~66! for the orbital excitation spectrum. The numerical res
for x loc9 (v) is presented in Fig. 12. The sharp structure ab
Worb ~taken as an energy scale in the figure! is related to the
orbiton band-edge effects, which should go away wh
damping effects are properly taken into account.

We turn now to the momentum dependence of dynam
susceptibility, x(qW ,v)5^ lWqW• lW2qW&v . This quantity deter-
mines a dynamical structure factor, which atT50 is given
by

S~qW ,v!5
1

p
Imx~qW ,v!. ~103!

A noncollinear, four sublattice orbital order leads to the fo
lowing structure forx(qW ,v):

x~qW ,v!5 2
3 @x1~qW 1qW 1!1x1~qW 1qW 2!1x1~qW 1qW 3!#v

1
1

A3
@x2~qW 1qW 2!2x2~qW 1qW 1!#v1 1

3 @2x3~qW 1qW 3!

2x3~qW 1qW 1!2x3~qW 1qW 2!#v . ~104!

Here, the orbital ordering vectors

qW 15~p,0,p!, qW 25~p,p,0!, qW 35~0,p,p! ~105!

for the state~a! and

qW 15~p,p,p!, qW 25~p,p,0!, qW 35~0,0,p! ~106!

for the state~b!. The susceptibilities

x1~qW ,v!5 1
2 ^ l̃ qW

x
l̃

2qW
x

1 l̃ qW
y
l̃

2qW
y

&v , ~107!

FIG. 12. Solid line: Imaginary part of the local angular mome
tum susceptibilityx loc9 (v) @Eq. ~102!# in quadrupole ordered stat
of orbitals. The energyv is given in units ofWorb defined by Eq.
~67!. A finite gap for the orbital waves stemming from symmet
breaking interactions is taken into account according to Eq.~66!
with parametersf 50.086 and«50.18 ~this givesWorb.2r 1JSE).
The sharp peak structure is expected to be smoothed by dam
effects~not accounted for in the present study!, as indicated by the
broken line.
9-17
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x2~qW ,v!5 1
2 ^ l̃ qW

y
l̃

2qW
y

2 l̃ qW
x
l̃

2qW
x

&v ,

x3~qW ,v!5 1
2 ^ l̃ qW

x
l̃

2qW
y

1 l̃ qW
y
l̃

2qW
x

&v

are defined in a rotated basis given by the transformatio
Eq. ~19!. We calculate these susceptibilities in a line
orbital-wave approximation. The imaginary part ofxa(qW ,v)
at v.0 is obtained as

1

p
xa9 ~qW ,v!5Aa

11g11k

v1qW
d~v2v1qW !

1Ba

11g12k

v2qW
d~v2v2qW !, ~108!

where A15B151/2, A252B25g2 /2k, and A352B3
5g3 /2k.

Numerical results forS(qW ,v) in the state I~a! are shown
in Fig. 13. An intensive hot spot at momentumqW
5(p,p,p) at energies about orbiton gap, and flat dispersi
at (p,p,qz) direction are noticed. The rather complicat
multiband structure has its origin in noncollinear nature
the underlying orbital ordering, characterized by a seve
ordering vectors.@In the state I~b!, which has different order-
ing vectorsqW i , S(qW ,v) shows different energy-momentum
structure~not shown!#. The energy scale for orbital fluctua
tions (;Worb;2r 1JSE) is much larger than magnon ene
gies. This is because of strong cancellation of ferromagn
and AF contributions to the spin-exchange integralJ ~see
Sec. VI A!, resulting in rather small magnon bandwid
~which is only a fraction ofr 1JSE). Therefore, magnon ex
citations are expected to be well defined, since they are
cated within the orbital gap. As for the high-energy orbi
excitations, we expect strong damping effects stemm
from nonlinear couplings between orbital waves themselv
and also from the dynamical coupling between spin and
bital fluctuations. These effects should in fact relax mom

FIG. 13. ~Color online!. Intensity of the orbital contribution to

the magnetic structure factorS(qW ,v) @Eq. ~103!# in the quadrupole
ordered state I~a!. Energyv is given in units ofWorb defined by Eq.
~67!. A finite orbital excitation gap due to symmetry-breaking term
~see for details Sec. V! is taken into account according to Eq.~66!
with parametersf 50.086 and«50.18.
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tum resolution and smooth away sharp structures obtaine
Fig. 13 by using undamped orbital waves.

B. Orbital magnetic state

For completeness, we also give equations for the m
netic response of the magnetically ordered state of orbit
In contrast to the quadrupole ordering, this state gives ris
static Bragg peaks of orbital origin. These peaks are loca
at orbital ordering vectorsqW i @Eqs.~105! and ~106!#:

^ lWqW• lW2qW&5 1
3 ^ml&

2@d~qW 2qW 1!1d~qW 2qW 2!1d~qW 2qW 3!#,
~109!

and their intensity is determined by the orbital magnetic
der parameterml50.19 @Eq. ~38!#.

The dynamical susceptibilityx(qW ,v) is given by the same
form as Eq.~104! with x1,2,3(qW ,v) having the same defini
tions given by Eqs.~107!. In the orbital magnetic state, thes
susceptibilities are obtained as follows:

x19~qW ,v!5
p

4 F 1

v1qW
d~v2v1qW !1

1

v2qW
d~v2v2qW !G

~110!

and

x2,39 ~qW ,v!5
pg2,3

4k Fg11k

v1qW
d~v2v1qW !2

g12k

v2qW
d~v2v2qW !G .

IX. SUMMARY AND DISCUSSION

In this paper we investigated a spin-orbital superexcha
Hamiltonian in a Mott insulator witht2g

1 electron configura-
tion, focusing mainly on the orbital order and dynamics
the spin ferromagnetic state. An important feature of
Hamiltonian in the spin polarized state is the large frustrat
of orbital states, thus the ground state is governed by
interplay between orbital frustration and quantum fluctu
tions. On the classical level, there is alocal Z2 symmetry
which leads to an infinite degeneracy of classical configu
tions. Long-range orbital order does occur in the model b
quantum order-from-disorder mechanism, which select
particular ordering patterns. Orbital orderings are quite
usual having highly noncollinear four sublattice structu
and provide the same spin couplings in all cubic directio

Besides classical localZ2 symmetry which is removed by
quantum dynamics, there are exact conservation laws in
orbital Hamiltonian. They are related to the conservation
orbital quantum numbers in the SE process, and lead
multitude of degenerate quantum ground states which
smoothly be connected to each other by phase rotation
the complex orbital order parameter. Such continuous ro
tions generate orbital Goldstone modes, which have 2D
persion because of planar geometry oft2g orbitals. As a re-
sult, static orbital order sets in at zero temperature o
Degenerate quantum ground states are physically differ
depending on the phase of the orbital condensate, they
scribe quadrupole or magnetic orderings or their coher
9-18



o
fi
tu
ll
i

te
tu

er
y
r-
te

i-
u
h

th
ra
he
e

at
flu
ce
th

o
-

th
x-
r

th
es
lu
n
el
r-

col-
ate
ort-
g
and
ight

en-
ra-
ret-
en

er-
ing

in
-

r-
we
all

er.
ave
ons

nt
or.
tal

or
hi-
l-

l
for
his
l-

for

n

lo

’’-
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mixture. Extrinsic perturbations, e.g., lattice distortions
spin-orbit interactions may remove the degeneracy and
the phase of the condensate. Reflecting the large quan
fluctuations, the orbital order parameter is unusually sma

We found that the orbitally ordered ferromagnetic state
slightly higher in energy than the spin-AF orbital liquid sta
This is because the latter state gains an additional quan
energy from coupled spin-orbital fluctuations. To explain f
romagnetism of YTiO3, we emphasized the role played b
Ti-O-Ti bond angle distortion. This distortion favors fe
rostate by generating an unfrustrated ferromagnetic SE in
action via virtual hopping of electrons between NNt2g and
eg orbitals. Even more importantly, the bond distortion elim
nates orbital soft modes and opens a large orbital gap, s
that orbital order becomes stable at finite temperature. T
distortion stabilizes the quadrupole ordered state.

The strong competition between AF to F states in
present model has direct relevance to nearly continuous t
sition between these states observed in titanates. In t
compounds,A-site substitution from La to Y increases th
Ti-O-Ti bond distortion, hence changing gradually a delic
balance between AF and F states. Because of the orbital
tuations, spin-exchange integral on every link experien
strong fluctuations, both in amplitude and in sign, and
system may develop either an AF or F state depending
local orbital correlations. In this picture of ‘‘fluctuating ex
change bonds,’’ the magnetic transition temperaturesTN and
TC represent only a time averaged static component of
spin couplings. Its value is only a fraction of full supere
change energy scale, and can gradually be tuned by exte
forces such as lattice distortion, pressure, etc. We think
weak orbital order may continuously evolve in titanat
when the bond angle decreases below a certain critical va
and propose the phase diagram shown in Fig. 14. The sig
the time-averaged spin coupling depends on a local corr
tion of orbitals. To the right of the critical point orbital co

FIG. 14. Proposed picture for the evolution of magnetic a
orbital states in perovskite titanates.TC andTN are Curie and Ne´el
spin ordering temperatures, respectively. Orbital ordering be
Torb.TC is expected in ferromagnetic region. BelowT* , short-
range ferromagnetic-type spin and noncollinear, dominantly ‘‘AF
type orbital correlations grow up.
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relations are more antiferromagnetic, supported by non
linear orbital orderings. To the left, the genuine ground st
of the t2g superexchange, an orbital disordered state supp
ing spin AF is stabilized. In the proximity area, a fluctuatin
part of the overall superexchange interaction dominates,
separation of the spin and orbital degrees of freedom m
no longer be possible. This scenario can be tested experim
tally by investigating the spin and orbital transition tempe
tures under high pressure and magnetic field. On the theo
ical side, a quantitative description of the transition betwe
ferromagnetic and AF states, controlled by orbital ord
disorder transition, remains an interesting and challeng
problem.

Further, in order to discuss the recent spin-wave data
YTiO3, we derived the low-energy spin Hamiltonian by in
cluding a relativistic spin-orbit coupling and lattice disto
tions that induce the orbiton gap. Using this Hamiltonian,
calculated the magnon gap and found that it is very sm
because of high symmetry of the underlying orbital ord
Both the real and the spin space isotropy of the spin-w
spectra observed experimentally find natural explanati
within the proposed theory.

We also calculated the orbital contribution to resona
x-ray intensity and to dynamical magnetic structure fact
Predictions made should be helpful in further experimen
study of titanates.
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APPENDIX A: BOND DEPENDENCE OF QUADRUPOLE
MOMENT OPERATORS

In this appendix, we present the explicit expressions
Qa

(g) , Ta
(g) . By replacingl a in Eqs.~24! with l a

(g) , one ob-
tains

Qx
(g)5H 2cQx7sTz for g5a~b!

Qx for g5c,

Tz
(g)5H 2cTz6sQx for g5a~b!

Tz for g5c,

Tx
(g)5H 2cTx7sTy for g5a~b!

Tx for g5c,

Ty
(g)5H 2cTy6sTx for g5a~b!

Ty for g5c.
~A1!

T61
(g) is given byT61

(g)5Ty
(g)6Tx

(g) .

d

w
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APPENDIX B: COEFFICIENTS OF BOGOLIUBOV
TRANSFORMATION

We present the coefficients of Bogoliubov transformat
which diagonalizeHOW in Eq. ~28!. This transformation
reads as follows:

ãkW5ucoshu1a1kW1vcoshu2a2kW

2usinhu1a12kW
† v sinhu2a22kW

† ,

b̃kW52v coshu1a1kW1u coshu2a2kW1v sinhu1a12kW
†

2u sinhu2a22kW
† . ~B1!

The inverse transformation is given as follows:

a1kW5u coshu1ãkW2v coshu1b̃kW1u sinhu1ã
2kW
†

2v sinhu1b̃
2kW
† ,

a2kW5v coshu2ãkW1u coshu2b̃kW1v sinhu2ã
2kW
†

1u sinhu2b̃
2kW
† . ~B2!

Here,u andv are

u5
1

A2
A11

g2

k
~B3!

and

v5
1

A2
A12

g2

k
sgn~g3!, ~B4!

respectively, andu1,2 is given by tanh2u1,25g16k.

APPENDIX C: MAGNON GAP BY SINGLE-MODE
APPROXIMATION

We examine here the magnon excitation gap, generate
cubic anisotropy interaction given in Sec. VI B, by using
different approach: namely, we apply single-mo
approximation.29 In this approximation, spin excitation en
ergy atqW→0 is given as follows:

vqW→05
^@@SqW

1 ,Hs#,S2qW
2

#&qW→0

^SqW
1

S
2qW
2

&qW→0

, ~C1!

whereHs is given in Eq.~89! with Si
(a)5Si

x ,Si
(b)5Si

y and
Si

(c)5Si
z . Double-commutator correlation function in the n

merator of Eq.~C1! is equal to( i j G i j
(g) , where

G i j
(a)52Ã^Si

zSj
z2 1

2 ~Si
2Sj

11Si
2Sj

2!&,

G i j
(b)52Ã^Si

zSj
z2 1

2 ~Si
2Sj

12Si
2Sj

2!&,

G i j
(c)52Ã^22Si

zSj
z1Si

1Sj
2&. ~C2!

By using linear spin-wave theory, one obtains
20510
by

(̂
i j &

G i j
(g)52zSÃ(

kW
Fg3^akW

†
akW&2

1

A3
g2^akW

†
a

2kW
†

&G ,

^SqW
1

S
2qW
2

&qW→052S^11a0
†a0&. ~C3!

Expectation valueŝakW
†
akW& and ^akW

†
a

2kW
†

& are calculated atT

50. Up to linear inÃ terms, one obtainŝakW
†
akW&50 and

^akW
†
a

2kW
†

&5
Ã

2zJ

cx2cy

12g1
. ~C4!

Consequently, we find the magnon gap

vqW→05
2Ã2R

zJ
, ~C5!

whereR is given by Eq.~93!. This is exactly the result ob
tained in Sec. VI C.

APPENDIX D: EFFECT OF ORBITAL EXCITATIONS
ON THE MAGNON DISPERSION

In Sec. VI A, we discussed the renormalization of neare
neighbor isotropic spin couplingJ by orbital fluctuations.
Here, we investigate this effect in more detail, by consid
ing effects of the dynamical spin/orbital coupling on magn
spectra. In terms of magnonspW and orbitonãqW ,b̃qW operators,
the dynamical spin/orbital coupling in Eq.~69! is expressed
as ~in units of r 1JSE)

Hint52
1

2 (
pW qW qW 8

spW 8
†

spW@QG0~ ãqW 8
†

ã2qW1b̃qW 8
†

b̃2qW !

1~G11G2!ãqW 8
†

ãqW
†
1~G12G2!b̃qW 8

†
b̃qW

†
22G3ãqW 8

†
b̃qW

†
#

1H.c., ~D1!

wherepW 85pW 2qW 2qW 8. FactorQ. 0.19 stems from Hartree
decoupling of theQizQjz term in Eq.~23!. G0 andG i (51,2,3)
are given as follows:

G0511g1qW 1qW 82g1pW2g1qW 1qW 82pW

G i5g iqW1g iqW 82g iqW 2pW2g iqW 82pW . ~D2!

Second-order perturbation with respect toHint gives the
renormalization of magnon excitation energy asvpW5vpW

(0)

2dvpW . Here, magnon softeningdvpW is given by

dvpW5
1

2 (
qW qW 8

F M ~11l!

v1qW1v1qW 81vpW 82vpW

1
M̃ ~11l̃ !

v1qW1v2qW 81vpW 82vpW
G , ~D3!
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where v1,2qW5(m22g6
2 )1/2 with g65g16k correspond to

two orbiton branches. The orbiton chemical potentialm con-
trols the orbital gap. Magnon energyvp that enters in this
equation is considered to have a NN Heisenberg fo
3uJu(12g1qW). The matrix elements in the numerator have
following structure:

M5~G11rG0!2~11x!1G2
2~11y!1G3

2~12y!

12~G11rG0!~G2c21G3c3!12G2G3z, ~D4!

where

l5
m21g1qWg1qW 82v1qWv1qW 8

2v1qWv1qW 8

,

r 52
m

11l

g1qW1g1qW 8

2v1qWv1qW 8

Q,

x5~g2qWg2qW 81g3qWg3qW 8!/kqWkqW 8 ,

y5~g2qWg2qW 82g3qWg3qW 8!/kqWkqW 8 ,

z5~g2qWg3qW 81g3qWg2qW 8!/kqWkqW 8 , ~D5!

and

c25
g2qW

kqW
1

g2qW 8

kqW 8

, c35
g3qW

kqW
1

g3qW 8

kqW 8

. ~D6!

Interband orbiton transitions are represented by a sec
term in Eq.~D3!. To obtainM̃ andl̃, one should just replace
kqW 8 → 2kqW 8 in the above equations.~This also leads tov1qW 8→ v2qW 8 in l and r ). One can verify that the functiondvpW

has a cubic symmetry in a momentum space. This proper
guaranteed by the high symmetry of the underlying orb
order in any level of approximations. The longer-rang
next-NN spin couplings might, of course, be dynamica
generated by orbital fluctuations.

We show the numerical result for magnon renormalizat
dvpW in Fig. 15. For magnon dispersion in Eq.~D3! we used
uJu50.03(r 1JSE

(0)).0.05(r 1JSE) as obtained from Eq.~73!,
while orbiton dispersion is calculated withm51.41 which
gives orbiton gap.r 1JSE. As estimated in the main tex
such a gap would be induced by nondiagonal hopping To
a deviation of the magnon remormalizationdv from the NN
Heisenberg form, broken line shows a function 3(dJ)(1
2g1qW) with dJ50.2. It is noticed thatdJ is indeed close to
dJe f f52/9 obtained in the main text for the reduction of N
spin couplings. Slight deviations from simple NN model a
however visible; in particular, a stronger softening at t
(ppp) point is seen. By a numerical fitting, these deviatio
can be traced back to the appearance of longer-range f
magnetic couplingsJ2520.003, J350, and J4520.007
~all in units ofr 1JSE). This is understood due to longer rang
orbital singlet correlations along the cubic directions, asJ4
corresponds to a ferromagnetic coupling between seco
nearest-neighbor spins along cubic axes. In principle, th
corrections could be observable as a slight enhanceme
20510
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the ratio of small momentum spin stiffness to full magn
bandwidth as compare to the NN Heisenberg model.
should notice however that more quantitative predictions
not possible at the present stage of the theory for rather
vious reason: A dynamical spin-orbital interaction is stro
~with the coupling constant being of the order of 1!, so a
more elaborate treatment is needed to quantify the stron
correlated model under consideration.

APPENDIX E: EXAMINATION OF SPIN INTERACTIONS
IN THE PREVIOUS ORBITAL MODELS FOR YTiO 3

In this appendix, we examine the magnetic interactions
the orbital state previously reported in Refs. 15, 23–26,
order to check whether this state can explain recent neu
scattering results on the spin couplings, spin canting
magnon gap.

The Heisenberg spin-exchange coupling.First, we discuss
bond dependence of the isotropic spin interactions. The
bital state reported by Hartree-Fock15 and band-structure23

calculations are expressed as

uc1,3&5Ancudxy&6A12ncudxz&,

uc2,4&5Ancudxy&6A12ncudyz& ~E1!

with nc being an occupation of thexy orbital. Using these
wave functions, it is easy to obtain from Eq.~2! spin-
exchange couplings alongc, a, andb axes:

J(c)5 1
2 JSE@~r 11r 2r 3!~12nc!2~r 12r 2!#~12nc!

~E2!

and

J(ab)5 1
2 JSE@~r 11r 2r 3!nc

22 1
2 ~r 12r 2!~11nc!#. ~E3!

The exchange interactions are presented as functionsh
in Fig. 16 for different values ofnc . The ‘‘meeting’’ points,
where J(c)5J(ab), are shown by circles for eachnc . One
finds that the isotropy point for the state withnc50.5 ~sug-

FIG. 15. Solid line: The reduction of the magnon energydvp ~in
units of r 1JSE), calculated from Eq.~D3!. Broken line is a function
3(dJ)(12g1pW ) with dJ50.2, showing that the effect ofdvp can
fairly be regarded as an effective reduction of NN spin coupling
9-21
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gested in Refs. 15,23! is right at the borderh50, but the
exchange coupling is of the AF sign there. For largernc one
may obtain the isotropy point with F coupling, but this r
quires too large values ofh. Moreover, the meeting point i
extremely sensitive to bothh and nc and requires fine tun
ing. As shown in the inset of Fig. 16, theJ(ab)/J(c) ratio
drastically changes even at a small~just within 65%) varia-
tion of nc , and may even reverse the sign.

Spin anisotropy interactions.Next, we investigate the ef
fects of spin anisotropy interactions in the state, Eq.~E1!. We
denote the occupied orbital state described by wave fu
tions in Eq.~E1! by a, while the lowest unoccupied state
calledb. The stateb has wave function which is a counte
part of that for a a state; e.g., uc̃1&5A12ncudxy&
2Ancudxz& on site 1. Level separation betweena and b is
introduced asDab . Active components of the angular mo
menta at sites 1, 3 and 2, 4 arel x andl y , respectively. These
are expressed in terms of orbital doublet operators as
lows:

~ l x!1,356 i ~b†a2a†b!, ~E4!

and

~ l y!2,457 i ~b†a2a†b!. ~E5!

As usual, the spin anisotropy Hamiltonian follows from pe
turbation theory with respect to spin-orbit couplingHso and
superexchange interactionHSE. In the SE operatorsĴi j

(c) and

K̂ i j
(c) , the following terms contribute to the spin anisotro

Hamiltonian:~i! the terms operating in theb excited states,
and ~ii ! the terms connecting a ground statea with excited
onesb.

Symmetric spin anisotropy interaction. Third-order pertur-
bation with respect toHso and HSE gives symmetric spin
anisotropy HamiltonianHani . For 1-3 bond along thec di-
rection,Hani is given by

FIG. 16. Spin-exchange interactions in model~E1! as a function
of Hund’s couplingh for different values of thexy-orbital occupa-
tion nc . Energy unit isJSE54t2/U. Filled circles show the position
where spin couplings are isotropic for a fixed value ofnc . Inset:
The ratioJ(ab)/J(c) as a function ofnc for fixed h50.24.
20510
c-

l-

-

Hani
(13)5Ã~S1xS3x!, ~E6!

where

Ã5JSE

r 11r 2

4 S l

Dab
D 2

4nc~12nc!. ~E7!

Here, the terms proportional to small numbers (r 12r 2) and
(r 22r 3) are neglected. For 2-4 bond along thec direction

Hani
(24)5Ã~S2yS4y!. ~E8!

Note that spin components correspond to that of active
gular momentum and the interaction is of the AF sign. T
originates from the fluctuation of active angular momen
with AF correlation between NN sites, as can be inferr
from Eqs.~E4! and ~E5!. For the 1-2 bond in theab plane,
Hani has the following form:

Hani
(12)52 1

4 Ã~S1zS2z!1 1
2 Ã~S1yS2x!. ~E9!

The combination of spin components in the last te
is different from that of active momenta at sites 1 a
2. Such terms originate from the following process
~combination of operators!: ^ l 1xS1x(S1zS2z) l 2yS2y&orb ,
^ l 2yS2y(S1zS2z) l 1xS1x&orb , etc. For 3-4 bond, symmetric
spin anisotropy HamiltonianHani has the same form a
Hani

(12) , where site index 1~2! is replaced with 3~4!. It can be
shown thatHani does not cause finite spin canting whenuJu
*Ã/2, whereJ is the isotropic spin coupling. However,
leads to a large magnon gap of classical origin, which
obtained to beA3ÃS.

DM interaction. For the 1-3 bond, second-order perturb
tion with respect toHso andHSE gives

HDM
(13)5D̃ (c)dW 13•~SW 13SW 3!, ~E10!

where constantD̃ (c) is obtained as

D̃ (c)5JSE

r 11r 2

4

l

Dab
4nc

1/2~12nc!
3/2. ~E11!

DM vectordW 13 is given asdW 135(21,0,0). We point out here
that DM constantD̃ (c) is much larger thanD in Eq. ~87!,
obtained in the main text for the SE-driven orbital states. T
reason is that the orbital order given by Eq.~E1! has not that
high symmetry, and the terms proportional to (r 11r 2) in the
operatorĴi j

(c) do contribute to DM interaction. Therefore, th

ratio D̃ (c)/D}(r 11r 2)/(r 12r 2)}1/h is large.
On the in-plane bond 1-2, we find

HDM
(12)5 1

2 D̃ (ab)dW 12•~SW 13SW 2!, ~E12!

with D̃ (ab)5D̃ (c)nc /(12nc) anddW 125(21,21,0). The DM
interactions on the 2-4 and 3-4 bonds are given by the s
forms as Eqs.~E10! and ~E12!, respectively, wheredW 24

5(0,1,0) anddW 3452dW 12. The DM interaction and related
spin structure in the orbital model~E1! are schematically
shown in Fig. 17.

Spin canting and magnon gap. First we estimate anisot
ropy constants. We consider the orbital state withnc50.6
9-22
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which has a chance to explain theJ(c)5J(ab) property, giv-
ing isotropic spin couplingJ about20.1JSE at h50.24 ~see
Fig. 17!. Given these parameters, one obtains from Eqs.~E7!
and ~E11!,
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