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An investigation is presented of the utility of semiclassical approximations for solving the quantum-impurity
problems arising in the dynamical-mean-field approach to correlated-electron models. The method is based on
performing an exact numerical integral over the zero-Matsubara-frequency component of the spin part of a
continuous Hubbard-Stratonovich field, along with a spin-field-dependent steepest descent treatment of the
charge part. We test this method by applying it to one- or two-site approximations to the single-band Hubbard
model with different band structures, and comparing the results to quantum Monte Carlo and simplified exact
diagonalization calculations. The resulting electron self-energies, densities of states, and magnetic transition
temperatures show reasonable agreement with the quantum Monte Carlo simulation over wide parameter
ranges, suggesting that the semiclassical method is useful for obtaining a reasonable picture of the physics in
situations where other techniques are too expensive.
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I. INTRODUCTION

Correlated-electron materials, in which the interaction en-
ergy is comparable to or larger than the electron kinetic en-
ergy, are an important topic in materials science. In these
compounds, standard band theory is an inadequate represen-
tation of the physics. The discovery of high-Tc superconduc-
tivity in the oxide cuprates1 led to greatly increased interest
in correlated-electron compounds. Many materials have been
studied, and many novel properties have been discovered,
including colossal magnetoresistance, variety of spin, orbital,
charge orderings, and unconventional superconductivity.2,3

Understanding the novel phenomena and determining the
correct electronic phases in these materials are challenging
tasks, and are indispensable for developing electronic de-
vices exploiting these properties of correlated-electron mate-
rials. However, the rapid increase of Hilbert space with sys-
tem size limits the utility of exact-diagonalizaion �ED�
methods, while the fermion “sign problem” renders Monte
Carlo �MC� approaches ineffective.

Dynamical-mean-field theory �DMFT� is a promising ap-
proach for treating correlation effects.4–6 The method may be
combined with realistic band-structure calculations, and has
been applied to a variety of materials �see Refs. 7–10 for
example�. In DMFT, the momentum-dependent electron self-
energy is approximated as a finite set of functions of fre-
quency, and the physical lattice problem is mapped into one
or several coupled impurity-Anderson models �IAMs� with
the environment determined self-consistently. To solve the
IAM, a variety of theoretical methods have been applied,
including analytical approximations such as iterated pertur-
bation theory,6,11–13 the noncrossing approximation,14 the
projective self-consistent method,15 and the slave-boson
method,16 for example, and numerical methods including
quantum Monte Carlo �QMC�,17–19 exact diagonalization,20

numerical renormalization group,21,22 and density-matrix
renormalization group.23,24 Most interesting phenomena can-

not be addressed by analytical methods. Numerical methods,
however, are computationally very expensive. In order to
combine DMFT with a realistic band-structure calculation
and survey a wide range of parameters, it is desirable to
develop computationally cheap and reliable methods. Meth-
ods that can reproduce the correct electronic phases and dis-
tinguish phases near in energy at low temperature are par-
ticularly needed. Many ideas have been proposed to reduce
the computational cost.25–30 These fall mainly into two
groups: approximating the environment by a small finite
number of orbitals,25,26 and perturbative methods involving
expansions around a certain solvable limit.27–30 The
approximated-environment methods provide a good approxi-
mation to the T=0 Mott physics of the Hubbard model;25,26

however, because only a small number of states are used, it
has difficulty dealing with the thermodynamics �as discussed
later�, and becomes impractical for multiorbital and multisite
systems. Perturbative methods are not reliable at intermedi-
ate coupling. Nonperturbative methods which can deal with
the thermodynamics are required.

In this paper, we investigate an alternative method to
solve the IAM in DMFT formalism: a semiclassical approxi-
mation based on the continuous Hubbard-Stratonovich
transformation.31 This method is computationally very cheap
�approximately two orders of magnitude faster than the
QMC technique for single-impurity models, and with a better
scaling with system size�: it may be performed on a commer-
cial PC. The semiclassical approximation, in the form used
here, was apparently first proposed by Hasegawa,32 who used
it to study a “single-site spin fluctuation theory” which may
be viewed as an early, simplified version of dynamical-mean-
field theory. Semiclassical methods were also used by Bla-
wid and Millis33 and by Pankov, Kotliar, and Motome34 to
study models of electrons coupled to large-mass oscillators.
In this paper, we present an implementation in the context of
dynamical-mean-field theory, and test its reliability for a
fully quantal model problem, namely, the Hubbard model on
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a variety of lattices by performing detailed comparisons be-
tween the semiclassical approximation and a QMC calcula-
tion. We also present a brief comparison to a successful
“truncated-environment method:” the two-site DMFT.25 The
semiclassical approximation is found to be reasonable at
high temperature and in the strong coupling regime, and
gives good results for magnetic transitions. In the half-filled
square lattice, the Néel temperature computed by the semi-
classical approximation is very close to that found in QMC
simulations. In the metallic face-centered cubic �fcc� lattice,
ferromagnetic Curie temperatures computed by the present
method are within a factor of 2 compared with the QMC
results, and the competition between ferro- and antiferro-
magnetism is correctly captured; T=0 phase boundaries are
obtained within an error of �20% compared to QMC results.
The T=0 phase boundaries are in the same range as found in
two-site DMFT, but this latter method gives very poor tran-
sition temperatures. We also use the semiclassical approxi-
mation to compute dynamical properties, in particular, the
electron self-energy and spectral functions, which are found
to be in reasonable agreement with QMC results.

The rest of this paper is organized as follows. Section II
formulates the semiclassical approximation. In Sec. III, we
use the Gaussian fluctuation approximation to estimate the
limits of validity of the semiclassical approximation. Sec-
tions IV and V compare numerical results for the semiclas-
sical approximation to QMC, ED, and Hartree-Fock �HF�
results, for the single-band Hubbard model on a square lat-
tice and a face-centered cubic lattice, respectively. Section
VI presents an application of the method to the two-impurity
cluster dynamical-mean-field approximation for the half-
filled Hubbard model. Comparison of nearest-neighbor spin
correlation between the semiclassical approximation and the
QMC method are given. In Sec. VII, we discuss the equili-
bration problem associated with the partitioned phase space
in the semiclassical approximation and QMC simulation. Fi-
nally, Sec. VIII gives a summary and discussion.

II. FORMULATION

In this section, we derive the semiclassical approximation
from the continuous Hubbard-Stratonovich �HS�
transformation.31 We consider a single-orbital repulsive Hub-
bard model for simplicity: H=Hband+HU with Hband and HU
being the single-particle dispersion and interaction terms, re-
spectively. Generalizations to multiorbital and long-range in-
teraction would also be possible: see, e.g., Refs. 35–39.

We take the band-dispersion term to be Hband
=�k��kck�

† ck� with three choices of �k.
On the two-dimensional square lattice,

�k�
square = − 2t�cos kx + cos ky� . �1�

On the three-dimensional fcc lattice,

�k�
fcc3 = 4t�cos kxcos ky + cos kycos kz + cos kzcos kx�

+ 2t��cos 2kx + cos 2ky + cos 2kz� , �2�

where t and t� are the nearest-neighbor �NN� and the second
NN hopping, respectively.

On the infinite-dimensional fcc lattice, the noninteracting
density of states is given by

Nfcc���� =
exp�− �1 + �2��/2�

���1 + �2��
, �3�

which diverges at the bottom of the band. Nfcc� was intro-
duced by Müller-Hartmann42 and studied in detail by
Ulmke.43 Here, energy is scaled by the variance of the den-
sity of states �DOS� �v=1�. The fcc lattices are of interest
because these display a ferromagnetic phase in a wide range
of doping.

The interaction term is given by

HU = U�
i

ni↑ni↓ �4�

with U�0.
In the DMFT approximation, one first needs to compute

the partition function of an N-site impurity model as

Z =� D	c†,c
exp�− �S0 + Sint�� , �5�

with

S0 = − �
0

�

d� d��	�
†���a��� − ���	����� �6�

where 	= 	c1 ,… ,cN
t with ci �ci
†� being a Grassmann num-

ber corresponding to the electron annihilation �creation� op-
erator at site i. a� is the N
N matrix Weiss field �inverse of
the noninteracting Green’s function� which will be deter-
mined self-consistently, and �=1/T is the inverse tempera-
ture. Sint represents the interaction term specified by the
model one considers. For the single-band Hubbard model,
Sint=U�d��ini↑���ni↓���.

Next, one computes the single-particle interacting Green’s
function G� by a functional derivative of ln Z with respect to
a� as

G� =
� ln Z

�a�

. �7�

The electronic self-energy is obtained by inverting the Dyson
equation as

�� = a� − G�
−1. �8�

Finally, by connecting the impurity Green’s function G and
the local part of the lattice Green’s function, the DMFT equa-
tion is closed. The self-consistency equation for the ij com-
ponent of G is

Gij��i�n� =� � dk

2�

d� 
ij�k�

i�n + � − tk − �k��i�n��ij

, �9�

where �n is the fermionic Matsubara frequency, and tk and
�k are the Fourier transforms of the hopping and the self-
energy matrices, respectively. 
ij�k� is a form factor specified
by the DMFT method chosen.40 The chemical potential � is
fixed so that G gives the correct electron density n. The local
Green function G is used to update the Weiss field a�

new as
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a�
new=G�

−1+��, and this process is repeated until the self-
consistency a�=a�

new is obtained. The expensive computa-
tional task is evaluating the functional integral in Eq. �5�.

A key point of the present approximation for the single-
band Hubbard model is introducing the charge field as well
as spin. Using the following identity:

n↑n↓ =
1

4
��2 − m2� , �10�

with �=n↑+n↓ and m=n↑−n↓, we perform the HS transfor-
mation exp�−Sint�=�D	
 ,x
exp�−Sint� � with the effective in-
teraction

Sint� =
1

4U
�

0

�

d���
2��� + x2����

− 2U�
�

c�
†����
����z + ix����c����
 , �11�

where 
 and x are the HS fields acting on spin and charge
degrees of freedom, respectively, and �z is the z component
of the Pauli matrices. Now, one can perform the Grassmann
integral over the fermionic field formally to obtain the parti-
tion function

Z =� D	
,x
exp�− Sef f� �12�

with the effective action

Sef f =
1

4U
�

0

�

d��
2��� + x2���� − Tr ln�− a� −
1

2
�
�z + ix�
 .

�13�

Here, the trace includes spin as well as Matsubara frequency.
It is noted that the coupling constant for the charge field x is
imaginary. This originates from the different sign of qua-
dratic terms for spin and charge when decoupling the inter-
action term 	see Eq. �10�
.

Exact evaluation of the partition function Eq. �12� is im-
possible. The simplest approximation is to approximate the
integrals by the value computed using the static parts 
̄ and
x̄ which minimize the action 	solutions of the saddle-point
equations �S�
̄ , x̄� /�
̄=�S�
̄ , x̄� /�x̄=0
. This is the Hartree-
Fock approximation, which is known to give a poor estimate
for transition temperatures and self-energies. One may cor-
rect the HF approximation by including the Gaussian fluc-
tuations in which Sef f is expanded around the saddle point up
to the quadratic order of the fluctuations �
��� and �x���.
In this case, �
��� and �x��� decouple. However, Gaussian
fluctuation theory is limited to the weak coupling regime.
As an example, Fig. 1 shows an effective potential V for

, equivalent to TSef f, calculated �as explained below� by
the semiclassical approximation. It is seen that the potential
is highly nonparabolic, and the variation in V is on the
scale of T for reasonable T. Thus, the Gaussian fluctuation
theory is inapplicable. Next, one can consider taking 
 and
x only at the Matsubara frequency �l=0, i.e., the static
approximation, but evaluating the partition function Z as
a two-dimensional integral over two static fields �two-field

approximation�. The partition function is expressed as
Zstatic=�d
 dxexp�−Sstatic� with

Sstatic =
�

4U
�
2 + x2� − Tr ln�− a� −

1

2
�
�z + ix�
 . �14�

However, this approximation fails because the effective ac-
tion Sstatic is complex and exp�−Sstatic� cannot be regarded as
a distribution function of 
 and x, leading to poor conver-
gence of integrals. With some effort, apparently converged
integrals can be obtained, but the interacting Green’s func-
tion computed by using Eq. �7� with Z replaced by Zstatic
does not behave correctly; the imaginary part of the self-
energy changes sign and the spectral-function sum rule is
strongly violated. As an example, Fig. 2 compares self-
energies computed by evaluating the static average and inte-
grating over two static fields 
 and x with the action Eq. �14�
to the semiclassical approximation defined shortly. While we
have obtained a converged solution along the Matsubara
axis, the imaginary part of the self-energy changes sign and
causality is strongly violated, so that the analytic continua-
tion to the real axis is impossible.

In order to reduce the above mentioned problems and to
take into account the fluctuation of both fields to some ex-
tent, we apply the semiclassical approximation, following
Hasegawa.32 In this method, we first solve the mean-field
equation for the static charge field x̄
 which minimizes S at a
given value of 
. From �Sef f /�x̄�
=0, we obtain the follow-
ing equation ��
= ix̄�
�:

�
 = − UT Tr
1

a� + �
�z + �
�/2
. �15�

Here, Tr involves a convergency factor ei�n0+. By solving Eq.
�15�, one obtains �
 as a function of 
. In the single-impurity
model, this equation has a unique solution; thus, Eq. �15� can
be solved easily, for example, via bisection. �For multi-

FIG. 1. Example of the effective potential for 
, V�
� given in
Eq. �16�, in the square-lattice half-filled Hubbard model with U / t
=6. Solid line, T / t=0.4 �about 14% above TN�0.35t�; broken line,
T / t=0.3 �about 14% below TN�. At both temperatures, V is far from
a simple parabola, and regions far from the local minima have
appreciable occupation probability.
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impurity models, we have no proof that there is a unique
solution, but difficulties have not arisen in the case we have
studied.� Fluctuations of the charge field around this saddle
point are expected to be less important than those of the spin
field, because of the unique solution and because charge fluc-
tuations are not soft, and the difficulties associated with the
oscillatory convergence of Eq. �14� are avoided.

The 
 dependence of � is crucial. If it is neglected, i.e., if
� is taken to be the value �av which minimizes Sef f after
averaging over 
, then one obtains a model equivalent to the
Jahn-Teller phonon model studied, for example, in Ref. 41.
This latter model has different physics from the Hubbard
model. In particular, the Jahn-Teller model has a spectral
function with a characteristic three-peak structure quite un-
like the spectral function of Hubbard-like models. An ex-
ample of the density of states computed by the approxima-
tion �
→�av is shown as the broken line in Fig. 3. One can
clearly observe a three-peak structure. The outer two peaks
correspond to the occupied �lower band� and unoccupied
�upper band� state at the occupied distorted site �from a po-
tential minima at 
� ±U�, and the middle peak corresponds
to the unoccupied undistorted state �from a potential mini-
mum at 
�0� in the phonon model. In the phonon model,
the level separation between the lower occupied state and the
middle unoccupied one has physical meaning as “polaron
binding,” which does not exist in the original Hubbard
model. The spectral function computed from the “full” semi-
classical method �see below� is shown as the solid line in
Fig. 3, and as will be seen below is in much better agreement
with QMC data.

Now that the saddle point of the effective action is deter-
mined with respect to one of two variables, �, an effective
potential for the remaining variable 
 is written as

V�
� =
1

4U
�
2 − �


2� − T Tr ln�− a� −
1

2
�
�z + �
�
 ,

�16�

where Tr involves a convergency factor ei�n0+. With this ef-
fective potential, the partition function is approximated as

Zapprox = �
−�

�

d
 exp�− �V�
�� . �17�

There remains only one variable 
, which is purely real.
Numerical integrals can be performed without difficulty. Fig-
ure 4 shows an example of V�
� and �
 calculated by the
“full” semiclassical approximation for a noninteger filling. It
is seen again that V is highly nonparabolic. Furthermore, �


depends on 
, indicating the strong coupling between spin
and charge fields.

Now that the approximate partition function Zapprox is ob-
tained, one can obtain the physical quantity from the func-
tional derivative form following the DMFT procedure. The
impurity Green’s function is

G� =
� ln Zapprox

�a�

= � 1

a� + �
�z + �
�/2� , �18�

where �¯� stands for �d
 exp�−�V�
��¯ /Zapprox. Thus,
Eqs. �15�–�18� with the DMFT self-consistency equation
construct the present semiclassical approximation.

It may be useful to mention the correspondence between
the present theory and the single-site spin-fluctuation theory

FIG. 2. Comparison of the electron self-energy computed by
evaluating the static average and integrating over two static fields 

and x with the action Eq. �14� �2-field� and the semiclassical ap-
proximation, which is defined in this section, for the infinite-
dimensional fcc lattice Eq. �3�. Energy is scaled by the variance of
the free DOS �v=1�. Squares �circles� are real �imaginary� parts of
the self-energy, and filled and open symbols are obtained by the
two-field approximation and the semiclassical approximation,
respectively.

FIG. 3. Comparison of the many-body density of states com-
puted for the paramagnetic phase of the infinite-dimensional fcc
lattice 	Eq. �3�
 by the “full” semiclassical approximation �solid
line� to that computed using an additional approximation in which �
is assumed to be independent of 
 �broken line�. Energy is scaled
by the variance of the free DOS �v=1�. The three-peak structure
seen in the broken line is unphysical; the solid line is in good
agreement with QMC results �not shown�. Note that TC�0.073 for
these parameters; we have presented data at T=0.05�3TC /4 �cho-
sen to reveal the three-peak structure clearly�, and have artificially
suppressed ferromagnetism.
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of Hasegawa.32 In Ref. 32, Hasegawa introduced the same
HS transformation using spin and charge fields, and applied
the saddle-point approximation against the charge field.
Thus, up to this point, the two theories are equivalent, but
instead of Eq. �18� and the DMFT self-consistency equation,
Hasegawa used an ad hoc procedure involving computation
of averages of the magnetic moment and square of the mag-
netic moment.

We emphasize, however, that the semiclassical approxi-
mation is not exact. In weak coupling, it leads to a scattering
rate proportional to T, rather than to T2 /EF, and does not
give a mass renormalization; in strong coupling, while it
gives correct Mott insulator behavior, i.e., divergence of the
on-site self-energy proportional to 1/ �i�n�, the self-energy at
small � remains finite at T→0 even in a paramagnetic me-
tallic phase as long as the effective potential V�
� has more
than one degenerate minimum, implying incorrect non-
Fermi-liquid behavior. This originates from the neglect of the

quantum fluctuation of HS fields. Including the quantum
fluctuation to recover the correct Fermi-liquid behavior is not
easy.34,45,46 Although, it is not exact, it will be shown below
that the semiclassical method gives good estimates of the
important physical quantities.

III. WEAK COUPLING GAUSSIAN APPROXIMATION:
COMPARISON OF CLASSICAL

AND EXACT RESULTS

This section uses the Gaussian approximation to the para-
magnetic phase of the functional integral to gain insight into
the limits of validity of the classical approximation. The ad-
vantage of the Gaussian approximation is that any desired
quantity can be computed straightforwardly, permitting a de-
tailed comparison of the results of the classical approxima-
tion to the fully quantal calculation. We consider the mean
square amplitude of the spin Hubbard-Stratonovich field,
�
2�, and also the Matsubara-axis electron self-energy
��i�n�.

In the Gaussian approximation one determines the values

̄=UT Tr�n,��z	a0+ 1

2 �
̄�z+ ix̄�
−1 and x̄= iUT Tr�n,�	a0

+ 1
2 �
̄�z+ ix̄�
−1 which extremize the argument of the expo-

nential, and then expand the argument of the exponential to
second order in the deviations of the fields from their ex-
tremal values:

Z → Z̄� D	
x
exp	− S

�2� − Sx

�2�
 , �19�

where Z̄ is the contribution from the saddle points, and

S�
�2� =� d�1d�2���1���

−1��1 − �2����2� , �20�

�
/x
−1 =

1

4U
���1 − �2� ±

1

8
Tr	�
/xG0��1 − �2��
/xG0��2 − �1�
 ,

�21�

G0��� = �a0���1 +
1

2
�
̄�z + x̄1�����
−1

, �22�

with �
=�z and �x=1 2
2 matrices acting on spin space.
In the mean-field approximation, a critical U exists; for U
�Uc , 
̄=0, and for U�Uc , 
̄�0. �This transition is re-
moved by fluctuations.� For U�Uc, spin fluctuations are
very soft.

We focus here on the 
 integral, and we consider the
small-U regime in which 
̄=0, and in the paramagnetic
phase, where the x and 
 integrals decouple. The mean
square value of the fluctuations of 
 , �
2� �obtained by per-
forming the Gaussian integral over all Matsubara compo-
nents of 
�, and the classical approximation �
2�class �ob-
tained by performing the integral only over zero Matsubara
components of 
� are

FIG. 4. Example of the effective potential V �upper panel� and
charge field � �lower panel� as functions of 
 in the metallic Hub-
bard model on an infinite-dimensional fcc lattice 	the free DOS is
given in Eq. �3�
 with U=4 and n=0.5. Energy is scaled by the
variance of free DOS �v=1�. Solid lines, T=0.08 �about 14% above
TC�0.073�; broken lines, T=0.06 �about 18% below TC�. A con-
stant term �=−U� has been subtracted from �. At both temperatures,
the potential is seen to differ markedly from a simple parabola. The

 dependence of � indicates strong coupling between the two fields.
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�
2� = − T�
l

U2�0�i�l�
1 + U�0�i�l�

, �23�

�
2�class = − T
U2�0�0�

1 + U�0�0�
, �24�

where �0 is an irreducible susceptibility given by

�0�i�l� = 2T�
n

a0
−1�i�n + i�l�a0

−1�i�n� , �25�

with �l with �l being a bosonic Matsubara frequency. Finally,
the leading perturbative contribution to the electron self-
energy � and its classical approximation �class are given by

��i�n� =
1

4
T�

l

��i�l�a0
−1�i�n − i�l� , �26�

�class�i�n� =
1

4
T��0�a0

−1�i�n� , �27�

with the susceptibility

��i�l� =
U2�0�i�l�

1 + U�0�i�l�
. �28�

We now present results obtained by applying the Gaussian
approximation to the paramagnetic phase of the infinite-
dimensional fcc lattice 	the DOS is given by Eq. �3�
. In this
section, energy is scaled by the variance of the DOS �v=1�.
The lower band edge is at �min=−1/�2�−0.71 and the
square root divergence of the density of states means that for
small fillings the density of states is very close to the bottom
of the band. In the noninteracting limit the chemical
potential is �n=0.5�−0.6335��−�min�0.078� and �n=0.75

=−0.5352��−�min�0.175�. The square root divergences
mean that the critical interaction strengths beyond which the
mean-field solution becomes unstable are themselves tem-
perature dependent, and are small.

Figure 5 gives the comparison of the full Gaussian 	Eq.
�23�
 and classical Gaussian fluctuation 	Eq. �24�
 approxi-
mations to the mean square fluctuation of the spin Hubbard-
Stratonovich field for the infinite-dimensional fcc lattice
model 	Eq. �3�
 with n=0.5 and 0.75. One sees that the clas-
sical approximation captures most of the fluctuations either
for U near the critical value or for temperatures of the order
of the bandwidth. The panels of Fig. 6 show the full Gauss-
ian self-energy 	Eq. �26�
 and the classical Gaussian approxi-
mation 	Eq. �27�
 for different interaction values, for n
=0.75. For small U, the semiclassical approximation fails,
but as U approaches the critical value �here approximately
0.84� the self-energy becomes well represented by its classi-
cal approximation

The panels of Fig. 7 show the dependence of the self-
energy on temperature, at a fixed moderate interaction
strength �about 3 /4 of the critical value�. We see that at all
temperatures studied, the classical Gaussian approximation
	Eq. �27�
 provides a reasonable estimate of the low-
frequency self-energy. At temperatures less than about half
of the bandwidth, the classical approximation grossly under-

estimates the high-frequency part of the self-energy, but by
T=0.08 it is within about 30% of the exact value, and for
higher temperatures or for interactions close to the critical
value the approximation is quite good.

IV. COMPARISON OF SEMICLASSICAL
APPROXIMATION TO QMC RESULTS:

TWO-DIMENSIONAL SQUARE LATTICE

The Hubbard model on a bipartite lattice is known to
exhibit an antiferromagnetic Néel ordering at half filling and
finite U. In this section, we apply the semiclassical approxi-
mation to the Hubbard model with a square lattice 	noninter-
acting electron dispersion is given by Eq. �1�
, and investi-
gate the self-energy, density of states, and magnetic
transition temperature. Note that the finite TN in a two-
dimensional square lattice is an artifact arising from the ne-
glect of the low-lying spin-wave excitation which the DMFT
method cannot capture.

These results are compared with QMC calculations per-
formed on computing facilities at Universität Bonn using the

FIG. 5. Ratio of the classical Gaussian approximation 	Eq. �24�

to the full Gaussian 	Eq. �23�
 mean square fluctuation of the spin
Hubbard-Stratonovich field R�= �
2�class / �
2� for infinite-
dimensional fcc lattice at densities n=0.5 �upper panel� and 0.75
�lower panel�. Energy is scaled by the variance of the free DOS
�v=1�. The curves cross because of the temperature dependence of
the critical interaction strength �evident from the U at which the
ratio approaches unity�.
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Hirsch-Fye algorithm.4 Typically, 48 time slices were used,
and �2−20�
106 MC configurations were recorded. Occa-
sional runs with more time slices or more MC configurations
were made to verify error. Between five and �for the largest
U� 25 iterations were needed for convergence of the DMFT
loops. The Néel temperatures were determined from compu-
tations of the staggered magnetization. For U�8t and T in or
near the magnetic phase boundary, global update techniques
�to be described elsewhere� were needed to ensure equilibra-
tion of the MC calculation. Error bars are smaller than the
symbols shown.

As noted in the previous section, it is expected that the
semiclassical approximation becomes accurate in the strong
coupling regime and at high temperature. In order to confirm
this expectation beyond the harmonic �Gaussian fluctuation�
approximation, we first calculate the electronic self-energies
in the paramagnetic state and compare them to the QMC

results. Recall that for this model the full bandwidth is 8t. In
Fig. 8, shown are the self-energies at U / t=6 and T / t=1/2
�top panel�, U / t=8 and T / t=1/2 �middle panel�, and U / t
=20 and T / t=1/3 �bottom panel� computed by the semiclas-
sical approximation and QMC simulation as functions of
imaginary frequency. With increase of U, the self-energy at
low frequency increases and for U�Uc diverges, indicating
the Mott metal-insulator transition. This behavior is well re-
produced by the semiclassical approximation, and the agree-
ment with the QMC results is remarkable, particularly in the
strong coupling regime.

Figure 9 compares the semiclassical results for a real-
frequency quantity, the density of states, to results obtained
by maximum entropy analytical continuation of the QMC
data. This is a rather stringent test of the method, and agree-
ment is seen to be reasonably good. In the weak coupling,
paramagnetic phase 	Fig. 9�a�
, the semiclassical approxima-
tion underestimates the �=0 peak �because the �=0 scatter-
ing rate is overestimated� and underestimates the weight in

FIG. 6. Frequency dependence of full Gaussian self-energy 	Eq.
�26�
 �filled circles� and classical Gaussian approximation 	Eq.
�27�
 �open circles�, for infinite-dimensional fcc lattice with n
=0.75,T=0.04, and U values indicated. Energy is scaled by the
variance of the free DOS �v=1�.

FIG. 7. Frequency dependence of imaginary part of full Gauss-
ian self-energy 	Eq. �26�
 �filled circles� and classical Gaussian ap-
proximation 	Eq. �27�
 �open circles� for n=0.75,U=0.5, and T
values indicated. Energy is scaled by the variance of the free DOS
�v=1�.

FIG. 8. Self-energies for a square-lattice half-filled Hubbard
model computed from the semiclassical approximation �filled
circles� and QMC calculations �open circles� for interactions and
temperatures indicated.
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the wings �because the high-frequency scattering rate is un-
derestimated; see the upper panel of Fig. 8�. Below TN, the
magnetization is slightly overestimated by the semiclassical
approximation �magnetization �m��0.54 for the semiclassi-
cal approximation and �m��0.4 for QMC simulation at
U / t=4 and T / t=0.2� as can be seen from the slightly larger
gap. The DOS is sharper because the self-energy at high
frequency is underestimated as in the paramagnetic state. In
the strong coupling regime, agreement between the semiclas-
sical approximation and the QMC simulation is quite good as
can be expected from the self-energy �see the lower panel of
Fig. 8�.

Figure 10 summarizes results for the magnetic phase dia-
gram obtained from the semiclassical approximation, QMC
simulation, the HF approximation, and a strong coupling ex-
pansion. The semiclassical approximation is seen to give re-
markably good results over the whole phase diagram. In the
weak coupling limit, the semiclassical approximation gives
correct behavior: TN asymptotes to the result of the HF ap-
proximation in the limit of U→0. This is natural because the
two approximations become identical in the U→0,T→0
limit. For U nonzero but small, the reduction of TN from the
HF value is found to be quite large, because the finite self-
energy reduces nesting effects substantially. The present ap-
proximation gives correct behavior in the strong coupling

regime; TN asymptotes to 4t2 /U, the mean-field result of the
strong coupling expansion, and, in particular, is almost iden-
tical to the QMC results. It should be noted that at large U
and low T, the QMC simulation requires a very large amount
of Monte Carlo sampling to reach equilibrium, whereas the
semiclassical method is numerically very cheap. Even for
U / t=16 and T / t�0.2 �antiferromagnetic phase�, it takes less
than 5 min on a commercial PC to compute one point in the
present method, while it takes �6 h by QMC simulation on
a similar computer for the same parameters.

V. COMPARISON OF SEMICLASSICAL
APPROXIMATION TO QMC: FCC LATTICE

In this section, we apply the semiclassical approximation
to the single-band Hubbard model on the fcc lattice in infi-
nite and three dimensions, and compare the results to QMC
data of Ulmke43 and the “two-site” approximation of
Potthoff.25 We focus on the filling dependence of the magne-
tism in these models, in which the charge fluctuation plays
an important role. At noninteger filling, these models order
ferromagnetically because of the large DOS near the bottom
of the band, in contrast to the antiferromagnetic ordering
found in a half-filled square lattice. In addition, near half
filling, the three-dimensional model is found to show an ad-
ditional competing order: a “layer-type antiferromagnetic”
state. We examine whether the semiclassical approximation
captures this behavior. In this section, we use the variance of
the DOS v as a unit of energy.

First, we apply the semiclassical approximation to the
infinite-dimensional fcc lattice with DOS given in Eq. �3�,
v=1. The density of states above the Curie temperature is
essentially the same as seen as the solid line in Fig. 3, and
consists of two structures: one peak just below the Fermi
level �=0 and a shoulder at ��nU. These correspond to the
lower and upper Hubbard bands. �Note that the result shown

FIG. 9. Density of states of square-lattice half-filled Hubbard
model computed using semiclassical �heavy lines� and QMC meth-
ods �light lines� for paramagnetic 	�a� and �c�
 and antiferromag-
netic 	�b� and �d�, T�0.8TN
 phases at interactions and tempera-
tures indicated. In the antiferromagnetic phase, the majority spin
density of states is shown by a solid line, the minority spin by a
broken line.

FIG. 10. Néel temperature of square-lattice half-filled Hubbard
model as functions of U computed from semiclassical approxima-
tion �filled symbols� and QMC simulation �open symbols�, HF
�light solid line�, and large-U limit �TN=4t2 /U� �light broken line�.
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in Fig. 3 is computed at T�TC, but in the paramagnetic
phase, by suppressing the magnetic transition.� The separa-
tion between the lower and upper Hubbard bands is some-
what reduced from the bare value of U �by about a factor of
the mean occupation number n�, possibly because of the ne-
glect of the fluctuation of the charge field. The two structures
continuously evolve into the majority spin and minority spin
bands below TC as shown in Fig. 11.

Figure 11 also presents the DOS from a QMC simulation.
�Temperature and density are chosen so that the magnetiza-
tion in the two calculations is similar.� In QMC results, we
observe a sharp peak below the Fermi level for the majority
spin band. For the minority spin band, there appears a sharp
peak near the Fermi level and a broad hump at ��3. The
former originates from the fact that the system is not fully
polarized, and the latter corresponds to the upper Hubbard
band. As noted above, the upper Hubbard band �broad hump
around �=3 in the minority spin band� appears slightly low
in energy in the semiclassical approximation. Except for this
discrepancy, the overall structure of the DOS is well repro-
duced by the semiclassical approximation. In particular, the
occupied bands below �=0 show reasonable agreement.

In Fig. 12, the ferromagnetic Curie temperatures TC for
different values of U are shown as functions of electron den-
sity. Filled symbols are the results obtained using the semi-
classical approximation. For comparison, results of QMC
simulations43 and the HF approximation are shown as open
symbols and light lines, respectively �note that the HF TC
values shown are reduced by a factor of 10�. The semiclas-
sical approximation overestimates TC compared with QMC
results by a factor of 1.5 over a wide range of density. �Of
course, the difference near the critical density of the QMC
method is much larger.� It is seen that the HF approximation

is very poor in all parameter regimes, highly overestimating
the ferromagnetic Curie temperature. The critical density nc
is also overestimated, at nc�1.2 at U=2 and nc�1.5 at U
=4. The higher TC found in the semiclassical approximation
may be due to the neglect of the quantum fluctuation of the
HS fields. The reduction of the transition temperature due to
the quantum fluctuation can be seen in the context of
electron-phonon coupling in Ref. 44. However, good agree-
ment between the semiclassical approximation and QMC
simulation indicates that the thermal part of the fluctuation
dominates the electron self-energy in a wide region and,
thus, the magnetic transition. Critical densities nc where the
ferromagnetism disappears at T=0 are found to be slightly
higher in the semiclassical approximation than in QMC
simulations, nc�0.88 for U=2 and nc�0.97 for U=4, while
QMC simulation gives nc�0.7 for U=2 and nc�0.88 for
U=4. However, in the light of the simplification of the
present approximation, the agreement with QMC results
within 20% error is remarkable.

We applied the two-site25 DMFT to the same model to
investigate the magnetic phase diagram. The critical densities
nc obtained by two-site DMFT are found to be very similar
to those by the semiclassical approximation. However, Curie
temperatures are found to be overestimated by a factor of �6
compared with QMC simulation, and by a factor of �3–4
compared with the semiclassical approximation. In the two-
site DMFT, TC at n=0.5 is found to be �0.17 for U=2, and
�0.26 for U=4. The overestimate arises because, in the two-
site DMFT, the IAM is composed of only two sites; one is
correlated �impurity� and one is noncorrelated �bath�. The

FIG. 11. Comparison of the density of states of infinite-
dimensional FCC Hubbard model with U=4 and temperatures cho-
sen so that �m�=0.4 in each case. Energy is scaled by the variance
of free DOS �v=1�. Heavy lines: results of the semiclassical ap-
proximation at n=0.6 and T=0.07 ��13% below TC�0.08�. Light
lines: results of QMC at n=0.58 and T=0.04 ��20% below TC

�0.05� taken from Ref. 43. Solid and broken lines are for the
majority and minority spin.

FIG. 12. Ferromagnetic Curie temperature of single-band Hub-
bard model on an infinite-dimensional fcc lattice as a function of
electron density for U=2 �squares� and 4 �circles�. Energy is scaled
by the variance of the free DOS �v=1�. Filled symbols, semiclas-
sical approximation; open symbols, QMC simulation �Ref. 43�. Cu-
rie temperatures �
10−1� computed by HF approximation to the
same model with U=2 �4� are shown as a light solid �broken� line.
Two-site DMFT results for the transition temperatures are not
shown, but representative two-site results for n=0.5 are TC

�0.17 �0.26� for U=2 �4�. Phase boundary at T=0 for U=2 �4�
computed by the two-site DMFT is shown as a filled �open�
triangle.
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energy difference between the eigenstates of the IAM is ge-
nerically large, so the �spin� entropy is underestimated. The
two-site DMFT also yields reentrant behavior near the criti-
cal concentration, which is not observed in the semiclassical
approximation and QMC. Adding more sites in the “bath”
part of the IAM would remedy these behaviors, but at dras-
tically increased computational expense.

Finally, we investigate the magnetic instability in the
more realistic three-dimensional fcc lattice whose free band
dispersion is given in Eq. �2�. Following Ref. 43, we take
t�= t /4 and choose the variance of the DOS v=�12t2+6t�2 as
the energy unit; thus t�0.284 and t��0.071. With this pa-
rameter set, the bottom of the band is given by �min=−4t
+2t��−0.994. There is no divergence in the free DOS in
contrast to the infinite-dimensional case.

The magnetic phase diagram of the three-dimensional fcc
lattice computed by the semiclassical approximation is
shown in Fig. 13. For comparison, QMC �Ref. 43� and HF
results are also plotted. It is seen that the semiclassical-
approximation results for TC are about twice higher than
QMC results, while HF results are about 20 times higher
than QMC results. Similar to the infinite-dimensional case,
the upper critical density nc is overestimated by �20%.
QMC calculations are argued to indicate that there exists a
lower critical density nc��0.15 below which the ferromag-
netism disappears.43 This behavior is ascribed to the absence
of the divergence at the bottom of the bare DOS. In the
semiclassical approximation, TC seems to become zero pro-
portionally to the electron density, similarly to the HF ap-
proximation. In the latter, clearly nc�=0. This might be be-
cause the semiclassical approximation reduces to the HF
result at weak coupling �in this case small density� and in the
low-temperature limit. However, it is very difficult to judge
if nc�=0 or not in the present accuracy for the semiclassical
approximation.

Differently from the infinite-dimensional fcc lattice, the
QMC calculation found another magnetic state stabilized
near n=1: a layer-type antiferromagnetic state with a mag-
netic vector q� = �� ,0 ,0�.43 The semiclassical approximation
is successful in finding the layer-type antiferromagnetic state
near n=1. The computed Néel temperature at n=1 is TN
�0.048 which agrees with the QMC result within the statis-
tical error of the QMC simulation. The better agreement in
the Néel temperature than in the Curie temperature may be
attributed to the large U used in this calculation and to the
suppression of the charge fluctuations near half filling. Ac-
cording to the two-site DMFT, the critical Uc to the Mott
transition at half filling is estimated to be Uc=6v �the correct
value is expected to be slightly smaller then this�.25 With the
parameter used, U=6, the system is in a Mott insulating state
at n=1, and the charge fluctuation is suppressed. Therefore,
the thermal fluctuation of the spin field dominates the mag-
netic transition. In contrast to the QMC simulation, ferro-
magnetic and antiferromagnetic states contact with each
other in the semiclassical approximation. �In the semiclassi-
cal result, TC and TN indicate the instability of the ferromag-
netic and antiferromagnetic states, respectively, to the para-
magnetic state.� In light of the overestimation of the upper
critical density nc for the ferromagnetism, this failure is also
supposed to be from the neglect of the quantum fluctuation

of the HS field. This point remains to be addressed in future
work.

In the metallic region, one needs to fix the chemical po-
tential according to the density—this must be done at each
interaction strength and temperature, which is time consum-
ing. Even in this case, the semiclassical scheme is found to
be computationally very cheap. Typical CPU time is less
than 5 min at U=2 and T=0.05 using a commercial PC.

Summarizing this section, we investigated the magnetic
behavior of the Hubbard model on infinite- and three-
dimensional fcc lattices using the semiclassical approxima-
tion. The magnetic phase diagram computed by the semiclas-
sical approximation show reasonable agreement with QMC
results. The ferromagnetic Curie temperature in the metallic
region is found to be within a factor of �2 compared with
the QMC result, and the antiferromagnetic Néel temperature

FIG. 13. Upper panel: Phase diagram of single-band Hubbard
model on a three-dimensional fcc lattice as a function of electron
density and temperature for interaction U=6. Energy is scaled by
the variance of the free DOS �v=1�. Squares and circles are the
Curie temperature and Néel temperature for the layer-type antifer-
romagnetic state, respectively. Filled symbols, results of the semi-
classical approximation; open symbols, QMC results taken from
Ref. 43. Curie temperature �
10−1� computed by HF approxima-
tion to the same model is shown as a light solid line. Lower panel:
Expansion of the phase diagram, showing the region near n=1 en-
closed by a broken line in the upper panel. The semiclassical results
for TC and TN indicate the instability of ferromagnetic and antifer-
romagnetic states, respectively, toward the paramagnetic state.
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near n=1 is found to agree with the QMC value within sta-
tistical error. The better agreement between the semiclassical
approximation and QMC simulation in the Néel temperature
near integer filling is supposed to be from the fact that the
charge fluctuation is suppressed by the correlation, so that
thermal spin fluctuations dominate the transition as in the
half-filled square-lattice case. The poorer agreement in the
Curie temperature is expected to be from the neglect of quan-
tum fluctuation or charge fluctuation.

VI. APPLICATION OF SEMICLASSICAL
APPROXIMATION TO THE DYNAMICAL CLUSTER

APPROXIMATION AND FICTIVE-IMPURITY METHOD

Our semiclassical approximation is easily combined with
cluster schemes, such as the dynamical cluster
approximation47 �DCA� and real-site cluster extension of
DMFT.40,48,49 As a simplest example, we use the two-site
DCA and fictive-impurity40 �FI� methods to study the Hub-
bard model on a square lattice.

We consider half filling; thus charge fields are absorbed
into the chemical potential shift. The Weiss field becomes a
2
2 matrix a, and in the paramagnetic phase this takes the
form

a = a01 + a1�x, �29�

with a0 and a1 being the on-site and NN Weiss fields, respec-
tively. 1 and �x are the 2
2 matrices acting on orbital �im-
purity site� space. The HS transformation is performed at
each impurity site i=1, 2 with spin field 
i. The effective
potential for the HS field becomes

V�
1,
2� =
1

4U
�
1

2 + 
2
2� − T Tr ln�− a −

1

2
�
1


2

�z� .

�30�

Here, �z is acting on spin space, and Tr is taken over the
Matsubara frequency and orbital and spin indices. Then, the
partition function is given as

Zapprox =� d
1d
2exp�− �V�
1,
2�� . �31�

Finally, on-site and NN-site Green’s functions G0 and G1,
respectively, are obtained via

G0 =
1

2

� ln Zapprox

�a0
, �32�

G1 =
1

2

� ln Zapprox

�a1
. �33�

The self-consistency equations for the DCA are closed fol-
lowing the scheme presented in Ref. 47. The self-consistency
equations for the FI method and the general formalism for
the cluster extension of DMFT are given in Ref. 40.

Nearest-neighbor spin correlations −��1z�2z� computed by
the DCA and FI with the semiclassical approximation and
QMC simulation as functions of temperature for U=20t are

shown in Fig. 14. A similar spin correlation obtained by
QMC simulation in both the DCA and FI supports the appli-
cability of the semiclassical approximation to the cluster
DMFT. For comparison, the same quantity computed using a
high-temperature series expansion �HTS� for the S
=1/2 NN Heisenberg model with J= t2 /U is also shown. It is
seen that the spin correlation obtained from the DCA is much
larger than the HTS result. We believe the origin of the dis-
crepancy between DCA and HTS is that the DCA is equiva-
lent to imposing a periodic boundary condition in all the
directions in a real-space cluster. Thus, in the two-site DCA,
one has a model in which two sites are connected via z bonds
�connectivity z=4 in a square lattice� and the spin correlation
is thus overestimated. Interestingly, the FI method gives al-
most identical curves to the HTS �a slight deviation can be
seen below T�0.4t�. A detailed study of multisite cluster
models using semiclassical methods and QMC simulation
will be presented elsewhere.50

VII. EQUILIBRATION AND PARTITIONED PHASE SPACE

In this section, we point out an additional advantage of
the semiclassical approximation. A key issue in Monte Carlo
simulations is equilibration, which is particularly difficult in
systems in which the phase space is partitioned into several
nearly equivalent minima, separated by large barriers. Local
update techniques require extremely long runs to climb over
barriers, while global update techniques are expensive and
sometimes inconvenient to implement and bring their own
convergence issues. The partitioned phase space phenom-
enon occurs frequently in strongly correlated models, and
represents a significant obstacle to practical computations.
The semiclassical approximation, by contrast, is inexpensive
enough that the entire �semiclassical� phase space can be
sampled.

FIG. 14. Nearest-neighbor spin correlations −��1z�2z� of a
square-lattice Hubbard model �U / t=20� as functions of T computed
using two-site DCA �open circles� and the FI method �open
squares�, compared to QMC simulation �filled symbols� and high-
temperature series expansion �light line�.
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For example, Fig. 15 shows the distribution function of
spin HS fields for the two-impurity DCA for the square-
lattice half-filled Hubbard model defined by P�
1 ,
2�
=exp�−�V�
1 ,
2�� /Zapprox computed at temperature T / t
=0.5�TN �see Fig. 10�. The partitioning of phase space is
evident. It is seen that the distribution has twofold symmetry,
not fourfold, in the 
1−
2 plane; 
1�
2 and 
1�
2 are not
equivalent. Larger peaks at �
1 ,
2���±20t , �20t� than at
�
1 ,
2���±20t , ±20t� indicate that the antiferromagnetic
correlations prevail far above the Néel temperature, giving
the result shown in Fig. 14. Reliable estimates of −��1z�2z�
require sampling of all four extremes, with correct weights,
which is very difficult to achieve in QMC simulations at low
T �this is why we do not present data at T�0.5t, and statis-
tical errors are evident even at T=0.6t�. However, the inte-
grals involved in the semiclassical method may be performed
with no difficulty.

VIII. SUMMARY AND DISCUSSION

In this paper, we investigated the semiclassical approxi-
mation to the continuous Hubbard-Stratonovich transforma-
tion as an impurity solver of the DMFT method for
correlated-electron models. The Hubbard-Stratonovich trans-
formation introduces two auxiliary fields, coupling to the
electron spin and charge density, respectively. The semiclas-
sical approximation consists of retaining only the classical
�zero-Matsubara-frequency� component in the functional in-
tegral over the spin field, and, for each value of the spin field,
using a steepest descent approximation to approximate the
integral over the charge field by the value that minimizes the
action at the given value of the spin field 	see Eq. �15�
. This
treatment of the charge field was found to be essential for

achieving reasonable results: see Fig. 3 and the associated
discussion. The semiclassical approximation captures the
thermal fluctuation of spin field efficiently beyond the har-
monic �Gaussian fluctuation� approximation and is appli-
cable to both the metallic and insulating regions. Estimates
obtained using the Gaussian fluctuation approximation indi-
cate that the semiclassical approximation gives reasonable
results at larger U �when spin fluctuations are soft� or at high
temperature �Sec. III�. We applied the semiclassical approxi-
mation to the single-band Hubbard model on a two-
dimensional square lattice �half filling� �Sec. IV� and infinite-
and three-dimensional fcc lattices �finite doping� �Sec. V�.
The semiclassical approximation is found to give reasonable
results, with accuracy improving for stronger couplings and
in situations where charge fluctuations are suppressed. A par-
ticularly attractive finding is that the procedure finds multiple
phases when these exist �Fig. 13�. The key point appears to
be that, at stronger correlations, the physically important
fluctuations become very soft �justifying a semiclassical ap-
proximation� but very anharmonic �requiring an integral over
all field configurations�. Due to the neglect of quantum ef-
fects, the semiclassical approximation fails to reproduce cor-
rectly the quasiparticle resonance, which will certainly be
important at weak coupling or at low temperature. One pos-
sible improvement of this failure would be by using an in-
terpolative method29 to reproduce the low-energy quasiparti-
cle in a paramagnetic metallic region. For the half-filled
square lattice, we showed that the semiclassical approxima-
tion gives reasonable behavior of the self-energy which is
comparable to QMC simulation in a wide range of param-
eters. The density of states and Néel temperature computed
by the semiclassical approximation are found to be in very
good agreement with the QMC simulation. In the metallic
fcc lattice, the DOS has a two-peak structure corresponding
to the lower and upper Hubbard bands in a paramagnetic
phase. These structures evolve into majority and minority
spin bands as the temperature is decreased through the fer-
romagnetic transition. Comparison of the DOS computed by
the semiclassical approximation and by QMC simulation
shows reasonable agreement, especially as concerns the oc-
cupied state. Ferromagnetic Curie temperatures computed by
the present method are found to be in the range of a factor of
2 compared with the QMC results. T=0 phase boundaries are
found to be within the error of 20%. The semiclassical ap-
proximation for the Curie temperature shows better agree-
ment than two-site DMFT, and T=0 phase boundaries are
found to be in the same range as in the two-site DMFT. As
for the three-dimensional fcc lattice, the semiclassical ap-
proximation is able to detect the antiferromagnetic state near
the integer filling consistent with QMC computations. The
Néel temperature in this case agrees with the QMC result
within the statistical error. In Sec. VI, we apply the semiclas-
sical approximation to the two-impurity DCA and real-space
cluster DMFT �fictive impurity� for the square-lattice Hub-
bard model at half filling, and investigate how spatial corre-
lation is taken into account in the present approximation. We
confirmed that the short-range �nearest-neighbor� spin corre-
lation prevails above the Néel temperature. Comparison of
nearest-neighbor spin correlation between the semiclassical
approximation and QMC simulation shows good agreement

FIG. 15. Distribution of the spin fields 
1 and 
2 , P�
1 ,
2�,
computed by the two-impurity DCA for the Hubbard model
on a square lattice. P�
1 ,
2� is defined by P�
1 ,
2�
=exp�−�V�
1 ,
2�� /Zapprox. Parameters are U / t=20 and T / t=0.5.
Larger peaks at �
1 ,
2���±20t , �20t� than at �
1 ,
2�
��±20t , ±20t� indicate antiferromagnetic correlation.
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in ranges where the QMC calculations are well converged. In
Sec. VII, the equilibration problem in the QMC method as-
sociated with the partition of phases is discussed. This prob-
lem does not occur in the semiclassical approximation.

In conclusion, we mention some open scientific questions
which can be addressed by the semiclassical method, and
mention two areas in which further investigation and im-
provement would be desirable. A key opportunity involves
systems with several sites and/or several orbitals. In such
cases, QMC simulation suffers from “sign” problems, and
both QMC and ED methods scale poorly with system size.
The semiclassical method does not suffer from the “sign”
problem; while there appeared a similar problem associated
with the imaginary coefficient for the charge field, this is
resolved by applying the saddle-point approximation to the
charge field. When it is applied to systems with N�1 orbit-
als �on one or more sites�, computational time for the semi-
classical approximation scales of P


N with P
 and N being the
total number of discretized HS field and total number of
sites/orbitals, respectively. By contrast in Monte Carlo meth-
ods, the scaling is 	��U�2NMC
N �NMC is the number of
Monte Carlo samplings, typically NMC�105�, and by
4N�1+Nbath� for ED �Nbath is the number of “bath” sites per
impurity orbital, and Nbath should be larger than 2–3 from the
overestimation of TC by two-site DMFT�. As can be seen in
Fig. 15, the dominant contribution is known to be from �
�
�U, and if needed it would be possible to simplify the
N-dimensional integral over the HS fields. Thus, the semi-
classical approximation appears to be an attractive option for
studying larger clusters which are not accessible by QMC
simulation.

As for the multisite problem, we have only applied the
semiclassical approximation to the single-orbital Hubbard
model at half filling with the DCA and FI method. In this
case, the charge field is absorbed into the chemical potential.
Away from half filling, one needs to fix the charge field at
each configuration of the spin fields according to Eq. �15�

generalized to the multisite situation. There is no proof that
Eq. �15� has unique solution in this situation although we
have so far not encountered problems. This issue needs fur-
ther investigation.

As one of the applications of the semiclassical approxi-
mation, investigation of a systems with degenerate orbitals
like transition-metal oxides with eg or t2g electrons would be
interesting.2,3 Theoretical studies of the ferromagnetism in
these situations have been presented �Refs. 35–37�, but these
works dealt with spin fluctuations in the metallic state; fluc-
tuation and ordering associated with the quadrupole mo-
ments for the eg and/or t2g orbital was neglected. The
Hubbard-Stratonovich transformation including the spin and
quadrupole moment for the two-band Hubbard interaction
for the eg orbital has been introduced in Ref. 38. However,
spin and orbital transitions at finite temperature using the
multiband Hubbard model with full symmetry51 remain to be
investigated.

Another promising application of the semiclassical ap-
proximation would be spatially inhomogeneous systems,
where the computational expense associated with other as-
pects of the problem renders an inexpensive impurity solver
essential. Recently, two of the authors �S.O. and A.J.M.� ap-
plied two-site DMFT to the spatially inhomogeneous hetero-
structure problem and investigated the evolution of the elec-
tronic state �quasiparticle band and upper and lower Hubbard
bands� as a function of distance from the interface.52 Apply-
ing the semiclassical approximation to such systems to in-
vestigate the possible spin �and orbital� orderings53 is an in-
teresting and urgent task.
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