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Quantum Monte Carlo and semiclassical methods are used to solve two- and four-site cluster dynamical
mean-field approximations to the square-lattice Hubbard model at half filling and strong coupling. The dyan-
mical cluster approximation, cluster dynamical mean-field theory, and fictive-impurity approaches are com-
pared. The energy, spin correlation function, phase boundary, and electron spectral function are computed and
compared to available exact results. The comparision permits a quantitative assessment of the ability of the
different methods to capture the effects of intersite spin correlations. Two real-space methods and one
momentum-space representation are investigated. One of the two real-space methods is found to be signifi-
cantly worse: in it, convergence to the correct results is found to be slow and, for the spectral function,
nonuniform in frequency, with unphysical midgap states appearing. Analytical arguments are presented show-
ing that the discrepancy arises because the method does not respect the pole structure of the self-energy of the
insulator. Of the other two methods, the momentum-space representation is found to provide the better ap-
proximation to the intersite terms in the energy but neither approximation is particularly acccurate and the
convergence of the momentum-space method is not uniform. A few remarks on numerical methods are made.
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I. INTRODUCTION

“Strongly correlated” materials1 pose one of the outstand-
ing challenges in condensed matter physics. These materials
exhibit a wide range of interesting and potentially useful
properties including high-temperature superconductivity2

and magnetism with very high spin polarization;3 however,
in these classes of material the electron-electron and
electron-lattice interactions are so strong that the conven-
tional approach �using density functional theory to compute
bands and then using perturbative methods to treat residual
interactions between quasiparticles� fails. Developing a reli-
able, material-specific theoretical framework for determining
the behavior of strongly correlated compounds is an out-
standing challenge to materials theory.

The development of single-site dynamical mean-field
theory4 was a fundamental step forward in correlated elec-
tron science. In this approach one approximates the
momentum- and frequency-dependent self-energy ��p ,�� by
a momentum-independent function ��p ,��→����. This ap-
proximation allows the construction of a nonperturbative and
computationally tractable theoretical procedure for comput-
ing physical properties: because it is a function of only one
frequency variable, the self-energy may be viewed as the
self-energy of a single-site “quantum-impurity model,” with
the parameters of the model specified by a self-consistency
condition. The approach works very well for situations �in-
cluding the Mott transition in electronically three-
dimensional materials,5 the “double-exchange” physics im-
portant for colossal magentoresistance manganites,6 and the
basic physics of heavy-fermion compounds7�, in which Gal-
ilean invariance is strongly broken and the dominant physics
is on site. However, in wide classes of interesting materials,
intersite correlations play an important role in physics. Ex-
amples include the high-temperature superconductors, where
the predictions of the single-site dynamical mean-field theory
have been shown to disagree strongly with data on the evo-

lution with doping of quasiparticle velocity and “Drude” op-
tical weight8 and the orbital order and polaron glass physics
of the manganites.9 Extension of the dynamical mean-field
method to include intersite correlations is therefore an impor-
tant issue.

The single-site dynamical mean-field theory involves the
mapping of a lattice model onto a single-site quantum impu-
rity model. A natural extension is to consider a multisite
impurity model �“cluster”�, whose various self-energies
could be used to obtain a better representation of the lattice
self-energy. Several proposals have been made including a
self-consistent embedding of a physical cluster �cluster dy-
namical mean-field theory10 �CDMFT�� and a momentum-
space approximation �dynamical cluster approximation
�DCA��.11 Recently a unifying fictive-impurity �FI� picture
was presented,12,13 in which the different approaches were
seen to correspond to different choices of basis in the same
general expansion for the self-energy.

The relative merits of the different approaches have been
debated,15 but there have been relatively few comparisions of
the different methods in the relevant physical limits. In this
paper we take a step towards remedying this deficiency by
presenting, for the two-dimensional �2D� half-filled Hubbard
model in the strong-correlation limit, a numerical study of
real-space and momentum-space cluster dynamical mean-
field algorithms along with a comparison to analytics. A fea-
ture of our analysis is that we are able to identify the contri-
butions which arise from true intersite correlations �i.e.,
those not occurring in the single-site approximation� and
compare them to exact �high-temperature series� results,
thereby quantifying the degree to which the different meth-
ods capture the intersite correlations.

Our results reveal that none of the methods give a particu-
larly good treatment of the intersite correlations The real-
space method discussed in Ref. 12 has severe inadequacies,
which arise mathematically from an incorrect treatment of
the pole structure of the self-energy. The importance of re-
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specting the pole structure of the self-energy was recently
stressed by Stanescu and Kotliar.14 Our results also point to a
fundamental deficiency of the fictive-impurity-model ap-
proach �in any of its implementations�: while general
arguments12,13 guarantee that some cluster model exists
which reproduces any given approximation to a lattice
model, the construction of the cluster model �in particular the
choice of interaction terms� is not a trivial issue. While the
DCA11 provides a better approximation to the intersite con-
tributions than do the other methods,10,12,13 none of the ap-
proaches are particularly accurate. We suggest that an impu-
rity model with additional interaction terms would likely be
superior.

The rest of this paper is organized as follows: Section II
defines the formalism we use and presents a few remarks on
issues related to numerical implementations. Section III pre-
sents our numerical results. Section IV gives analytical argu-
ments which shed light on some of the findings, and Sec. V
is a conclusion.

II. FORMALISM

A. General aspects

A general result of many-body theory is that all electronic
physics of a given system can be obtained from the
“Luttinger-Ward functional”16 � of the electronic self-energy
��p ,��:

� = �skel��� − Tr ln�G0
−1 − �� . �1�

Here G0= ��t− Ĥ0�−1 is the Green function of the associated
noninteracting model and the Luttinger-Ward functional �skel
is defined as the sum of all vacuum-to-vacuum skeleton dia-
grams �with appropriate symmetry factors� and is here
viewed as a functional of the electronic self-energy. The
physical self-energy corresponding to a given noninteracting
problem �specified by G0� is determined from the stationarity
condition

��

���p,��
= 0, �2�

which follows because �skel has the property that

��skel

���p,��
= G�p,�� . �3�

The situation is closely analogous to that obtaining in
density functional theory, where general theorems17 guaran-
tee the existence of a functional of the electron density,
which is the sum of a system-specific part and a universal
part, is minimized at the physical density, and from which
the ground-state energy can be calculated. Density functional
theory became a useful tool following the demonstration of
Kohn and Sham18 that uncontrolled but reasonably accurate
approximations to the universal function could be con-
structed and that a relatively convenient procedure for per-
forming the minimization could be found. Similarly, new
progress in many-body physics has become possible follow-
ing the formulation of an uncontrolled but reasonably accu-

rate approximation to �skel along with a procedure for per-
forming the minimization. The approximation ��p ,��
→���� �analogous to the local density approximation� was
shown4,19 to permit the calculation of �skel in terms of the
solution of a quantum-impurity model with parameters fixed
by the stationarity condition, Eq. �2�.

The possibility of extending the approach to capture some
part of the momentum dependence was alluded to in early
work.4 A discussion was given in previous work by some of
us12 �see also closely related work of Potthoff13�. In this pa-
per we present detailed studies using the formulation of Ref.
12. To establish the notation and define clearly the assump-
tions made, we outline the results of Ref. 12 here. First, one
approximates the momentum dependence of the self-energy
in terms of a finite number N of basis functions � j�p�,

��p,�� → �approx�p,�� � �
i=0

N−1

� j�p�� j��� , �4�

such that as N→	, �approx→��p ,��. If one substitutes Eq.
�4� into Eq. �1�, one obtains a functional �approx of N self-
energy functionals � j. The stationarity condition, Eq. �2�,
becomes the dynamical mean-field self-consistency condi-
tion

��approx

�� j���
= Gimp���

=� ddp

�2
�d� j�p��G0
−1�p,�� − �approx�p,���−1.

�5�

The most general such functional �approx is an N-site
quantum-impurity model, which should be regarded simply
as a machine for computing the N functions � j��� needed to
generate the approximation for ��p ,��. The impurity model
need not be a physical subcluster of the original lattice and is
therefore referred to as “fictive.”

Specifying the impurity model is not a trivial issue. The
usual procedure is to assume that it is given by the action

Simp =� d�d��aij�� − ����i
†����� j��� + Hint, �6�

where Hint is exactly the interaction terms of the original
lattice and the aij are mean-field functions to be determined
from the self-consistency equation. The impurity model is
then some sort of self-consistently embedded subcluster of
the lattice model. Interactions extending outside the cluster
are neglected.

Reference12 showed that the different cluster dynamical
mean-field schemes proposed in the literature are all variants
of this general scheme, with the differences arising from dif-
ferent choices of basis function � j�p�. However, while it is
clear that as N→	 the procedure converges to the full solu-
tion of the lattice problem, it is not clear that at any finite N
the impurity-model ansatz, Eq. �6�, generates the functional
� which would be obtained by replacing ��p ,�� by
�approx�p ,�� in �skel above. As we discuss in more detail in
the Conclusions, one interpretation of the results we present
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is precisely that the ansatz, Eq. �6�, is not adequate.

B. Models and approximations

For our specific computations we study the Hubbard
model with nearest-neighbor hopping on a two-dimensional
square lattice, make two- and four-site approximations, and
consider three choices of basis function �p. The first is the
dynamical cluster approximation, introduced by Hettler and
co-workers.11 In the present language the DCA corresponds
to partitioning the Brillouin zone into a finite number of
regular tiles �square, for the two-dimensional square lattice

we consider here� labeled by the momentum P� j at the center
of the tile and choosing the basis functions � j�p� to be equal

to unity if p is within the tile centered on P� j and zero other-
wise. The partitioning for the four-site approximation is
shown as the upper panel in Fig. 1. The result is a piecewise
constant lattice self-energy specified by the functions �P� j

���
giving the value of the self-energy in each Brillouin zone
region, thus

�DCA�p,�� = �
P� j

�P� j
�p��P� j

��� . �7�

The corresponding impurity model is the four-site cluster
shown in the lower panel of Fig. 1. This cluster has four
self-energies, corresponding to the on-site, first-neighbor,
and second-neighbor separations; these are related to the �P� j
via

���0,0�,�� = �0��� + 2�1��� + �2��� ,

���
,0�,�� = ���0,
�,�� = �0��� − �2��� ,

���
,
�,�� = �0��� − 2�1��� + �2��� . �8�

The second choice of basis function is the CDMFT ap-
proach introduced by Kotliar and co-workers.10 In this ap-
proach one partitions the real-space lattice into a period array
of regular placquettes �supercells�, as shown in Fig. 2, so that
the Hamiltonian becomes H=Hplac+T with Hplac=Hpl

0 +Hint
an impurity model defined by the hoppings and interactions
on the placquette and T the interplacquette hopping. The
cluster is treated as an impurity and is solved, leading to a
self-energy � which is a matrix in the space defined by the
cluster. The lattice Green function is G−1=�−E�p�−� with
E�p�=Hpl

0 +T�p�.
The CDMFT approximation necessarily breaks some of

the lattice symmetries. In the two-site approximation both
point-group and translational symmetries are broken. Various
choices are possible. For the choice displayed in Fig. 2 the
unit cell is chosen so that the primitive translation vectors are
û= x̂+ ŷ and v̂= x̂− ŷ. Indexing û by i and v̂ by j we have

Hpl
0 = − t�0 1

1 0
	 , �9�

while the interplacquette hopping connects, say, site 2 on
placquette �i , j� to sites 1 on placquettes �i+1, j�, �i , j+1�,
and �i+1, j+1�, so that after Fourier transformation,

FIG. 1. �Color online� Upper panel: Brillouin zone partition cor-
responding to four-site dynamical cluster approximation. The zone
is partitioned into four tiles: a tile centered at momentum �0,0�
�unshaded�, one centered at momentum �
 ,
� �dark shading�, and
two at momenta �0,
� and �
 ,0�. Use has been made of invariance
under translations by integer multiples of 2
. Lower panel: real-
space structure of the corresponding cluster model

FIG. 2. �Color online� Panel �a�: possible partitioning of the 2D
square lattice for two-site CDMFT. Panel �b�: possible partitioning
of the 2D square lattice for four-site CDMFT

FICTIVE-IMPURITY APPROACH TO DYNAMICAL MEAN-… PHYSICAL REVIEW B 75, 205118 �2007�

205118-3



E�p� = − t� 0 ��p�
��p�* 0

	 , �10�

with ��p�=1+ei
2pu +ei
2pv+ei
2�pu+pv� and pu, pv vectors per-
pendicular to v and u, respectively. In the four-site CDMFT
method,

Hpl
0 = − t�

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0
� , �11�

while the interplacquette hopping connects, say, site 1 on
placquette �i , j� to site 2 on placquette �i , j−1� and to site 4
on placquette �i−1, j�, so that after Fourier transformation,

E�p� = − t�
0 1 + e2ipy 0 1 + e2ipx

1 + e−2ipy 0 1 + e2ipx 0

0 1 + e−2ipx 0 1 + e−2ipy

1 + e−2ipx 0 1 + e2ipy 0
� .

�12�

A third choice of basis function arises from a more
straightforward real-space expansion: ��R ,��→��R
=0,��+�a��a ,��+¯ with a the set of vectors connecting a
site to its neighbors. For historical reasons we refer to this as
the �real-space� FI method. Retaining only a few terms in
this sum leads to a momentum-space self-energy expanded in
the standard orthogonal harmonic functions. For example, if
only on-site and nearest-neighbor terms are retained, then a
d-dimensional cubic lattice would lead to a �2d+1�-site im-
purity model which could be solved to specify the quantities
�0 ,�x̂ , . . .. However, if the point-group symmetry is unbro-
ken, then many of the self-energies are equal and one should
be able to obtain the self-energies from a smaller impurity
model �two site, if only nearest-neighbor terms are retained;
four site if first- and second-neighor terms are retained�. De-
fining, for the two-dimensional case,


p
�1� � 
p =

1

2

cos�px� + cos�py�� , �13�


p
�2� = cos�px�cos�py� , �14�

we write the self-energy for the two-site cluster as

��p,�� = �0 + 4
p�1��� �15�

and for the four-site cluster as

��p,�� = �0 + 4
p
�1��1��� + 4
p

�2��2��� . �16�

In the four-site case the cluster model to be solved again has
the topology shown in the lower panel of Fig. 1.

C. Numerical techniques

We used two numerical techniques to solve the
N-quantum impurity problem: the quantum Monte Carlo
�QMC� technique using the Hirsch-Fye algorithm4,20,21 and a

recently formulated23 semiclassical approximation.
The QMC technique is standard, but one technical issue

requires comment. This method is formulated in imaginary
time and involves discretization so that the imaginary time-
integrations in Eq. �6� are approximated as the sum over the
L “time slices” �n=n� /L. The computation time scales as L3,
so the number of time slices which can be taken is limited,
and at lower temperatures �larger �� the time step ��=� /L
becomes uncomfortably large. The self-consistency step re-
quires frequency-space information and hence a Fourier
transform which becomes inaccurate above the “Nyquist fre-
quency” �N=
L /�. An additional difficulty is that the Green
function has magnitude and derivative discontinuities across
�=0 �corresponding to power-law decay at high frequen-
cies�; these must be represented accurately to obtain the
high-frequency behavior correctly. Doing so is difficult be-
cause in the strong-interaction limit G varies rapidly near
��=0. Thus, the errors at frequencies of the order of the
Nyquist frequency are large and for the range of L accessible
to us the resulting errors are too large to yield reasonable
estimates of the Green function.

To mitigate the problems one must incorporate a priori
information about the short-time behavior of the Green func-
tion into the analysis by using the short-time expansion of
the equation of motion for the lattice Green function to fix
the size of the magnitude and derivative discontinuities
across �=0. This is typically done via the following trick:24

one introduces a “model function” Gmodel��−��� which has
the correct high-frequency behavior up to some order �−m

and considers the difference �G��� between the model func-
tion and the QMC data. The low-frequency behavior of the
model function is not important; we took the appropriate
momentum integrals of the lattice Green function with the
self-energy �����=U�n−�−0.5�+U2n−��1−n−�� /�. The dif-
ference function �G is by assumption smooth near �=0, and
in particular the first m−1 derivatives are continuous. In
practice a reasonable choice of model function leads to a �G
which varies much less rapidly near �=0 than the original
data or the actual Green function.

By taking the difference between the QMC data and the
model function, one obtains an approximation to �G at the
discrete points �n=n� /L. One includes the a priori informa-
tion concerning the high-frequency behavior by performing
an order-m spline fit assuming that across �=0 the first m
−1 derivatives are continuous. In the single-site DMFT a
cubic spline was found to be sufficient24 but in our investi-
gations of multisite models it was found necessary to fix the
�−4 behavior of the Green function in order to control the
high-frequency behavior of the first-neighbor self-energy.
This necessitated the use of a fourth-order spline fit to the
QMC data. Figure 3 demonstrates this effect, comparing the
results of three different computations of the on-site self-
energy using a two-site cluster �in the real-space formula-
tion� to the known high-frequency behavior.

Obtaining real-frequency information from QMC calcula-
tions requires analytical continuation. To obtain the results
presented in this paper we used a program written by
Assaad,22 with a model function corresponding to a flat den-
sity of states.

The QMC method remains very computationally expen-
sive; one requires a time slice short enough that U���1 and
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very good statistical accuracy in the computed G’s. To access
a wider range of parameters we also used a semiclassical
approximation �SCA� we have recently developed which is
much less computationally expensive. The SCA method is
described in detail elsewhere,23 so we mention here only a
few aspects relevant to its implementation in the present
case.

For an N-site impurity model the partition function is de-
fined as a functional integral over the 2N-component spin-
and site-dependent spinor fields c† and c as

Z =� D�cj
†cj�e−Sef f , �17�

where

Sef f = �
0

�

d��
0

�

d��c†���a��,���c����

+ �
0

�

d��
j=0

N−1

Unj,↑���nj,↓��� , �18�

with a the 2N�2N matrix mean-field function. To derive the
semiclassical approximation we rewrite the interaction term
as

Unj,↑���nj,↓��� =
U

4
�Nj

2��� − Mj
2���� , �19�

with n↑n↓= 1
4 ��n↑+n↓�2− �n↑−n↓�2�= 1

4 �N2−M2�. N is the
number of particles and M is the magnetization on the site.
We then make the usual continuous Hubbard-Stratonovich
transformation to decouple the M terms via a site-dependent
auxiliary field � j��� which we assemble into an N-

component vector �� . The semiclassical approximation is to
retain only the zero-Matsubara-frequency term in the func-
tional integral over �. To this level of approximation the N
term may be ignored because we work at half filling in a
particle-hole-symmetric model. We may then integrate out
the electrons and obtain

Z =� d�� eSef f�a,��, �20�

where the effective action Sef f =�V is defined by

V��� � =
N

U
��� �2 − T �

�n,�
Tr ln�− a���n� − 1̂�̃ · �̃� , �21�

with 1 the 2N�2N unit matrix.
The integral over � is a simple classical integral which

may be done without too much difficulty. However, at strong
coupling and low temperatures V is characterized by several
very deep minima with high barriers between them and it
convenient to make a further simplification and approximate
the integration over � by the sum over the minima:

Z �
1

Nmin
�
j=1

Nmin

e−�V��j
� �, �22�

where Nmin is the number of minima in potential V��� �. This
approximation corresponds to approximating the spins as
Ising variables.

The semiclassical approximation is reasonably good in
the strong-coupling regime. It reproduces all of the qualita-
tive features found in the QMC calculations and is reason-
ably quantitatively accurate. As an example, Fig. 4 shows the
density of states calculated by analytical continuation of
QMC and semiclassical data for the single-inpurity Hubbard
model. One sees that the semiclassical method places the
Hubbard bands very close to the correct positions. Similarly,
Fig. 5 shows the on-site and first-neighbor spectral functions
computed using the real-space �upper panel� and DCA

FIG. 3. �Color online� Two-site cluster approximation to the
frequency-dependent on-site self-energy for the paramagnetic phase
of a two-dimensional Hubbard model with U / t=16 at temperature
T / t=0.2 calculated by standard procedure �third-order spline fit,
dash-dotted line�, and fourth-order spline fit directly to QMC data
�dashed line�, and fourth-order spline fit plus model function sub-
traction �solid line�. �The model function was obtained by appropri-
ate integral of lattice Green function with �����=U�n−�−0.5�
+U2n−��1−n−�� /�.� Results are compared to the exact leading ana-
lytical high-frequency result �dotted line�.

FIG. 4. �Color online� Single-impurity DMFT results for the
spectral function A0=− 1


 Im G0 computed by the QMC and SCA
methods. Solid line is the QMC and dashed line is the SCA result.
U / t=20 and T / t=0.5.
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�lower panel� two-site approximation to the square-lattice
Hubbard model for the same parameters. Note that the un-
physical feature in the density of states near �=0 �to be
discussed in more detail below� evident in the real-space
calculations but not in DCA is reproduced �or not repro-
duced� by the semiclassical approximation as appropriate,
although the magnitude is not accurately determined

To summarize, the semiclassical and QMC methods yield
very similar results for the parameters relevant to this study.
The semiclassical method is orders of magnitude less com-
putationally expensive. For example, performing one two-
site cluster calculation at U / t=20 and T / t=0.5 required
about 24 h on a 2.4 GHz Pentium computer, essentially be-
cause the partitioned phase space means that up to 107 con-
figurations must be generated to sample the entire phase
space adequately. By contrast the semiclassical calculation
requires about 5 min on the same computer. Therefore most
of the results presented below are obtained from SCA calcu-
lations.

III. NUMERICAL RESULTS

A. Overview

In this section we present numerical results obtained by
the methods described in the previous sections and we com-

pare these to high-temperature series results. We study four
quantities: the local density of states

N��� = −
1



� d2p

�2
�2 Im G�p,�� , �23�

the internal energy, given in the paramagnetic state by �the 2
is for the spin sum�

E = 2� d�



� d2p

�2
�2 f���Im���p +
1

2
��p,��	G�p,��� ,

�24�

the impurity-model nearest-neighbor �NN� spin-spin correla-
tion function ��1�2�, and the phase diagram.

B. Density of states

Figure 6 shows the single-particle density of states, calcu-
lated by maximum-entropy analytical continuation of our nu-
merical solution of the dynamical mean-field equations, for
the paramagnetic phase of the square-lattice Hubbard model
with U / t=16 and T / t=0.3. �For the real-space approxima-
tion scheme this temperature is below the actual Néel tem-
perature. In the data shown in Fig. 6 the magnetism has been
suppressed to present results in the paramagnetic phase for
all cases considered�. The upper panel shows the spectral
function computed from the single-site DMFT; the model is
obviously in the Mott insulating phase, with well-separated
upper and lower Hubbard bands. The middle panel shows the
real-space, DCA, and CDMFT results for the density of
states obtained from a two-site cluster. As in the single-
impurity model, one observes the two Hubbard bands. The
narrowing of the bands relative to the single-impurity case is
a consequence of intersite magnetic correlations; indeed,
even in the one-site model, in the fully ordered antiferromag-
netic case the bands are substantially narrower than in the
paramagnetic phase. One also sees that in the real-space �FI�

FIG. 5. �Color online� Two-site fictive-impurity �upper panel�
and two-site DCA �lower panel� results for the spectral functions
A0=− 1


 Im G0 and A1=− 1

 Im G1 computed by the QMC and SCA

methods. U / t=20 and T / t=0.5, paramagnetic order.

FIG. 6. �Color online� Spectral functions, obtained by the FI
method, DCA, and CDMFT at U / t=16 and T / t=0.3, for one- �up-
per panel�, two- �middle panel�, and four- �lower panel� site clus-
ters, using the SCA approximation with antiferromagnetism sup-
pressed so model is in the paramgnetic phase.
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method a small band of midgap states exists. The lowest
panel shows results obtained from four-site clusters. One
sees clearly in the FI method that the area of the midgap
states decreases as the cluster size increases and the fre-
quency dependence changes. In a Mott insulator, the on-site
self-energy diverges as �→0. The midgap states imply that
in the FI cluster approximation � becomes small for some
��0. These results suggest that convergence to the infinite-
cluster-size limit is not uniform in frequency.

C. Internal energy

In this subsection we present results for the internal en-
ergy E= �H� computed from Eq. �24�. We remove the Hartree
shift U /4 and the chemical potential. We compare the calcu-
lated results to analytical large-U results, which have been
obtained up to O�t4 /U3�.25,26 To order t2 /U one has

E�2� = − 2
t2

U
tanh� U

4T
	 +

t2� U

2T
tanh� U

4T
	 − 3�

2Tcosh2� U

4T
	 . �25�

E�2� is shown as the light dotted line in Fig. 7. It includes
terms from virtual excursions of an electron from one site to
neighboring sites, but these average incoherently over the
different relative spin orientations, and do not involve inter-
site correlations.

In this model at half filling, the nontrivial intersite physics
is spin correlations and appears first at O�t4 /U2T��J2 /T. To
obtain results to this order we computed E=�−T�� /�T nu-
merically from the expressions for the thermodynamic poten-
tial � presented by Kubo.26 The result is plotted as a heavy
dashed line in each panel of Fig. 7.

Internal energy results as a function of temperature at
U / t=16 are shown in Fig. 7 for the real-space �upper panel�,
DCA �middle panel�, and CDMFT �lower panel� schemes,
along with analytical results. For the dynamical mean-field
methods, we show results in both the paramagnetic state and
antiferromagnetic state. The calculated Néel temperature is
visible as the point of discontinuity in the E�T� curves; for
T�TN, we show both the antiferromagnetic state energy
�lower curve� and the energy of the paramagnetic state �ob-
tained by artificially suppressing the Néel state�. We note that
in order to obtain accurate energies the high-frequency be-
havior of the Green functions must be carefully controlled.

All of the curves display three temperature regimes: a
very-high-T regime �for the parameters considered here, be-
ginning at T / t�0.75� where the energy increases with in-
creasing T, an intermediate-T regime �here �0.5�T / t
�0.75� where the energy is approximately T independent,
and a low-T regime in which the energy exhibits a strong T
dependence. The increase of E with T in the high-T regime
arises from real thermal excitations over the Mott-Hubbard
gap �cf. the second term in Eq. �25��. The more rapid upturn
of the DMFT results relative to the series expansion is an
artifact of the SCA, which overestimates the effect of ther-
mal flucuations on the gap. This regime will not be discussed
further here.

FIG. 7. �Color online� Internal energy E / t as a function of tem-
perature obtained by FI method �upper panel�, DCA �middle panel�,
and CDMFT �lower panel� at U / t=16 using the SCA and compared
to analytical results. Thick solid curves are for single impurity, solid
�solid with squares� curves for a two-site �four-site� cluster in an
antiferromagnetic state, and dashed �dashed with squares� curves
for a two-site �four-site� cluster in paramagnetic state, and stars and
crosses are obtained as described in the text from the large U ex-
pansion, to the order in U indicated. The rapid rise with temperature
of the DMFT results for temperatures T� t is an artifact of the
implementation of the semiclassical approximation based on Eq.
�22� used here, which overestimates the contribution of excitations
across the upper Hubbard band.
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In the intermediate-T regime, the excitations into the up-
per Hubbard band are quenched and intersite spin correla-
tions are slowly developing. The single-site DMFT neglects
intersite correlations entirely in the paramagnetic phase;
thus, in this regime the single-site DMFT result is essentially
independent of temperature and is seen to be very close to
the second-order series result t /U=0.0625; we would expect
corrections to be of relative order 1 /U2�10−2, essentially
invisible. The effect of intersite correlations is visible below
the Néel temperature.

Both 2FI and 4FI methods produce energies which lie
above the single-site DMFT curves and which increase at
low T. We conclude that in these methods the intersite spin
correlations are wrongly treated, leading to an O�J2 /T� con-
tribution to the energy with the wrong sign. The physical
origin of the error is the midgap states which shift weight of
order t4 /U4 in Im G from the vicinity of the lower Hubbard
band up to the chemical potential, thereby raising the energy.

The CDMFT and DCA methods produce energies which
lie below the single-site curve, indicating that they provide a
qualitatively correct treatment of the intersite spin correla-
tions. The quantitative accuracy may be judged from the
separation between the DMFT calculations and the series
results. The agreement is not impressive. The CDMFT inter-
site energy is far too small, while in the DCA method the
four-site cluster produces an energy in worse agreement with
the correct answer than does the two-site cluster.

Finally, we note that in the four-site methods, if the Néel
ordering is suppressed, an apparent first-order transition
�most probably to a dimerized spin state� occurs.

D. Néel temperature

The Néel transition temperature TN was identified with the
temperature corresponding to the kink in the antiferromag-
netic E�T� curve. We have verified the values by writing an
independent code to obtain the temperature dependence of
the staggered magnetization. We note that our methods are
mean-field methods. In the two-dimensional models studied
here spatial fluctuations drive TN logarithmically to zero. We
also note that the SCA+Ising-spin approximation used here
is not able to capture dimer states. Our computed Néel tem-
perature is therefore best interpreted as a scale below which
the spin-spin correlations become appreciable. The computed
mean-field phase diagram is shown in Fig. 8. In the small-U
limit all the methods agree reasonably well with each other
and with the simple analytical results. This finding is in
agreement with a detailed study of the size dependence of the
Néel temperature at small U.27 However, at large U substan-
tial variation exists. The FI method grossly overestimates TN.
We believe that the overestimate occurs because the ordering
eliminates the midgap states, thereby substantially lowering
the energy, �cf. Fig. 7�. The unphysical nature of the FI re-
sults means that computations of the four-site FI method are
not worth performing and are not presented here.

E. Impurity-model spin correlations

We finally consider the spin correlations in the impurity
model. �Note that the “fictive” nature of the impurity model

means that it is not to be thought of as a physical subcluster
of the lattice, so the relation of the impurity-model spin cor-
relations to the actual spin correlations in the lattice is not
entirely straightforward.� In Fig. 9 we show the comparison
of the NN spin-spin correlation to the two- and four-site
CDMFT �lower panel�, DCA �middle panel�, and FI method
�upper panel� results as a function of temperature. Also in-
cluded is the leading term ��1�2�=−t2 / �TU� in the appropri-
ate high-temperature-series expansion. We see that the vari-
ous methods obtain results which have the correct
temperature dependence, but with magnitudes somewhat at
variance with the exact results. We observe that the underes-
timate of the intersite contribution to the energy is not re-
flected in an underestimate of the cluster spin-spin correla-
tions, suggesting that the deficiencies of the methods have to
do with interactions which extend outside the cluster consid-
ered. We also note that for the sizes available to us, increas-
ing cluster size does not lead to improved agreement.

IV. APPROXIMATE ANALYTICAL TREATMENT

A. General formulation

In this section we present approximate analytical calcula-
tions which provide some insight into the numerical results.
The calculations are based on an approximation to the semi-
classical method of Ref. 23. This first subsection gives some
general considerations. The next subsection presents the rel-
evant aspects of the approximate solution of the impurity
model �which is the same for all methods�. Subsequent sec-
tions combine these formulas with appropriate self-
consistency conditions to obtain results for the single-site
model and the two- and four-site DCA, CDMFT, and FI
approaches.

In developing the analytical approximations it is useful to
alternate between two basis choices for the impurity model:
first, a real-space basis with on-site a0 and intersite aj�0
mean-field parameters. The key simplification of the large-U
half-filled limit is easily seen in this basis: the magnitude of
the intersite terms ai�0 is much less than �a0

2−�2�. Assuming
no spatial symmetry breaking �so ��� is the same on all sites�

FIG. 8. �Color online� Néel temperature TN / t vs on-site interac-
tion U / t obtained by the SCA. Solid curves are fits of the data.
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and expanding to second order in the parameter ai�0
2 / �a0

2

−�2� leads to an expression involving the mean-field param-
eters and the intersite spin correlations, which may be treated
analytically.

For solving the self-consistency condition it is more con-
venient to consider the impurity-model eigenbasis. An N-site
impurity model involves an N�N matrix mean field function
a, Green function G, and self-energy � related by �=a
−G−1. We restrict our attention to the paramagnetic phase so
a, G, and � are proportional to the unit matrix in spin space.
For the models of interest the orbital-space matrices may be
simultaneously diagonalized, so that for the N eigenmodes �
we have

G� = �a� − ���−1. �26�

The DMFT self-consistency equation is obtained by relat-
ing the lattice and impurity-model Green functions. Different
schemes involve different methods for relating the impurity-
model Green function and self-energy to the lattice Green
function and self-energy. In the impurity-model eigenbasis
we have

a� − �� = ��� �dk�
1

i� − �k − ��k,����

	−1

. �27�

Here the notation ���dk��� denotes the details required for
the particular DMFT scheme. We may then expand the right-
hand side, noting that in a Mott insulator �i�−��� ��k� and
that ��k ,��=��+sk

�1�= U2

4i� +sk
�2� with sk

�1,2� small. This formu-
lation enables one to solve for the mean-field parameters
without explicitly computing the Green functions or the sub-
leading contributions to the self-energy.

In the rest of this section we present the details of the
large-U analysis. We first give the analytical solution of the
general impurity model, then present the connection to the
lattice, and finally give results for physical quantities.

B. Impurity-model and self-consistency condition: Large-U
limit

An N-site impurity model is specified by a set of P+1
N�N matrices Mi. The impurity-model action Simp is

Simp = �
j=0

P

ajM j + Hint. �28�

For all models, M0 is the N�N unit matrix 1. For the two-
site model, M1=�x and the eigenvectors are correspondingly
the even and odd combinations

ae =
1

2

�a0 + a1� , �29�

ao =
1

2

�a0 − a1� . �30�

For the four-site model, P=2 with

M1 =
1

2�

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0
� , �31�

FIG. 9. �Color online� Nearest-neighbor spin-spin correlation as
a function of temperature obtained by the FI method �upper panel�,
DCA �middle panel�, and CDMFT �lower panel� at U / t=16 using
the SCA and the Ising spin approximation �see also Sec. IV�. Also
shown is the high-temperature series result for the Ising approxima-
tion to the square-lattice Heisenberg model ��1z�2z�=−t2 / �TU�,
which is the result to which it is appropriate to compare the numeri-
cal calculations performed using Eq. �22�.
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M2 =�
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0
� . �32�

The eigenvectors are

�S� =
1

2�
1

1

1

1
�, �X� =

1

2�

1

0

− 1

0
� ,

�Y� =
1

2�

0

1

0

− 1
�, �D� =

1

2�
1

− 1

1

− 1
� ,

so

aS = a0 + 
2a1 + a2, �33�

aX = a0 − a2, �34�

aY = a0 − a2, �35�

aD = a0 − 
2a1 + a2. �36�

To solve the impurity model we proceed from Eq. �20� in
the large-U limit. We treat the integral over the magnitude of
the auxiliary field by the steepest-descent approximation, so
that in the large-U limit ����U /2 is the same on each site

but the direction �̂ j may vary. Corrections to the steepest-
descent approximation �Gaussian fluctuations about the
saddle point� give subleading corrections to the results we
will present. The partition function is then

Z �� �d�̂ j�e−�Vef f�
�̂j��, �37�

with the ��� fixed by �V
�� j

=0.
We consider temperatures low enough that thermal exci-

tation into the upper Hubbard band may be neglected �math-
ematically this means we replace T��n

by �d� / �2
� in all
expressions, with one exception discussed below�.

The Hubbard-Stratonovich transformation followed by in-
tegration over the fermion fields leads, in the semiclassical
approximation, to

Simp = Tr ln� �
j=0,P

ajM j − �D� −
N�2

U
, �38�

with D a diagonal matrix with entries ��� i ·�� . At large U and
half filling we have �a0

2−�2�� �aj�0�2. Expanding to second
order gives

Simp = −
N�2

U
+ NTr ln�a0

2 − �2�

− �
i,j�0

aiaj

2�a0
2 − �2�2Tr�Mi�a01 + D�M j�a01 + D�� .

�39�

Taking the trace explicitly yields, for two- and four-site mod-
els,

Simp
2 = −

2�2

U
+ 2Tr ln�a0

2 − �2� −
2a1

2�a0
2 + �2�̂1 · �̂2�

�a0
2 − �2�2 ,

�40�

Simp
4 = −

4�2

U
+ 4Tr ln�a0

2 − �2�

−
a1

2
4a0
2 + �2��̂1 · �̂2 + �̂2 · �̂3 + �̂3 · �̂4 + �̂4 · �̂1��

�a0
2 − �2�2

−
a2

2
2a0
2 + 2�2��̂1 · �̂3 + �̂2 · �̂4��

�a0
2 − �2�2 . �41�

We shall see that for the Hubbard model with nearest-
neighbor hopping, a2=0 to the order to which we work. In
this case, for both two- and four-site models, the mean-field
equation fixing � is

1

U
= − T�

n
� 1

a0
2 − �2 +

a1
2�2a0

2 + S�a0
2 + �2��

�a0
2 − �2�3 � , �42�

with S the nearest-neighbor spin correlation given for N
=2,4 by

S = ��̂1 · �̂2� � −
4

3N
�

n

a1
2�2

�a0
2 − �2�2 , �43�

where the second approximate equality comes from expand-
ing Z to leading order in a1

2 / �a0
2−�2� and applies for T suf-

ficiently greater than J= t2 /U. Note that Eq. �43� is written
for Heisenberg spins; the semiclassical numerical method
used here amounts to an Ising approximation in which the
prefactor becomes 4/N.

For comparison to the numerics we note that in the Ising
approximation used in the numerical calculations the factor
of 3 in the denominator of the right-hand side of Eq. �43� is
absent.

The impurity-model Green functions are G j
imp=gjM j with

gj =� ln Z / �2N�aj�. In both two- and four-site models we
find �assuming a2=0�

g0 =
a0

a0
2 − �2�1 +

a1
2�a0

2 + �2�1 + 2S��
�a0

2 − �2�2 	 , �44�

g1 =
− a1�a0

2 + �2S�
�a0

2 − �2�2 . �45�
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General expressions for the self-energy are cumbersome.
By combining g0 and g1 into the appropriate impurity-model
eigencombinations we find that

�� =
�2

a0
�1 + O� tS

U
	� . �46�

In the low-frequency limit ����� we have, for the two-site
model,

�e =
�2

a0 + a1S
, �47�

�o =
�2

a0 − a1S
, �48�

while for the four-site model,

�S =
�2

a0 + a1S
, �49�

�X =
�2

a0
, �50�

�Y =
�2

a0
, �51�

�D =
�2

a0 − a1S
. �52�

For the impurity models in the insulating regime, we will
find that a0�� while a1� t. Thus the low-frequency behav-
ior of the impurity-model self-energies is well approximated
by the simple pole

���z� �
R�

z − ��

. �53�

In the single-site dynamical mean-field approximation, ��

=0, but in general �� is of order t with a prefactor which
depends on the intersite spin correlations and becomes very
small at T� t2 /U=J.

Differences between dynamical mean-field schemes arise
from different ways of combining the impurity-model self-
energies into an approximation to the lattice self-energy. In
the DCA and CDMFT approaches, the impurity-model self-
energy translates essentially directly into a lattice self-
energy, so that the pole structure is preserved. In the FI ap-
proach, the situation is different. For example, in the two-site
model one has, at low frequency,

�FI��� � �2�1 + 2d
k

� − �e
+

1 − 2d
k

� − �o
	 , �54�

with �e��o. Equation �54� implies that at a general k the
approximate self-energy has two poles with a zero crossing
between them. This incorrect analytical structure leads to the
midgap states found numerically.

C. Single-site approximation

In the single-site problem, the on-site terms are the only
ones present, so we set a1=S=0 in the formulas of the pre-
vious section. The impurity-model Green function is

Gimp =
a0

a0
2 − �2 , �55�

so that

� =
�2

a0
. �56�

The self-consistency equation is �dk�=ddk / �2
�d:

a0 − � = �� �dk�
1

i� − � − �k
�−1

. �57�

Now in a Mott insulator we expect �i�−��� ��k�. Thus we
rewrite Eq. �57� as

a0 − � = �i� − ���� �dk�
1

1 −
�k

i� − �
�

−1

= �i� − ���1 +
Kd

�i� − ��2� , �58�

where

Kd =� �dk��k
2 = 2dt2. �59�

Thus

a0 = i��1 +
Kd

�2 + �2	 , �60�

� =
�2

i�
�1 −

Kd

�2 + �2	 , �61�

while substitution into Eqs. �42� and �24� and expansion and
replacement of the frequency sums by integrals gives

� =
U

2
−

Kd

2U
, �62�

E = −
U

8
−

Kd

4U
= −

U

8
−

dt2

2U
. �63�

We observe that to this order in the t /U expansion the
single-site DMFT is in agreement with the exact result, Eq.
�25�.

D. DCA

In the DCA one covers the Brillouin zone with N tiles, �,
which correspond to the eigenvectors of the impurity model.
The self-consistency equations are
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a� − �� = ��
�

�dk�
1

i� − �k − ��
�−1

, �64�

where ���dk� denotes an integral over tile � of the Brillouin
zone, normalized so ���dk�=1. An analysis identical to that
leading to Eq. �57� gives, up to corrections of order t3 /U2,

a� = i� − I� −
K� − I�

2

i� −
�2

i�

, �65�

with

I� = �
�

�dk��k, �66�

K� = �
�

�dk��k
2. �67�

Note that in the limit spatial dimensionality d→	 K�d
whereas ��I��1 so that in this limit the model reduces to
single-site dynamical mean-field theory.

In the two-site DCA the two eigenstates are even �e� and
odd �o� and we find �in d=2�

Ie = − Io = − I�2� =
16t


2 � − 1.62t , �68�

Ke = Ko = K�2� = 4t2, �69�

implying

a0 = i��1 +
K�2� − �I�2��2

�2 + �2 � , �70�

a1 = − Ie =
16t


2 . �71�

In the four-site DCA we have

IS = − ID = −
8t



� − 2.55t , �72�

IX = IY = 0, �73�

KS = KD = 4t2 +
32t2


2 � 7.24t2, �74�

KX = KY = 4t2 −
32t2


2 � 0.76t2. �75�

Let us define

I�4� = −
1

2
2
�IS − ID� =

4
2t



� 1.80t , �76�

K�4� =
1

4 �
�=S,X,Y,D

K� = 4t2. �77�

Then

a0 = i��1 +
K�4� − �I�4��2

�2 + �2 � , �78�

a1 = I�4�. �79�

Thus for the N=2,4 site models the Ising version of Eq.
�43� implies

S = −
I2

N�T
� −

2I2

NTU
, �80�

with I given by either I�2� or I�4� as appropriate. From Eq.
�42� we have

�

U
= �

−	

	 d�

2
� �

�2�1 +
K − I2

�2 + �2	2

+ �2

+
I2
− 2�2 + S�− �2 + �2��

��2 + �2�3 �
= �

−	

	 d�

2

� �

�2 + �2�1 − 2
K − I2

��2 + �2�2�
+

I2�
− 2�2 + S�− �2 + �2��
��2 + �2�3 �

= �
−	

	 d�

2

� �

�2 + �2�1 − 2
K�2

��2 + �2�2�
+

I2S��− �2 + �2�
��2 + �2�3 �

=
1

2
−

K

2U2 +
I2S

2U
, �81�

with K given by K�2,4� as appropriate.
Finally, we consider the energy. Within the DCA we have

EDCA = 2T�
n,�
�

T�

�dp�
�p +

1

2
����n�

i�n − �p − ����n�

=
2T

N
�
n,�

�− 1 + �i�n −
1

2
��	G��i�n�� . �82�

We now rearrange Eq. �82� into a form more convenient
for the strong-coupling expansion. We write G�= �a�−���−1

and by adding and subtracting obtain

E = T�
n
��i�nG0 − 1� +

1

N
�
�

�i�n − a��G��i�n�� .

�83�

Finally, we note that because the same change of basis
diagonalizes G and a and G=�a=0

N−1GnMn and similarly for a
with Tr �MiM j�=N�ij, we have
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E = T�
n
��a0G0 − 1� + 2�i�n − a0�G0 − �

b=1

N−1

abGb� .

�84�

Here each of the three terms is convergent at large � and the
second and third are explicitly of order t2 /U.

We consider the three terms in turn. The first term is,
explicitly,

E�1� = T�
n

�a0G0 − 1�

= T�
n

a0
2

a0
2 − �2�1 +

a1
2
a0

2 + �2�1 + 2S��
�a0

2 − �2�2 � − 1

= T�
n
� �2

a0
2 − �2 +

a1
2a0

2
a0
2 + �2�1 + 2S��

�a0
2 − �2�3 �

= −
U

4
+

K − I2

2U
. �85�

Similarly, use of Eq. �70� gives

E�2� = T�
n

2�i�n − a0�G0 = T�
n

− 2�2�K − I2�
�a0

2 − �2�2 = −
K − I2

U
,

�86�

while

E�3� = − T�
n

a1G1 = − T�
n

a1
2�a0

2 + �2S�
�a0

2 − �2�2 = −
I2

2U
�1 − S� .

�87�

Thus the total energy for the N=2,4 site DCA approximation
is

EDCA
N = −

U

4
−

K

2U
+

�I�N��2S

2U
= −

U

4
−

K

2U
−

�I�N��4

NU2T
,

�88�

so that

E2-DCA � − 3.45
t4

U2T
, �89�

E4-DCA � − 2.62
t4

U2T
. �90�

We see that both two- and four-site DCA approximations
lead to an expression for the energy which reduces to the
single-site expression if the spin correlation S=0. The differ-
ences between the two- and four-site approximations have a
small contribution from the difference in the factors I but this
is overcompensated by the factor of N in Eq. �43�. Numeri-
cally the coefficient of the 1/T term is seen to be larger for
the two-site DCA than for the four-site DCA, so that �in
agreement with the numerical results� the four-site DCA is
seen to have a slightly worse intersite energy than the two-
site DCA.

E. CDMFT

The CDMFT approximation may be treated in a manner
very similar to the DCA. The lattice Green function is a
matrix in the space of the cluster states, so the self-
consistency equation is

Gimp = ��
�dk��i� − � − E�k��−1, �91�

where the prime denotes an integral over the reduced Bril-
louin zone appropriate to the real-space tiling and the disper-
sion matrix E was given above in Eqs. �10� and �12�. Ex-
panding and noting that �i�1−���E�p� and that � is
diagonal to leading order in t /U we find

Gimp = �i� − ��−1�1 + I�i� − ��−1 + K�i� − ��−2� , �92�

with

I = ��
�dk�E�k� , �93�

K = ��
�dk�E�k�2, �94�

Thus, inverting once more and using again that � is approxi-
mately diagonal we obtain

a = i�1 − I −
K − I2

i� −
�2

i�

. �95�

In the two-site CDMFT we have

I = − t�0 1

1 0
	 , �96�

K = − 4t2�1 0

0 1
	 , �97�

while in the four-site CMDFT we have

I = − 
2tM1 � − 1.4tM1, �98�

K = − 4t2�M0 +
1

2
M2	 . �99�

The solution of the self-consistency equations and the
analysis of the energy go through as before; the only differ-
ence is in the values of the intersite parameters a1. We find

I2-CDMFT = − t , �100�

I4-CDMFT = − 
2t , �101�

so the intersite term in the energy is

�E2-CDMFT � − 0.5
t4

U2T
, �102�
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�E4-CDMFT � −
t4

U2T
. �103�

Thus the CMDFT method underestimates the intersite corre-
lations by a larger factor than the DCA but moves in the
correct direction with cluster size.

F. FI model

The analysis of the FI equations is not quite as straight-
forward as the analysis of the DCA and CDMFT equations.
We specialize at the outset to the two-site problem, which
reveals the essential difficulties. In this case, the lattice self-
energy is �for the nearest-neighbor hopping model studied
here�

��k,�� =
1 + 2d
k

2
�e +

1 − 2d
k

2
�o �104�

and the self-consistency equations are �for general d�

Ge,o
−1 = �� �dk�

1 ± 
k

i� − ��k,�� − �k
�−1

. �105�

Unlike the previously considered cases, the self-energy
has a momentum dependence which interacts with the mo-
mentum dependence arising from the dispersion. Because �e
and �o have poles at different energies �cf. Eqs. �47� and
�48��, ��k ,�� generically has two poles �with k-dependent
strengths� and �except at special k points� a zero crossing
between them. This structure is physically incorrect �the self-
energy should have only one pole at a given k� and the con-
comitant zero crossing produces the midgap states.

To analyze the equation, say, for Ge we write

��k,�� = �e��� +
�o − �e

2
�1 − 2d
k� , �106�

assume the second term is small compared to the first, and
proceed as before. We obtain �in spatial dimensionality d�

ae,o = i� � t −

Kd�1 −
�1

t
	2

�i� −
�2

i�
	 �1 −

1

2d
� . �107�

Thus

a1 = t , �108�

and �again for the hypercubic lattice with nearest-neighbor
hopping and keeping only terms up to order t2 /U2�

a0 = i� −

2dt2�1 +
�2S

a0
2 	2

i� −
�2

a0

�1 −
1

2d
� . �109�

In the derivation of the single-site DMFT equations the d
→	 limit is taken with dt2 held constant. In this limit, S
� t2 / �TU��1/d vanishes and the equations revert to the
usual single-site DMFT form.

Equation �109� is valid for T�
Jt, but the solution
changes character for ��
t2U /T. At high frequencies we
may solve iteratively, obtaining

a0 � i��1 + 2dt2�1 −
1

2d
	�1 −

�2S

�2 	2

�2 + �2 � . �110�

Thus, if S is sufficiently small, we find a0�� and a1� t.
At lower frequencies, the structure of the equation becomes
more complicated, because of the presence of �1�1/a0

2 on
the right-hand side of the equation. This behavior arises be-
cause of the inappropriate combination of poles and pro-
duces the midgap states discussed above.

V. SUMMARY AND DISCUSSION

In this paper we have examined several multisite exten-
sions of the dynamical mean-field method in the strong-
coupling limit, which has not been the subject of previous
systematic study. We have computed a variety of physical
quantities and compared these to available and newly com-
puted analytical results. We were able to isolate the contri-
butions which arise from nontrivial intersite �in this case,
spin-spin� correlations. We found that an incorrect treatment
of these in a real-space �FI� scheme produces unphysical
midgap states in the Mott insulating phase and thus wrongly
estimates the internal energy, Néel temperature, and spin cor-
relations. The DCA and CDMFT schemes did not lead to
midgap states and produced results which are qualitatively
correct. However, substantial quantitative differences exist
between the CDMFT and DCA results and the exact answers.

From a mathematical point of view the central difficulty
with the FI approach is the pole structure of the self-energy
function. The importance of the pole structure was stressed
by Santescu and Kotliar.14 In a Mott insulator the equation
�−�p−��p ,��=0 has no solutions at low �; the lack of
solutions arises because the lattice self-energy has the form
given in Eq. �54�: a simple low-frequency pole at each p. All
of the DMFT schemes involve approximating the lattice self-
energy ��p ,�� by a combination of the N self-energies
����� of an N-site impurity model. Each of the impurity-
model self-energies exhibits a pole at some low frequency
��. The FI method combines the impurity-model poles in
such a way that at typical k values the lattice self-energy
contains N poles with zero crossings between them. This
structure leads to midgap states. The DCA and CDMFT
methods, on the other hand, translate the cluster self-energy
directly to the lattice, leading to a piecewise constant self-
energy with only one pole at each k and therefore to no
midgap states.

An approximate analytical examination of the equations
in the strong-coupling limit provides some additional physi-
cal insight into the multisite DMFT method. At temperatures
low enough that real excitations across the Mott-Hubbard
gap may be neglected, the expansion may be thought of as
sampling virtual excursions of an electron, which starts from
one site, samples some number of near neighbors, and re-
turns to its starting point. The result depends on the intersite
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spin correlations. We found that all methods reproduce ex-
actly the leading O�t2 /U� result for the internal energy, but
both multisite methods provided incorrect and indeed in
some cases unphysical estimates of the O(t4 / �TU�2) terms.

The correct value of the O�t2 /U� term has an interesting
implication. An early examination of possible multisite ex-
tensions of the DMFT method by Schiller and Ingersent28

has been interpreted as showing that straightforward cluster
methods �such as the FI method� are fundamentally flawed,
because they necessarily double-count processes involving
the hopping of an electron from one site to another. Our
finding—that all of the cluster methods agree with exact re-
sults at O�t2 /U� and that the disagreements arise from terms
involving intersite spin correlations—calls this interpretation
into question. It is obvious from our results that the various
methods have various levels of flaws, but it appears that a
fundamental overcounting is not among them. Instead, the
errors arise from an incorrect treatment of the terms physi-
cally arising from intersite spin correlations.

Additional insight into this question is provided by a
strong-coupling expansion performed for the Hubbard model
by Pairault, Senechal, and Tremblay.29 These authors pre-
sented results for the electron Green function up to third
order in t. Because our quantity S� t2, their result for G0 is
equivalent to our result for this quantity with S=0; at this
order, the cluster results agree with the one-impurity result.
However, the results of Pairault et al. imply that

G1 = t

�2 +
3t2U

4T

��2 +
U2

4
	2 . �111�

The FI method obtains Eq. �111� but with the coefficient 3 /4
replaced by 1/2 while the two-site DCA method replaces the
prefactor t by Id=1.6t in d=2 and the coefficient 3 /4 by
Id

2 /12t2�0.65. The differences between the DMFT and exact
results arise from an inaccurate treatment of intersite corre-
lations in the DMFT.

Reference 29 also showed that the strong-coupling expan-
sion for the Green function was not uniformly convergent,
but in order to yield finite results had to be carried to an
order which increased arbitrarily as the frequency was low-
ered. Our results show something similar: the FI method
does not converge uniformly to the exact result as a function
of cluster size and frequency or temperature. In the present
case we traced the difficulty to midgap states induced by an
incorrect approximation to the pole structure of the self-
energy. The other DMFT methods discussed here lead to
self-energies with the correct pole structure, but to values for
the intersite contributions to the energy which are in poor
agreement with exact analytical results. The methods may be
thought of as arising from resummations of particular classes
of terms in the strong-coupling expansion. The poor agree-
ment with exact results suggests that the resummation is not
precisely correct and indeed not necessarily particularly ac-
curate.

We note that the weak point of the general arguments
establishing the multisite DMFT approach is the choice of
interaction terms in the impurity model. These are always
taken to be the same interactions as in the lattice model. We
speculate that in order for the impurity model to represent
the Luttinger-Ward functional with the truncated self-energy,
it may be necessary to incorporate additional interaction
terms, representing the effects of otherwise neglected inter-
site processes. In the model studied here the intersite pro-
cesses have to do with spin correlations. The incorrect values
of the intersite energy go along with more reasonable esti-
mates of the cluster spin-spin correlations. This suggests that
the difficulty with the energy relates to effective interactions
which extend beyond the cluster considered.
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