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Electronic properties of heterostructures in which a finite number of Mott-insulator layers are sandwiched by
semi-infinite metallic leads are investigated by using the dynamical-mean-field method combined with the
Keldysh Green’s function technique to account for the finite bias voltage between the leads. Current across the
junction is computed as a function of bias voltage. Electron spectral functions in the interacting region are
shown to evolve by an applied bias voltage. This effect is measurable by photoemission spectroscopy and
scanning tunneling microscopy. Further predictions are made for the optical conductivity under a bias voltage
as a possible tool to detect a deformed density of states. A general discussion of correlated-electron based
heterostructures and future prospect is given.
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I. INTRODUCTION

Correlated-electron materials including transition-metal
oxides have provided the basis for a variety of properties
such as high-Tc superconductivity in cuprates and colossal-
magnetoresistance �CMR� in manganites.1 Therefore it is an-
ticipated that these materials will become the core of future
electronic devices. For this purpose, the fabrication and
characterization of interfaces including correlated-electron
materials are of fundamental importance. In recent years,
we have seen a tremendous amount of work on such hetero-
structures. Developments in thin film growth technique2 en-
able us to fabricate “digital” heterostructures out of corre-
lated materials with atomic resolution,3–6 and developments
in scanning microscopy7–9 enable us to characterize the
physical properties including conduction band electron dis-
tribution of the heterostructures.6 Furthermore, fabrication of
practical devices has already started. This includes Josephson
junction10,11 and tunneling magnetoresistance �TMR�
junctions12,13 with device characteristics that remain to be
optimized.

These experimental developments stimulated a great
deal of theoretical research on correlated-electron
heterostructures.14–19 So far, most work has focused on the
ground-state properties such as spectral function, charge den-
sity distribution, and linear conductance. As metal-
semiconductor �or band insulator�-metal heterostructures
provide one of the fundamental building brocks of current
electronics,20–22 establishing the electric properties of corre-
lated heterostructures is of great importance. Detailed analy-
sis of the transport properties of correlated heterostructures
including current-voltage characteristics is directly relevant
to device applications.10–13 However, this area remains
largely unexplored.

In this paper, we investigate the properties of heterojunc-
tions consisting of a correlated insulator embedded in semi-
infinite metallic leads. In particular, we focus on the steady
state with an applied bias voltage between the leads. The
effect of strong correlations is treated by using the
dynamical-mean-field theory �DMFT�23 combined with the
Keldysh Green’s function technique24 to account for the fi-

nite bias voltage. We present current vs voltage characteris-
tics of the junctions, position-dependent spectral functions,
and optical conductivity spectra, and discuss how the trans-
port properties of heterostructures are affected by correla-
tions.

The paper is organized as follows: In Sec. II, the theoret-
ical model, formalism, and numerical techniques are out-
lined. In Sec. III, we present numerical results, and finally in
Sec. IV, we discuss related work and future prospects.

II. MODEL AND FORMALISM

A. Model

We consider electrons moving on a cubic lattice with lat-
tice constant a �=1� and discrete translational invariance in
the xy plane. Thus each site is labeled by r�= �r�� ,z� with r��

= �x ,y�. A Hubbard-type interaction U is introduced at a
number N of layers �sample S� located from z=1 to N, and
noninteracting leads are located at z�N+1 �lead R� and z
�0 �lead L�. We consider the nearest-neighbor transfer t �t��
of electrons in the sample �lead ��, the hybridization v� be-
tween the sample and lead �, and the layer-dependent poten-
tial �0 �see Fig. 1�. Thus the Hamiltonian for this system is
written as H=HS+��=R,LH�+��=R,LHS−� with

HS = − t �
�r�,r��,�

�dr��
† dr��� + H.c.� + U�

r�
nr�↑nr�↓ + �

r�,�

�0�r��nr��

�1�

and

H� = − t� �
�r�,r��,�

�dr��
† dr��� + H.c.� + �

r�,�

�0�r��nr��, �2�

HS−R = − vR�
r��,�

�dr��+Nẑ�
† dr��+�N+1�ẑ� + H.c.� , �3�

HS−L = − vL�
r��,�

�dr���
† dr��+ẑ� + H.c.� , �4�

with HS and H� describing the interacting region and lead �,
respectively, and HS-� the hybridization between the sample
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and the lead �. dr�� is an electron annihilation operator at
position r� with spin �, and nr��=dr��

† dr��. The position r� in
each term is constrained as explained above and ẑ is the unit
vector ẑ= �0,0 ,1�.

B. Layer dynamical-mean-field theory with finite bias voltage

To apply a finite bias voltage, we adiabatically turn on the
hybridization and interaction between the leads and the
sample.25,26 Before turning on the hybridization and interac-
tions, the two leads have the chemical potentials �R and �L
as well as the site potentials �0�z�N+1�=�R and �0�z�0�
=�L. The potential in the central region varies accordingly.
We assume that the two leads are infinitely large and unaf-
fected by the interactions, and thus remain in equilibrium.
Under these conditions, the noninteracting leads are inte-
grated out, and the electronic state of the interacting region
may be described by the following Green’s function matrices
in the in-plane momentum k�� and z-axis coordinate represen-
tation:

ĜR�k��,	� = ��ĝR�k��,	�	−1 − 
̂R�k��,	�
−1, �5�

ĜK�k��,	� = ĜR�k��,	�
̂K�k��,	�ĜA�k��,	� . �6�

Here, R�A� and K stand for retarded �advanced� and Keldysh
components of the Green’s function matrices, respectively,

and ĜA�k�� ,	�= �ĜR�k�� ,	�	*. ĝR is the noninteracting retarded
Green’s function given by �ĝR�k�� ,	�	−1=	+ i0+

−HS�k�� ,z ,z� ;U=0�. 
̂R�k�� ,	� and 
̂K�k�� ,	� are the retarded
and the Keldysh self-energies, respectively, representing the
effects of both electron correlation and the hybridization with
the leads. The latter part of the self-energy can be obtained
from the noninteracting Green’s functions. Thus what must
be determined is the self-energy due to correlations.

In order to fix the correlation part of the self-energy, we
generalize the layer DMFT.16,27,28 Dynamical-mean-field
theory using the Keldysh technique has been applied to solve
the bulk correlated-electron model influenced by a time-
dependent external field,29,30 while our focus is the steady
state. In the layer DMFT, the self-energy due to correlations
is approximated to be diagonal in layer index and indepen-
dent of in-plane momentum. Thus the lattice self-energy is
written as


z,z�
� �k��,	� ⇒ �z,z��
z

��	� + vR
2gR

��k��,	��z,N + vL
2gL

��k��,	��z,1	 ,

�7�

where �=R, A and K. g�
R�A��k�� ,	� is the retarded �advanced�

Green’s function of lead �=R ,L projected on the layers ad-
jacent to the interacting region, and

g�
K�k��,	� = �1 − 2f��	�	�g�

R�k��,	� − g�
A�k��,	�	 �8�

is the Keldysh Green’s function of lead �. This function
describes the distribution of electrons in terms of the Fermi
distribution function f��	�= �exp 
�	−���+1	−1 with in-
verse temperature 
=1/T and chemical potential ��.

In DMFT, the quantum impurity model is introduced as a
mathematical tool to compute the electron self-energy. The
self-consistency condition of DMFT is closed by identifying
the impurity Green’s function Gimp,z�	� with the local part of
the lattice Green’s function Gloc,z�	� as

Gimp,z
� �	� = Gloc,z

� �	� �
1

�2��2 � �dk��2Gzz
� �k��,	� , �9�

where �=R�A� and K. The impurity model at each z is char-
acterized by the hybridization function �z�	� and the non-
equilibrium distribution function of electrons fef f,z�	� �in
equilibrium, this is just the Fermi distribution function�. The
hybridization function represents the intersite virtual transfer
of electrons in the form of the effective conduction band
coupled to the impurity orbital. This includes intralayer and
interlayer couplings and the hybridization between the
sample and the leads. As in the equilibrium case,23 the self-
consistency condition determining this function is

�z
R�A��	� = 	 − �0�z� − 
z

R�A��	� − �Gloc,z
R�A��	�	−1. �10�

The nonequilibrium distribution function is fixed by the local
Keldysh Green’s function as

Gloc,z
K �	� = �1 − 2fef f,z�	�	�Gimp,z

R �	� − Gimp,z
A �	�	 . �11�

Note that in the steady state we are focusing on, there is no
net charge flow between the impurity orbital and the effec-
tive conduction band, i.e., the impurity model is in local
“equilibrium” described by fef f,z. Therefore the Keldysh
components of the self-energy and the hybridization function
are related to the retarded ones by 
z

K�	�= �1
−2fef f,z�	�	Im 
z

R�	� and �z
K�	�= �1−2fef f,z�	�	Im �z

R�	�,
respectively. Thus the self-consistency condition of DMFT is
closed by Eqs. �10� and �11� with Eq. �9�.

The remaining task is to solve the quantum impurity
model defined by the hybridization function �z�	� and the
distribution function fef f,z�	� with the local interaction. For

ttL tR

vL vR

eV

Sample
U ≠ 0

Lead L
U = 0

Lead R
U = 0

)(
2

1
)(0 zUz +ε

(a)

(b)

z = 1 2 N−1 N

FIG. 1. Schematic view of the model heterostructure. �a� Pro-
jection on the �100
 plane. System consists of a cubic lattice with
discrete translational invariance in the xy plane. Sample with a fi-
nite interaction U�1�z�N� couples to noninteracting leads R�z
�N+1� and L�z�0�. Transfer intensity in the sample and lead R�L�
are denoted by t and tR�L�, respectively. Hybridization strength be-
tween the sample and lead R�L� is vR�L�. �b� Potential profile across
the junction. Note that potentials shown are �0�z� shifted by U�z� /2.
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this purpose, we employ the equation-of-motion decoupling
�EOM� scheme,31,32 which has been applied to study the non-
equilibrium properties of quantum dots33 and to solve the
quantum impurity models of DMFT in equilibrium.34–36 In
the EOM scheme, the retarded self-energy is given by �in-
cluding spin dependence explicitly as �= ↑ ,↓ and �̄=−��


z�
R �	� =

U�	 − �0�z� − �z�
R �	�	�nz�̄� − U
1z�

R �	�

	 − �0�z� − �z�
R �	� − 
2z�

R �	� − U�1 − �nz�̄��
,

�12�

with �nz��=− 1
� 
d�fef f,z����Im Gimp,z�

R ���, and


iz�
R �	� = −

1

�
� d� Im �z�̄

R ���Aiz����

� � 1

	 + i0+ + � − 2�0�z� − U
+

1

	 + i0+ − �
� ,

�13�

with A1z����= fef f,z���� and A2z����=1.36

We pause to make one remark on solving the self-
consistency equations. During the computation, we noticed
that updating the distribution function directly from Eq. �11�
by dividing both sides by Gimp,z

R �	�−Gimp,z
A �	� does not pro-

vide smooth convergency. Instead, we found it more efficient
to first rewrite the right hand side of Eq. �11� as 2i�1
−2fef f,z�	�	�Gimp,z

R �	��2�Im 
z
R�	�+Im �z

R�	�
 and then to
update fef f,z�	� from �1−2fef f,z�	�	Im �z

R�	�.
It may be worth pointing out the limitation of the EOM

scheme. As discussed in detail by Gros, the EOM scheme
does not describe the correct metallic state of the Hubbard
model at half filling. Thus it fails to describe the bulk metal-
insulator transition.34 This is because the EOM scheme is
essentially a strong coupling expansion, and therefore
“Kondo” physics is not fully taken into account. Although
some amount of Kondo physics is included by the exchange
of electrons between the impurity orbital and the conduction
band, it disappears in the particle-hole symmetric case.
Therefore it is favorable to take the on-site interaction U
larger than the critical value of the bulk Mott transition at
half filling. When it is applied to the noninteger filling, the
EOM scheme can reproduce the resonance-peak structure at
the Fermi level at low temperature.31,32 However, such
Kondo physics is not fully taken into account. Therefore re-
sults become less reliable at temperatures much lower than
the characteristic Kondo temperature.

Although it may not be easy, some improvement in the
impurity solver of DMFT seems possible. For weak-to-
intermediate interaction U, generalized iteration perturbation
theory �IPT�29,37 seems realistic. But including higher-order
perturbation processes in terms of U may be necessary38 be-
cause the simple second-order perturbation with respect to U
does not capture the nonequilibrium Kondo feature when it is
applied to the quantum dot problem.39 For intermediate-to-
strong coupling, the noncrossing approximation40 may be ap-
plicable. However, this method is known to exhibit artificial
structure in the spectral function at low temperature.33 An-
other possibility is to use the recently developed continuous-

time quantum Monte Carlo method,41,42 which could be ap-
plied to a wider range of parameters. This method is
formulated on the imaginary time axis assuming the system
is in equilibrium. Therefore in order to apply it to the non-
equilibrium situation, it is necessary to modify the method to
deal with real time �or real frequency�.

C. Physical quantities

Once self-consistency in the DMFT equations is achieved,
one can proceed to compute physical quantities using the
“lattice” Green’s functions. Here, we first consider steady-
state electric currents. In the steady state with a potential
gradient along the z direction, the current is uniform in space
and time. Therefore one can measure the current through any
bond along the z direction �the steady current is conserved in
the present formalism�. Using the Keldysh Green’s function
matrix, the electric current I per spin and per unit area be-
tween the z and z+1 layers is computed as

I =
et

2�
� �dk��2d	

�2��3 �Gz+1,z
K �k��,	� − Gz,z+1

K �k��,	�	 . �14�

Another physical quantity of interest is the optical con-
ductivity which can provide information about the dynamical
properties of the system. In order to obtain the optical con-
ductivity, a linear coupling between the current and the vec-
tor potential is first introduced according to the Pires-phase

approximation as 1
c I��t�� ·A� �t��. Then, the expectation value of

the current �Il�t�� to linear order in Al��t�� is computed using
the nonequilibrium Green’s functions. Here, l , l�=x, y, z, and
c is the velocity of light. The optical conductivity tensor
�ll��	� is then obtained by �ll��	�= �Il�	�� /El��	� where
�Il�	�� is a Fourier transform of �Il�t��, and El��	� is an elec-
tric field given by El��	�= i	Al��	� /c with Al��	� being a
Fourier transform of Al��t�. When the current and/or vector
potential is along the z direction, one has to subtract the
contribution of the static current Iz�0. When both the cur-
rent and the vector potential are perpendicular to the z direc-
tion, the optical conductivity is simply given by a Fourier
transform of the current-current correlation function along
the Keldysh contour. In this case, the conductivity �xx is
expressed using the interacting Green’s functions as43

�xx�	� =
�et�2

	�
�
z,z�

� �dk��2d	�

�2��3 �2i sin kx�2

� �Gz,z�
−− �k��,	�Gz�,z

−+ �k��,	 + 	��

− Gz,z�
−+ �k��,	�Gz�,z

++ �k��,	 + 	��	 , �15�

where Ĝ−−= �ĜK+ ĜR+ ĜA	 /2, Ĝ−+= �ĜK− ĜR+ ĜA	 /2, and

Ĝ++= �ĜK− ĜR− ĜA	 /2. In Eq. �15�, we neglected the vertex
correction which should become significant in finite dimen-
sion. Nevertheless, we believe that the essential features of
the conductivity are captured by the interacting Green’s
functions. One can use a similar procedure to compute
other dynamical quantities such as the dynamical spin
susceptibility.
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III. RESULTS

In this section, we consider the particle-hole symmetric
case when the bias voltage is absent to ensure the Mott in-
sulating state in the interacting region. The chemical poten-
tials and the site potentials of leads R and L are changed by
a bias voltage V as �L=�L=eV /2=−�R=−�R. We assume
that the potential in the central region varies linearly as
�0�z�=−U /2+eV�N+1−2z� / �2N+2� interpolating �L and
�R. This assumption may be justified when the central region
is highly insulating and the density profile is not changed by
an applied bias voltage. A more realistic calculation requires
the potential profile to be determined self-consistently by
including long-ranged Coulomb repulsion. This is beyond
the scope of the current study, but some discussion will be
given later. We mainly use the parameters U=15t, tR= tL
=2.5t, vR=vL= t, and T=0.1t for the Hubbard heterostruc-
tures. Qualitative behavior does not depend on the choice of
parameters unless the interaction parameter U becomes as
small as the bare bandwidth �and/or the interacting region
becomes too thin� and the interacting region becomes a
“metal” even at half filling.

Let us first check if the assumption of linear potential is
reasonable or not. Figure 2 plots the charge densities �nz�
=���n�z� as a function of applied bias voltage for a N=6
heterostructure with U=15t. As can be seen, the charge den-
sities are essentially unchanged up to eV�14t �deviation
from �nz�=1 is smaller than 1%; it is about 6% even at high
voltage eV=20t�. Therefore the assumption of a z-linear po-
tential is rather realistic.

Next we discuss the current-voltage �I-V� characteristics
of the Hubbard heterostructures. Numerical results are shown
in Fig. 3. The thickness of the interaction region is changed
as N=4, 6, and 8. For small voltages eV�5t, current is ex-
ponentially small. The current grows rapidly above eV�5t,
and it continues up to eV�14t, above which it begins to
decrease. Such a behavior is similar to that of a conventional
metal-band-insulator-metal junction with the gap amplitude
�5t and the distance from the middle of the gap to the top of
the conduction band �or the bottom of the valence band� 14t.

Thus the z-axis transport is expected to be due to the inter-
band Zener tunneling as discussed in Ref. 44, in particular in
the low voltage region. In Ref. 44, breakdown of one-
dimensional Mott insulators by an applied voltage is inves-
tigated using a finite-size Hubbard ring. The applied voltage
is introduced by a time-dependent vector potential.

This picture is further supported by replotting the current
as a function of electric field E=eV / �N+1�. The result is
shown in the inset of Fig. 3. As can be seen, the current at the
low voltage region �eV�14t� falls onto the universal curve
given by I=a1E exp�−a2 /E� with a1,2 fitting parameters as
indicated by a light line. Similar results have been reported
by Al-Hassanieh and co-workers who performed time-
dependent density-matrix-renormalization group �DMRG�
studies on one-dimensional heterostructures with a Mott-
insulating region sandwiched by noninteracting leads.45 This
may indicate that the conventional band-insulator-like trans-
port behavior is common for the Mott insulator in all dimen-
sions. However, there has not been a direct observation con-
firming the Zener tunneling in correlated insulators. This is
because the numerical methods used in the previous studies
deal with the time evolution of the ground state under a
time-dependent external field. So it is difficult to see the
electron spectral function in the steady state. On the other
hand, the present formalism directly deals with the steady
state.

Figure 4 shows the layer-resolved spectral functions
Az�	�=− 1

� Im Gloc,z�	� for N=6 Hubbard heterostructure
with several choices of bias voltage. Other parameters are the
same as in Figs. 2 and 3. Occupied regions, i.e., fef f,zAz�	�,
are shaded. Figures 4�a�–4�c� confirm the naive interpreta-
tion based on the conventional band insulator; about 5t of
Mott gap is evident from �a�; a chemical potential of lead L
�eV=5t� is located inside the upper Hubbard bands �b�, and
touches the top of the upper Hubbard band of the layer at z
=6 at eV�14t �c�. Above eV�14t �d�, another tunneling
process sets in from the top of the upper Hubbard band for
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FIG. 2. Charge densities as functions of bias voltage for N=6
Hubbard heterostructure with U=15t.
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FIG. 3. Current-voltage characteristics of Hubbard heterostruc-
tures with N=4, 6, and 8 with U=15t. Note that results shown are
current per spin. Inset: current as a function of electric field defined
by E=eV / �N+1�. The current at low voltage eV / t�14 falls onto
the universal curve indicated by a light line I=a1E exp�−a2 /E� with
a1,2 fitting parameters.
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layers z�6 to the unoccupied state of lead R, resulting in a
negative differential conductance. At low bias voltage eV
�14t, the deformation of spectral functions is very weak
because the amount of electrons injected in the upper Hub-
bard band �and holes injected in the lower Hubbard band� is
too small �see also the voltage dependent charge densities in
Fig. 2�. Therefore the magnitude of the gap controls the
z-axis transport which is less sensitive to the detail of the
model. This confirms the Zener tunneling mechanism.

In addition to the “rigid” shift of the layer-dependent
spectral functions, quasiparticle-like sharp features are vis-
ible in the spectral functions at 	� ±eV /2 in the high bias
voltage region eV�14t as seen in Figs. 4�c� and 4�d�. In the
equilibrium case, such quasiparticle features are observed
only at the Fermi level. In the current nonequilibrium case, it
is possible to have two “quasiparticle” peaks at 	� ±eV /2
=�L ,�R as in the nonequilibrium quantum dot.33 The exis-
tence of quasiparticles may indicate metallic transport prop-
erties, i.e., larger current densities. However, with the param-
eters used here, quasiparticle features appear at rather high
voltage and the additional tunneling process sets in as dis-
cussed above. Therefore the current density is not enhanced.
It would be very interesting to investigate the nonequilibrium
behavior of correlated heterostructures with a smaller param-
eter U �close to the critical value for the bulk Mott transi-
tion�. If the “quasiparticle” structures appear before the
chemical potential �L exceeds the upper edge of the spectral

function at the rightmost layer, it would induce a larger cur-
rent, resulting in highly nonlinear I-V characteristics. Such a
study requires impurity solvers suitable for weaker interac-
tions.

Layer-resolved spectral functions deformed by an applied
bias voltage are essentially measurable by photoemission
spectroscopy �PES� and scanning tunneling microscopy
�STM�. Yet, in light of the available spatial resolution, the
latter seems plausible. Since, a current is already injected by
an applied voltage, the insulating nature of the sample would
not be a problem for STM. Although indirect, optical con-
ductivity measurements might also be useful to investigate
deformed spectral functions. Using Eq. �15�, in-plane optical
conductivity spectra �xx�	� are computed for N=6 Hubbard
heterostructure with several choices of bias voltage as shown
in Fig. 5. Other parameters are the same as in Figs. 2–4. At
low bias voltage, the spectrum is dominated by an inter-
Hubbard-band transition appearing at 	�U=15t. With in-
creasing bias voltage, the peak position of the inter-Hubbard-
band transition shifts upwards because of the change in the
potential profile in the interacting region. The weight of the
inter-Hubbard-band transition is reduced and transferred to
the low frequency region. The Drude-like low frequency
structure is rather broad until sharp resonancelike structures
become clear in the spectral functions. In the actual optical
conductivity measurement, one needs a rather thick interact-
ing region compared with the radius of the incident light.
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FIG. 4. Layer-resolved spec-
tral function of electrons for N
=6 Hubbard heterostructure with
several choices of bias voltage in-
dicated. On-site interaction is U
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gion occupied by electrons, i.e.,
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Otherwise, the huge Drude response from the noninteracting
leads would hide the low frequency features coming from the
interacting region.

A. Comparison with Falicov-Kimball model

In order to see the effect of the change in spectral func-
tions, in particular the evolution of quasiparticle peaks, on

the current-voltage characteristics, we have also applied the
current DMFT method to the spinless Falicov-Kimball �FK�
model. In this model, itinerant c fermions described by
−tFK��r�,r����cr�

†cr��+H.c.� interact with localized f fermions via
the on-site Coulomb interaction UFK�r�cr�

†cr�fr�
†fr�.

46 It is known
that, when �nz

f�= �fz
†fz��0,1, the FK model does not exhibit

a quasiparticle feature unlike the Hubbard model.47 We take
the local interaction as UFK=15t and the transfer intensity of
c fermions as tFK=1.5t so that the positions of the upper- and
lower-Hubbard bands and the magnitude of Mott gap be-
come similar to those of the Hubbard model with U=15t
studied in the previous section.

The c-fermion self-energy of the FK model has the same
form as the electron self-energy of the Hubbard model

z�

R �	� given in Eq. �13� with 
1�2�z��	�=0 and �nz�̄� re-
placed with �nz

f�. For the computation, we fixed the mean
density of f fermions at each layer as �nz

f�=0.5 for all applied
bias voltage.

Numerical results for the layer-resolved spectral functions
of itinerant c fermions for N=6 FK-model heterostructure
are shown in Fig. 6 with several choices of bias voltage
indicated. As seen in Fig. 6�a�, the inter-Hubbard-band peak-
to-peak distance and the gap amplitude of the FK hetero-
structure are almost identical to those of the Hubbard hetero-
structure. It is also evident that the spectral functions of the
FK heterostructure are less sensitive to the bias voltage and
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FIG. 5. Optical conductivity spectra of N=6 Hubbard hetero-
structure with several choices of bias voltage indicated. On-site
interaction U=15t.
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FIG. 6. Layer-resolved spec-
tral functions of itinerant c fermi-
ons for N=6 Falicov-Kimball het-
erostructure with several choices
of bias voltage indicated. Param-
eters are the on-site interaction
UFK=15t and hopping amplitude
tFK=1.5t. Shaded area shows the
region occupied by the c fermi-
ons. For comparison, spectral
functions of N=6 Hubbard-model
heterostructure with U=15t and
eV=0 are also shown as light lines
in �a�. Unlike Hubbard hetero-
structure, a quasiparticlelike sharp
structure does not appear in Az�	�
at any bias voltage.
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do not show the resonance feature unlike the Hubbard het-
erostructure �see Fig. 4 for comparison�. In the FK model,
electric current is carried only by the itinerant c fermions.
Numerical results for the current-voltage characteristics of
N=6 FK heterostructure are shown as filled circles in Fig. 7.
For comparison, the current per spin as a function of bias
voltage for N=6 Hubbard heterostructure with U=15t is also
shown as open circles. At first sight, the similarity in the I-V
characteristics is remarkable between the Hubbard and the
FK heterostructures. This clearly demonstrates that the z-axis
transport properties of metal-Mott-insulator-metal hetero-
structures is dominated by the inter-Hubbard-band tunneling.
Yet, about 10% �20%� enhancement of the current at eV
�15t �eV�17t� can be seen in the Hubbard heterostructure
despite a factor 2 /3 smaller transfer intensity than in the FK
heterostructure. This originates from the faster narrowing of
the Mott gap by an applied bias voltage in the Hubbard het-
erostructures than in the FK heterostructures. To see this be-
havior semiquantitatively, let us define the gap amplitude by
the width in which the spectral function becomes smaller
than 0.001. Note that the spectral function is finite every-
where and, strictly speaking, there is no gap at finite tem-
perature and bias voltage. By this definition, the gap ampli-
tude at eV=14t is estimated to be 1.60t at layer z=3 in N
=6 Hubbard heterostructure, and 2.66t at layer z=3 in N=6
FK heterostructure, i.e., the former is about 40% smaller than
the latter. Thus the effect of dynamical fluctuations in the
Hubbard heterostructure is rather strong, overcoming the nar-
rower bandwidth and enhancing the current amplitude.

IV. SUMMARY AND DISCUSSION

Summarizing, we have investigated the electronic proper-
ties of metal-Mott-insulator-metal heterostructures under an
applied bias voltage between the metallic leads by employ-
ing the dynamical-mean-field theory combined with the
Keldysh Green’s function technique. We have focused on the

strong coupling region. In this case, the current-voltage char-
acteristics of Hubbard heterostrucures were found to be quite
similar to that of the conventional metal-semiconductor-
metal heterostructures. Similar current-voltage characteris-
tics are also obtained by using the Falicov-Kimball model in
which itinerant fermions do not exhibit a quasiparticle
feature.47 These findings indicate that the electron transport
in correlated-insulator heterostructures is mainly dominated
by inter-Hubbard-band tunneling. On the other hand, the
electron spectral functions are strongly deformed by an ap-
plied voltage. Deformed spectral functions under a finite bias
voltage are measurable by using �spatially resolved� photo-
emission spectroscopy and scanning tunneling microscopy.
Such effects may also be examined by optical conductivity
measurements.

A. Doped case

So far, we have considered the particle-hole symmetric
situation before applying a bias voltage. Here we consider
the hole-doped situation by increasing the potential at all
layers by 4t with the other parameters unchanged. As in the
undoped case, we assume that the potential in the central
region varies linearly as �0�z�=−U /2+4t+eV�N+1
−2z� / �2N+2� interpolating �L and �R. In a realistic situation,
this assumption is not fully justified because an external elec-
tric field is screened by the redistribution of carriers and the
potential drop occurs only near the interface regions. In order
to describe such a screening effect, it is necessary to intro-
duce a long-range Coulomb interaction and to determine the
potential profile by solving the Poisson equation self-
consistently. These effects are neglected in this study. Nev-
ertheless, the qualitative behavior including the linear
current-voltage characteristics and the change in quasiparti-
cle features presented below is expected to be unchanged.

Numerical results for the layer-resolved spectral functions
are shown in Fig. 8. At low bias voltage, the splitting of the
resonance structure can be seen �Fig. 8�b�
. This is similar to
the nonequilibrium Kondo effect in the quantum dots.33 With
increasing V, higher peaks are moved inside the Mott gap,
and only the lower peaks remain visible. Because the electric
current is carried by the quaiparticles in the metallic region,
the change in the spectral function by a bias voltage may
affect the current-voltage characteristics.

The current-voltage characteristic of the doped Hubbard
heterostructure is shown in Fig. 9. Near-linear voltage depen-
dence of current can be seen at low voltage eV�7t with the
change of slope at eV� t as indicated by dashed lines. This
change is due to the disappearance of one of the two reso-
nance peaks.

The frequency dependent electron occupation in the
doped Hubbard heterostructure is changed more drastically.
As shown in Fig. 8�e�, holes are injected into the lower Hub-
bard band more strongly than in the undoped case �see Fig. 4
for comparison�. Thus the electron density becomes com-
pletely depressed in some frequency regions �see layers at
z=3,4 ,5�. These features may affect excitations, i.e., the op-
tical conductivity, more strongly than in the undoped case.

Numerical results for the in-plane optical conductivity of
the doped Hubbard heterostructure are shown in Fig. 10 for
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FIG. 7. Current-voltage characteristics of N=6 Falicov-Kimball
heterostructure with UFK=15t and tFK=1.5t. The electric current is
carried by itinerant c fermion. For comparison, the current per spin
as a function of bias voltage of N=6 Hubbard heterostructure with
U=15t is also shown.
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several choices of bias voltage indicated. Contrary to the
Mott-insulator heterostructure, an applied bias voltage de-
stroys the low frequency Drude-like peak efficiently. An
applied bias voltage also reduces the total weight correlated
with the reduction of electron density inside the interacting
region as shown in Fig. 11. The reduced electron density
strongly depends on the layer, indicating the emergence of

a “dipole” moment. Therefore, in a more realistic calcu-
lation, it will be necessary to include the long-ranged
Coulomb interaction and determine the potential profile
self-consistently.16 We are currently working on including
such effects under various situations. The two-peak structure
in the spectral function seen in Fig. 8�b� is hardly observable
in the optical conductivity. This may be because the electron
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distribution functions fef f,z have a similar structure to the
spectral functions, effectively reducing the contribution from
the interpeak transition. As can be seen from the shaded area,
fef f,z has a two-step structure. Further, the finite imaginary
part of the self-energy broadens the structure in the optical
conductivity even if it exists.

Another interesting observation is the emergence of the
negative conductivity �xx�	��0 �see the result for eV=12t
in Fig. 10�. The negative conductivity should be remedied by
including the vertex correction. Yet, it implies the optical
response of the correlated system becomes unusual in the
non-equilibrium situation. This may be an interesting future
problem.

B. Other work and future prospects

Nonequilibrium transport properties of one-dimensional
metal-Mott-insulator-metal heterostructures have also been
studied by Yonemitsu.48 His main focus is on the field-effect
carrier injection by an applied gate voltage, and he points out
that the ambipolar current-voltage characteristics is a general

feature of metal-Mott-insulator-metal heterostructures. In
contrast to the behavior of conventional metal-band-
insulator-metal heterostructures, ambipolar behavior is found
to be insensitive to the difference in the work function be-
tween the Mott insulator and the metallic leads. On the other
hand, in light of our results, Mott insulators and band insu-
lators are expected to behave quite similarly. Thus the differ-
ence comes from the absence of long-range Coulomb inter-
action and the difference in the work function between the
sample and leads in our case. Including these effects is cer-
tainly necessary for applying the current DMFT method to
the more realistic system. Yet, there may appear further in-
teresting phenomena in higher dimension; in this case, qua-
siparticle structure at the Fermi level emerges more easily
than in the particle-hole symmetric case studied here.

Another work on one-dimensional heterostructures was
performed by Oka and Nagaosa.17 They applied the DMRG
technique to study the charge density redistribution in the
interface between noninteracting metal and correlated-metal
in the presence of work function difference between the
two. Even though they are dealing with one-dimensional
models in which quantum effects are strongest, density pro-
files were found to be well reproduced by using the classical
charge with the appropriate gap at an integer-filling region.
This observation about the static properties is actually con-
sistent with the previous studies on the higher-dimensional
heterostructures. It has been shown that the static charge
profile computed by DMFT is almost identical to the one
by the mean-field approximation.16,28 Based on this finding,
they proposed an interesting “interface Mott transition” to
explain the colossal electroresistance, i.e., the large switch-
ing of resistance by an applied bias voltage, observed
experimentally.49,50 Their assumption is that the filling-
controlled Mott metal-insulator transition occurs by applying
a bias voltage, and that the Mott transition is of the first order
in higher-than-one dimensions. The Mott metal-insulator
transition in the higher dimension is characterized by a col-
lapse of the small energy scale which is roughly the quasi-
particle bandwidth.23 Therefore, in order to have a first order
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FIG. 10. Optical conductivity spectra of N=6 Hubbard hetero-
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transition, the temperature must be smaller than this energy
scale. On the other hand, applying a bias voltage V has a
similar effect to increasing the temperature. Therefore if the
bias voltage required to accomplish the integer filling at
some layer becomes larger than the small energy scale, the
metal-insulator transition would become of the second order
or just a crossover. A very interesting theoretical question is
whether an interface Mott transition is really possible.

In this paper, we have focused only on a paramagnetic
phase and “Mott” physics. However in general, correlated
electron systems have a strong tendency toward magnetic
ordering. A single-band Hubbard model is known to exhibit
an antiferromagnetic ordering at half filling. This ordering is
affected by applying a magnetic field, changing the chemical
potentials by a gate voltage, or injecting a current by apply-
ing a bias voltage. In any of these cases, the current-voltage
characteristics are expected to be modified from the results
obtained in this paper. Therefore including magnetic symme-
try breaking is one of the interesting extensions of this work.
It is also possible and desirable to consider magnetic leads
instead of nonmagnetic ones. This is of the direct relevance
to the TMR effect.

Further, application of the present DMFT method to other
models is highly desirable. This includes the double-
exchange model �with electron-phonon coupling� for CMR

manganites, and the multiorbital Hubbard model for general
transition-metal oxides. For either model, fluctuation, order-
ing or melting of internal degrees of freedom would affect
the transport properties of heterostructures. Controlling these
degrees of freedom by external fields including a bias volt-
age and exploring the new phenomena that arise are impor-
tant and urgent tasks.

Another possible extension is including spatial correlation
beyond single-site DMFT. As the mathematical structure of
the EOM method used in this paper is quite similar to that of
so called correlator projection method,51 generalizing the
current method to the multisite problem would not be so
difficult.
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