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Nonmonotonic temperature dependence of thermopower in strongly correlated electron systems
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We examine the temperature dependence of thermopower in the single-band Hubbard model using dynamical
mean-field theory. The strong Coulomb interaction brings about the coherent-to-incoherent crossover as
temperature increases. As a result, the thermopower exhibits nonmonotonic temperature dependence and
asymptotically approaches values given by the Mott-Heikes formula. In the light of our theoretical result,
we discuss the thermopower in some transition metal oxides. The magnetic field dependence of the thermopower

is also discussed.
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Thermopower is the amount of entropy flow along with the
electric current.! The consideration on the entropy in thermo-
dynamics tells us the low- and high-temperature (7') limits of
the thermopower: In metallic systems, the thermopower goes
to zero as T — 0. On the other hand, the high-temperature
limit of thermopower is given by the entropy consideration'~
in the atomic limit. In the strongly correlated systems, the spin
and orbital degrees of freedom enhance the high-temperature
thermopower. '~

In the low-temperature limit, the ratio of the thermopower
Q and T is proportional to the derivative of the density of states
D(w) with respect to the energy @ measured from the chemical
potential u as Q/T «x —dD(w)/dw|,—o- By this relation, not
only the sign but also the magnitude of the thermopower of
conventional metals is well understood. The thermopower is a
sensitive tool for the electronic states.

The electron correlation brings about exotic electronic
phases such as an anomalous metal near the Mott transition.
In the vanadium oxide, La;_,Sr, VO3, the filling control
Mott transition is realized, and nonmonotonic temperature
dependence of the thermopower is observed.* The temperature
dependence manifests a crossover of coherent-to-incoherent
charge transport. This phenomenon is common to transition
metal oxides. The cobalt oxide, Na,CoO, is an example.’!!
In the photoemission spectroscopy measurements,'®!! it is
reported that the coherent motion of charge carriers is rapidly
suppressed with increasing temperature, and the quasiparticle
peak disappears at ~200 K.

In this Brief Report, we study the role of the strong
Coulomb interaction on thermopower, whose temperature
dependence is particularly examined in detail. For this purpose,
the single-band Hubbard model is adopted as a minimum
model and the strong Coulomb interaction is treated in the
dynamical mean-field theory (DMFT),'? which can capture the
coherent-to-incoherent crossover due to the strong Coulomb
interaction. This method based on the local picture is useful
to understand the overall behavior of thermopower as a
function of temperature. We find that the Coulomb interac-
tion significantly affects the temperature and magnetic field
dependence of the thermopower. The Coulomb interaction is
found to give rise to a nonmonotonic temperature dependence,
which is well described by the entropy consideration at high
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temperatures. In the light of our theoretical results, we discuss
the thermoelectric response in some transition metal oxides.
We start with the single-band Hubbard model:

H = Zskczgcka +U annu — W Z("iT +niy), (1)
ko i i

where o(= 1,|) denotes electron spin, & is the dispersion
relation of the noninteracting electrons and other notations are
standard. In the DMFT formalism, the resulting equations are
the functions of the density of states for the noninteracting
electrons. We denote the “bare” density of states by Dy
and take the semicircular function of the energy ¢, Dy(e) =
[2/(r W?)]v/ W2 — g2, with the normalization W=1 through-
out this Brief Report. Because the Hamiltonian has particle-
hole symmetry, all the results shown here are for the case where
the electron concentration n > 1. To solve the single impurity
problem in DMFT, we employ the noncrossing approximation
(NCA)'>!* and the iterated perturbation theory (IPT),'%!5-20
which do not require the analytic continuation from the
imaginary frequency axis. In the present DMFT formalism,
the thermopower Q is expressed by Q = —(kg/e)(A|/Ao),
where

T
Al=— | d
: th/ “ 4 cosh? (Bw)2)

Here, p,(e,w) is the spectral density given by p,(g,w) =
Im[1/{w+ u — & — X;(w)}] where X,(w) is the electron
self-energy.

In earlier studies, a saturation behavior of thermopower at
high temperatures in the Hubbard model was discussed.?->*
We find in the following that the asymptotic behavior of
Q at high temperatures shows a nonmonotonic temperature
dependence.

Before presenting the numerical results, let us note the
high-temperature thermopower Q of the model Eq. (1) on
the entropy consideration. The independent variables of the
function Q are the electron concentration n, the Coulomb
interaction U, and temperature 7. For fixed n, we have two
high-temperature limits: (i) Q; := Q(T — o0,U) by keeping

(B

2
4cosh? (Bw/2) Z/dgpa(g w)Dy(e). (2)
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FIG. 1. (Color online) (a) Thermopower in the high-temperature
limit, Q; and Q», vs. electron density, n. (b) Temperature dependence
of the thermopower calculated by DMFT with the NCA impurity
solver, for various parameter sets of U and n.

kgT < U. Because U — o0 is achieved before T — o0 in
this case, Q; is given by

0 =k—31n<2”_1>. 3)
e 2—n

(i1) Q2 := Q(T — o00,U) by keeping kgT > U. In this limit,
U is of less importance, so the result is written as the well-
known Heikes formula,

kB n

=—1 .
2 e n2—n

“

Therefore, we expect the two different asymptotic behaviors,
ie., Q1 and Q,, and, furthermore, a sign change of the
thermopower may occur in the temperature dependence:
Figure 1(a) shows the n dependence of the high-temperature
limits of the thermopower, Q; and Q,. For n < 1.3, Q; is
negative, whereas Q5 is positive.

Figure 1(b) shows the temperature dependence of the
thermopower calculated by DMFT with the NCA impurity
solver. We find the nonmonotonic temperature dependence of
the thermopower. This is well understood as the asymptotic
behavior with the high-temperature limits, QO and Q5: In the
temperature region, kg7 > 0.4, O is in the range between Q|
and Q, for each n [see the solid and open dots in Fig. 1(a)].
With increasing 7', Q approaches Q) first, and, with further in-
creasing T', Q shows the saturation behavior given by Q,. For
n = 1.4, Q is always positive. But for n = 1.3, Q changes its
sign twice with increasing temperature. With further decrease
in n, the absolute value of the minimum of Q is enhanced and
becomes closer to Q. This is because the Coulomb interaction
U is more effective near half filling. The effect of the Coulomb
interaction is made much clearer by the U dependence in Q.
In Fig. 1(b), the results of U = 4 and 7 are shown for the same
electron concentration, n = 1.1. We see that the asymptotic
approach of Q to Q; is obvious for larger U. It is worth
noting that the entropy consideration on the high-temperature
thermopower works well even at finite temperatures.

The single band Hubbard model Eq. (1) has twofold
degeneracy on the singly occupied site. This is a disadvan-
tageous condition for the NCA impurity solver because the
approximation is based on an expansion in 1/N where N is
the ionic-angular-momentum degeneracy: For k3T < 0.4, Q
increases rapidly with decreasing temperature. The numerical
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FIG. 2. (Color online) Temperature dependence of the ther-
mopower for n = 1.2 calculated by DMFT with the IPT impurity
solver. Dashed and dotted lines are Q; and Q, for n =1.2,
respectively.

calculation simultaneously becomes unstable and eventually
breaks down at certain temperature, i.e., the imaginary part of
the calculated self-energy becomes positive at small frequen-
cies. This will be improved for large N systems, though further
considerations are required for the thermodynamic properties
near zero temperature. 13,14

The thermopower is sensitive to the Coulomb interaction
even for small U. To examine the thermopower in the small
U region, we use the IPT impurity solver for DMFT. In the
calculation, we follow the method by Refs. 8 and 9 to obtain
the self-energy. Figure 2 shows the temperature dependence of
Q for n = 1.2 and various U. In the small U limit, U = 40,
we use Do(w + ) for fds,oa(s,w)Do(s) in Eq. (2). In this
case, O is a monotonically increasing function of kzT: In
the low-temperature limit, Q /T o« —d Do(w + @)/ 9dw|,—o and
at high temperatures, Q asymptotically approaches Q», i.e.,
the Heikes formula Eq. (4). On the other hand, Q shows the
nonmonotonic temperature dependence for finite U. Near zero
temperature, the gradient of Q with respect to 7T is larger for
larger U. With increasing 7', Q shows a maximum and then a
minimum and increases with further increasing 7. For large U,
the convergence of the numerical calculation in DMFT with
the IPT impurity solver becomes poor, and the minimum of Q
grows beyond Q; (see the result for U = 3.0 in Fig. 2).

We note the complementary characters of the impurity
solvers NCA and IPT in DMFT. The care must be taken
to discuss the results of the thermopower shown in Figs. 1
and 2. The NCA impurity solver is a perturbative expansion
in powers of the hybridization between the impurity site
and the effective bath. Therefore, NCA is appropriate to
discuss the thermopower for large U (we find that the results
are not plausible for U < 3). On the other hand, the IPT
impurity solver is a perturbative expansion with respect to
the Coulomb interaction U and then appropriate for small
U. As a further advantage, unlike NCA, IPT can access
very low temperatures. We next discuss the response of
the low-temperature thermopower to the magnetic field by
DMEFT with the IPT impurity solver focusing on the relatively
small Coulomb interaction U < 2W (total band width of the
noninteracting system).

We introduce the Zeeman term, —B Zi(nm —n;y), into
the Hamiltonian Eq. (1) to discuss the response of the
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FIG. 3. Magnetic field dependence of the thermopower for
kpT = 0.02 and n = 1.2 calculated by DMFT with the IPT impurity
solver.

thermopower to the magnetic field B. Figure 3 shows the
magnetic field dependence of the thermopower for kpT =
0.02,n = 1.2 and several values of Coulomb interaction U . We
find that the Coulomb interaction enhances the thermopower
and its response to the magnetic field. The result for U = 40
is also presented as a reference to discuss the role of U on
the response of Q to B. For finite U, the convergence of the
numerical calculation becomes poor. Therefore, in Fig. 3, we
plot O within the range of B where IPT is accessible.

In general, Q in the low-temperature region is well
explained by the structure of density of states around the Fermi
level. Hence, the increase of Q by B is also understood from
the same viewpoint (see Fig. 4). In the small magnetic field, we
expand the interacting density of states D, (w, B) with respect
to B as

[o.¢]
D; (w,B) = D(w=+ B) = Z

m=0
Note that Dy(w,B =0) = D (w,B = 0) = D(w). Since the

total density of states, Dy (w), is written as D(w + B) +
D(w — B), the derivative d Dy (w)/dw is expressed as

3" D(w)

o EB) ()

ID(@) _ 55~ 0" D(@) o,
dw - daw2m+1
m=0

Through the relation Q/T & —9 Do (w)/dw| =0 for the low-
temperature thermopower, the magnetic-field dependence re-
flects the detailed structure of the density of states D(w) near
o = 0. For U = 0, the condition whereby the semicircular
density of state Dy with n = 1.2 results in an increase of Q
for small magnetic field, and the slow response to B is a
consequence of the noninteracting electron system. A simple
dome structure of Dy manifests the increase in Q against B.
Figure 4 shows that the density of states for U = 1.5 has a
coherence peak near w = 0. Therefore, as seen in Fig. 3, the
increase of Q also appears.

Equation (6) suggests that the response of the low-
temperature thermopower to magnetic field reflects the de-
tailed structure of the density of states near the Fermi level,
i.e., the increase or decrease in the thermopower under the
magnetic field is dependent on the differential coefficients,
32"+ Dyo(w) /3?1 | ,—o. In this theoretical study, we use the
single-band Hubbard model with semicircular density of states
Dy. The thermopower within DMFT is a function of the density
of states. Therefore, the increase in Q by the magnetic field as

(6)
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FIG. 4. (Color online) The density of states (DOS) forn = 1.2 at
kpT = 0.02. Thick line is the result of DMFT with the IPT impurity
solver for U = 1.5, B = 0. For reference, DOS for U = 0,B =0 is
presented by a thin line.

shown in Fig. 3 is a consequence of the simple model where
density of states has a negative slope at = 0 forn = 1.2. In
reality, however, reflecting the band structure, the density of
states near the Fermi level certainly differs from the simple
dome shape. Here, the more important is that the response to
the magnetic field is enhanced by the Coulomb interaction U.
As shown in Fig. 4 by the thick line, the coherence peak is
created by the Coulomb interaction accompanying the abrupt
change in the density of states near the Fermi level. As a
result, the response of the thermopower to the magnetic field
is enhanced as shown in Fig. 4.

In the present study, the qualitative behavior of the
thermopower is clarified in the wide range of temperature,
although we use the simplest model. An essential feature
demonstrated here is that the strong Coulomb interaction
brings about the large response of thermopower to external
disturbance through the instability of the electronic state
characterized by the narrow coherence peak. A measure of the
instability is the renormalized energy scale, i.e., the width of
the coherence peak. The renormalized or reduced energy scale
is of importance not only for the magnetic field dependence but
also for the temperature dependence of the thermopower. In
the temperature dependence, the entropy consideration for the
high-temperature thermopower Q; works even at much lower
temperatures than the bandwidth 2W and/or the Coulomb
interaction U [see Figs. 1(a) and 2]. This means that the high
temperature is achieved on the basis of the reduced energy
scale by the Coulomb interaction.

In the vanadium oxide, (La,Sr)VOs;, a nonmonotonic
temperature dependence of the thermopower is observed.*
The thermopower approaches the two limiting values expected
from the entropy consideration. This is the evidence of the
coherent-to-incoherent crossover of the electronic states and
well explained by our theory. In the cobalt oxide, Na,CoO,,
a strongly renormalized quasiparticle band, which disappears
near room temperature, is observed by the photoemission spec-
troscopy measurements.'*!! As discussed in this Brief Report,
when electrons lose their coherence by increasing temperature,
the thermopower simultaneously approaches the asymptotic
value obtained by the entropy consideration in the correlation
dominant regime, i.e., Q| for kgT < U. Hence, for the large
thermopower of this material observed near room temperature,
the strong Coulomb interaction must be an important factor.
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For more qualitative studies, one should employ the developed
DMEFT analysis such as cluster-DMFT?* and (cluster-)DMFT
combined with density functional theory.> In fact, the recent
cellular DMFT studies with realistic band structures suggest
that the nonlocal correlations improve the results.”® Yet, we
believe that our study provides a good starting point for the
future theoretical studies based on the advanced methods. On
the other hand, in the partially occupied #,, states, the spin-orbit
coupling is not fully quenched, as discussed in Refs. 27 and 28.
In electronic systems with heavier elements such as Sr,[rOy,
the spin-orbit coupling becomes comparable to the Coulomb
interaction and the kinetic energy and, thus, plays a significant
role for the Mottness of correlated systems.””! This effect
may be another path to a new thermoelectronics based on the
strongly correlated electron systems.

In summary, we have theoretically studied the role of the
Coulomb interaction in the thermopower. To clarify the role,
we consider the single-band Hubbard model and calculate
the thermopower using the dynamical mean-field theory.
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We find the nonmonotonic temperature dependence of the
thermopower. This is well described by the asymptotic form in
the high-temperature limit given by the entropy consideration.
The Coulomb interaction plays an important role to obtain
such asymptotic behavior in a rather low-temperature region
by creating the narrow quasi-particle band.

After completing the manuscript, we have noticed recent
work by W. Xu e al.,*> who studied the high-frequency limit
of the thermopower in the strongly correlated system. They
also reported the nontrivial temperature dependence.
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