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Using dynamical-mean-field theory for clusters, we study the two-dimensional Hubbard model in which
electrons are coupled with the orthorhombic lattice distortions through the modulation in the hopping matrix.
Instability towards spontaneous symmetry breaking from a tetragonal symmetric phase to an orthorhombic
distorted phase is examined as a function of doping and interaction strength. A very strong instability is found
in the underdoped pseudogap regime when the interaction strength is large enough to yield the Mott insulating
phase at half filling. The symmetry breaking accompanies the recovery of quasiparticle weights along one of the
two antinodal directions, leading to the characteristic Fermi arc reconnection. We discuss the implications of our
results to the fourfold symmetry breaking reported in systems where the underlying crystal does not have any

structural anisotropy.
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Electronic nematicity has become one of the central sub-
jects of correlated-electron systems.'® For high-T, cuprates,
very large anisotropies in low-energy excitations have been
experimentally reported,”'> and their connection with the
“pseudogap phase” has been discussed.

In a system such as YBa;Cu3Og4, (YBCO), there exists
an intrinsic structural anisotropy resulting in a tiny but finite
band-structure anisotropy. This band anisotropy has been
shown to induce huge effects in low-energy excitations'* when
the system is close to a correlation-induced Pomeranchuk
instability.” Although cluster dynamical mean-field studies
do not find a spontaneous symmetry breaking in a two-
dimensional single-band Hubbard model,'>!® a tiny band
anisotropy was shown to dramatically amplify the anisotropy
in the dc transport and electronic excitation spectrum in
the underdoped pseudogap regime.'®!” On the other hand,
in a system such as BiSr,Ca,_;Cu,Os4, (BSCCO) and
Ca,_,Na,CuO,Cl, (CNCOC), there is no intrinsic structural
anisotropy but the symmetry breaking from tetragonal (Cy) to
orthorhombic (C»), called intra-unit-cell (IUC) nematicity, has
been observed.!'"!3 Within a mean-field treatment, TUC order
in the Emery model for the CuO, plane has been analyzed.'®
However, very large interactions are required to realize the
TUC symmetry breaking. This may indicate the importance of
additional degrees of freedom.

Here, we consider a correlated model for cuprates including
the coupling between electrons and lattice distortions (EL) as
a possible ingredient for experimentally reported spontaneous
C4 symmetry breaking. We observed a moderate tendency
towards symmetry breaking when the chemical potential is
located near the Van Hove singularity. In addition, we found a
very strong instability in the underdoped pseudogap regime
when the interaction strength is large enough to yield a
Mott insulating state at half filling. The stabilization of the
distorted phase comes from the gain in the kinetic energy.
In the overdoped regime, the Fermi surface is deformed to
split the Van Hove singularity at (7,0) and (0,7) and shift
it from the Fermi level, while in the underdoped regime in
the presence of strong Coulomb interaction the pseudogap
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becomes anisotropic. Our results may provide a coherent
picture connecting the “electron nematicity” and pseudogap
behavior in high-7, cuprates highlighting the difference be-
tween YBCO, whose structure is intrinsically anisotropic, and
BSCCO, which is structurally isotropic but the C4 symmetry
is found to be locally broken.

We consider the following electron-lattice coupled model:
H = Hg + H. Hee is the two-dimensional (2D) Hubbard
model as a generic model for high-7, cuprates:

Hele = — Ztijdjadj“ +U Zd%dmdhdi]p (1)

ijo i

Here, d;, is the annihilation operator for an electron with
spin o at site i and U is the local Coulomb interaction. The
band structure part is described by #;;; t;; corresponds to the
transfer integral and and #;,—; = p is the chemical potential.
The lattice part is given by Hpy = %uz, where u is the
orthorhombic distortion, K is the elastic constant, and N is
the total number of sites. We consider the coupling between
the orthorhombic distortion and electrons as the modulation
in the nearest-neighbor (NN) transfer integral ¢ along the
x and y directions as f, , =t & au as illustrated in Fig. 1,
with the next-nearest-neighbor transfer integral ' unaffected
by the distortion. This electron-lattice coupling may also be
regarded as a simplified one realized in, for example, a low-
temperature tetragonal (LTT) phase. Here, the crystal structure
is “tetragonal” with the equal lattice constants along the a and
b axes but the electronic band structure is “orthorhombic” due
to the coherent rotation of CuOg octahedra.'-'%20

We analyze our model using the cellular dynamical-mean-
field theory (CDMFT) (Refs. 21 and 22) at zero temperature.
This method captures the full dynamics [i.e., the frequency
dependence of the spectral function (SF)] and the short-ranged
spatial correlations beyond the single-site dynamical-mean-
field theory and has been applied for a variety of problems
in low-dimensional systems.?*>> The CDMFT maps the bulk
lattice problem onto an effective Anderson model describing
a cluster embedded in a bath of noninteracting electrons. The
short-ranged dynamical correlations are treated exactly within
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FIG. 1. Model electron-lattice coupling. Orthorhombic distortion
u induces the hopping anisotropy with the coupling constant c.

the cluster. In this study, we employ a2 x 2 plaquette (N, = 4)
coupled to eight bath orbitals and solve it using the Lanczos
exact diagonalization technique®® which requires a low-energy
cutoff w. corresponding to the discrete imaginary frequency
as w, = (2n + Dw,. In this work, we take w, = 2 x 107%5¢.
. should not be interpreted as real temperature (times )
because only the ground state of the impurity model is taken
to compute the Green’s function. The numerical details are
described in Ref. 16.

In the following discussion, we use as a band parameter
t' = —0.3¢ that is appropriate for cuprates. For interaction
strength, we consider U = 10¢, 4¢, and 0. The largest U is
supposed to be relevant for cuprates.

We start from the discussion on the first instability caused by
the EL coupling. This could in principle be done by computing
the C, susceptibility and finding a parameter range where the
susceptibility diverges. Such an analysis normally requires
the inclusion of vertex corrections, but the precise form is
unknown for the current CDMFT technique. Instead, we utilize
the Ginzburg-Landau theory with the self-energy functional
approach?’ by which the electronic contribution Fy. to the
free energy Fiot = Feje + Flay 18 Written as

Fae=—T Z / Indet{l — [f(K) — 7 — D (iw,)]1G ((wn)}
k

Wp

+ F.. 2)

Here #/; = 1;; is the hopping matrix on the 2 x 2 plaquette,
and 1,;(K) = N7' Y e/ ®HCirg o describes the hop-
ping between the clusters covering the original lattice. K
are wave vectors in the reduced Brillouin zone, and K =
(0,0),(,0),(0,7), and (m,7). The bare dispersion is given
by ex = —2(t, cos ky + 1, cos k, + 2t' cos ky cos k). [iwy)
is the hybridization function with which the cluster Green’s
function at the ground state is written as Gc(i wy,) = liw, —
7 —Tiwy) — Lwy)]™!, where $(iw,) is the cluster self-
energy. Because of the low-energy cutoff w,, the free energy
is approximately calculated using the finite-temperature form
Eq. 2) at T = w./m. As a result, the results are somewhat
smeared out, underestimating the instability. Finally, F, is the
free energy of the cluster model. The lattice contribution is
given by Fla = %Ku?

In practice, we compute Fg as a function of the hop-
ping anisotropy 8, = ot as AFge(8;) = Feie(8;) — Fere(0) =
— 2 852 + O(8?). Normally, the O(8}) contribution is positive.
As the lattice contribution Fi, — 21:’1—2K 8,2 is always positive,
quadratic fitting to A F.(6;) gives the critical EL coupling
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FIG. 2. (Color online) §, dependence of electronic free energy
AFyg. (a) and (b) and the double occupancy D (c) and (d). U = 4t
for (a) and (c), and U = 10¢ for (b) and (d). Solid lines in (a) and
(b) are quadratic fits to the numerical data of A Fye.

towards the spontaneous C, symmetry breaking as o?/K =
1/B. The critical point deduced in this way signals the second-
order transition. When the (’)(8;‘) contribution is negative, the
transition becomes first order, thus, ?/K = 1/8 should be
regarded as the upper limit of the coupling above which a
distortionless state is no longer an energy minimum. Instead,
the critical EL coupling for the first-order transition is located
at the smallest az/K which satisfies A Fee(8;) + %K{Stz =0
at §; # 0. Because of the higher-order terms O(8}') and O(5%)
in Fg and the small change in the carrier density with §,,
these fitting procedures are notoriously difficult. Nevertheless,
an overall trend can be deduced.

As examples, we plot AFg(5;) in Figs. 2(a) and 2(b).
AF,. decreases with increasing §,. According to the linear
combination of atomic orbitals method,?®?° the EL coupling
constant « is estimated to be 0.9 eV/A, and the distortion
considered here is rather small; §, = 0.03 corresponds to
u ~ 0.033 A. In most cases, A Fy. deviates from the quadratic
curve upwards. While for U = 4¢ with u = 0.8¢ and U = 10¢
with u = 1.8¢, AF,. shows a small downward deviation,
indicating first-order transitions. For U = 10t with u = 2.0¢,
corresponding to the underdoped regime. A F;j. shows a strong
dependence on §;, indicating strong instability.

As shown in Fig. 2, the A F.-8; curve is rather sensitive
to the doping concentration. To see its origin, we plot, in
Figs. 2(c) and 2(d), the double occupancy D = (d},d;yd] ;)
as a function of §,. One notices that the double occupancy
remains unchanged, i.e., the potential energy U D remains
unchanged. Thus, the gain in the “kinetic energy” dominates
the A Fge-§; irrespective of doping dependence.

Figure 3 shows the resulting phase diagram.*” As described
below, instabilities appear at two doping regimes due to
different mechanisms, say type A and type B. Type A is
a weak-coupling mechanism and appears for both U = 4¢
(boundary is indicated by circles) and U = 10¢ (squares) at
N ~ 0.8, near the Van Hove filling. Type B, on the other hand,
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FIG. 3. (Color online) Phase diagram for the 2D Hubbard model
with the EL coupling as a function of electron density N and the
coupling constant «?>/K. Parameters are U = 10t (squares) and
U = 4t (circles) with t' = —0.3¢. The critical points for the second-
(first-)order transition are indicated by filled (open) symbols. The
critical points where distortionless states lose metastability are
indicated by crossed symbols. Thick lines are guides to the eye.
For comparison, the phase boundary for U = 0 is shown as a light
solid line.

is a strong-coupling mechanism and only appears when U is
large in the underdoped regime (N > 0.9 for U = 10¢).

Type-A weak coupling instability also appears for U = 0.
In this case, the critical coupling is given by expanding the
free energy up to O(82) and equating its coefficient to zero,
and the resulting expressionisa®/K = —n%/2 [ dk*(cosk, —
cos ky)2 f'(ex — p), where f’ is the derivative of the Fermi-
Dirac distribution function. Due to the logarithmic divergence
in the DOS, the critical coupling is minimized at the Van Hove
filling N ~ 0.726 as shown as a light solid line. By finite U,
the instability is shifted to larger N ~ 0.8. From the analysis
of SFs, the shift in the critical N is caused by the enhanced
band anisotropy due to correlations. The corresponding SFs
[contour plot of the SF, A(k,w = 0) = —%ImG(k,a) = 0)] are
presented in Fig. 4 (top left, isotropic band) and (middle left,
anisotropic band), where the Green’s function periodization
scheme is adopted.** The enhanced band anisotropy is evident
from the comparison with the FS for U = 0 (a white line). By
finite U, the FS opens up to become quasi-one-dimensional
[see Fig. 4 (middle left panel)]. This is favorable for gaining
the kinetic energy by splitting the Van Hove singularity and
shifting it from the Fermi level. This could also explain why
the first-order transition appears at N > 0.8, where correlation
effects are stronger.>

For the type-B instability, the band anisotropy remains
almost unchanged but the anisotropy in the scattering
rate is enhanced significantly. These points can be clearly
seen in the corresponding SFs presented in Fig. 4 (top
right, isotropic band, and middle right, anisotropic band).
Here more importantly, the coherence is recovered near
(0,7) by the band anisotropy because the FS goes away
from the so-called “hot spot,” while the FS near (7,0)
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FIG. 4. (Color online) Evolution of the spectral function at the
Fermi level in the first quadrant of the Brillouin zone for U = 10¢.
Left panels: results for N = 0.83 (overdoped regime), and right
panels: results for N = 0.94 (underdoped regime). Top: Symmetric
SF; middle: asymmetric SF with §,/t = 0.03; bottom: averaged SF
with §,/t = £0.03. The Green’s-function periodization scheme is
used with the small imaginary part in ( = 0.1¢) added to the real
frequency. The maximum of the spectral weight is At = 0.6 (left)
and 0.35 (right). A white line in the middle-left panel shows the FS
foré,/t =0.03, N =0.83,and U = 0.

approaches the hot spot. This results in the reconnection of the
“Fermi arc” between the first and the second Brillouin zones
neighboring along the y direction; see Fig. 4 (middle right) and
Fig. 1(d) in Ref. 16. The relation between the quasiparticle
coherency and the kinetic energy can be directly seen from the
expression for the kinetic energy Eine = T D, , ekG(K,iw,).
As the quasiparticle coherency is lost in the “symmetric”’
underdoped pseudogap regime, the gain in the quasiparticle
weight leads the dramatic gain in the kinetic energy as
seen in Fig. 2(b), resulting in the strong instability in this
regime.

Given the above discussion, the type-B instability is
expected to be more relevant for underdoped high-T7, cuprates
compared with the type-A instability and other weak-coupling
instabilities. The type-A instability is suppressed by correla-
tions because the Van Hove singularity is smeared out by the
imaginary part of the self-energy. In fact, for U = 10z, this
instability is almost diminished. Not only by the imaginary
part of the self-energy, the type-A instability is also suppressed
by finite temperature. Because of the linear T dependence of
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the electronic free energy, the instability is expected to go
away rather quickly at elevated temperatures. On the other
hand the type-B instability requires large U, resulting in
the pseudogap or the Fermi arc which sets its energy scale.
Therefore, the type-B instability is expected to survive at
relatively high temperatures as long as the pseudogap or
Fermi arc remains. For U = 10¢, there appears a dip in the
instability at N ~ 0.88 because both instabilities are weak (see
Fig. 3) at this doping. This does not contradict the seemingly
stronger instability near 1/8 doping reported experimentally>>
as it has different origins. Additional weak-coupling instability
incompatible with our model could take place at carrier
densities smaller than N ~ 0.9 as discussed, for example, in
Refs. 36 and 37.

When the system is in the vicinity of the structural
transition, dynamical or statistical fluctuation effects should
play important roles. If the transition is of the first order, such
a critical regime would be characterized by a superposition
between two distortion modes which minimize the free energy.
Furthermore, even in a distorted phase, a sample could form
domains. As a result, low-spatial-resolution angle-resolved
photoemission spectroscopy (ARPES) measurements would
detect the SF that is an average of SFs over a finite lattice
spacing. We simulate the latter two cases by taking the average
of the SFs with different anisotropy parameters, §, /t = +0.03.
Figure 4 (bottom left and bottom right) show the averaged
SF for N = 0.83 (the overdoped regime) and N = 0.94 (the
underdoped regime), respectively. For the overdoped regime,
the spectral function is broadened at (7,0) and (0,7) relative
to the results without distortion. Thus, the “lattice fluctuation”
and structural domain formation act as if enhancing the
pseudogap behavior. A similar effect has been reported for
the thermal nematic fluctuation.’® On the other hand, for the
underdoped regime, the SF in the undistorted phase and the
averaged one in the distorted phase are nearly identical. This is
because the shape of the FS is insensitive to the band anisotropy
in this doping regime.

In contrast to YBCO, BSCCO, La,_,Sr,CuQy4, and CN-
COC do not have a source for band anisotropy, yet (local) Cy4
symmetry breaking has been reported. For BSCCO, recent
scanning micro-x-ray-diffraction’® and scanning tunneling
microscopy*’ measurements revealed that the system is struc-
turally inhomogeneous involving LTT-like distorted regions.
These results are consistent with our picture if the EL coupling
is in the range of the spontaneous distortion. In fact, from
the measured elastic constants ¢ ~ 1.7 x 10'? dyn/cm? for
La,CuOy (Ref. 41) and ¢ ~ 1.3 x 10'?> dyn/cm? for BSCCO
(Ref. 42), our elastic constant is estimated as K ~ 6eV/ A? for
both systems. The resulting EL coupling constant® «?/Kt ~
0.2 locates these systems inside the spontaneous distortion
regime. Thus, it is desirable to experimentally clarify the
relation between the electronic!!'® and the structural Cy4
symmetry breaking.
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Our prediction can be tested by high-spatial-resolution
ARPES measurements as in the x-ray-diffraction measure-
ments in Ref. 39. For underdoped cuprates below the pseu-
dogap temperature, we expect that anisotropic FSs as in the
lightly doped YBCO (Ref. 43) or reconnected Fermi arcs are
spatially distributed. The pseudogap behavior should preempt
or accompany the local lattice distortion with small effects
on the “bulk” SF at the structural transition. In contrast,
the opening of a pseudogap and the local lattice distortion
are expected to take place simultaneously in the overdoped
regime. From these experimental tests, a variety of anomalies
in relation to the electronic nematicity and pseudogap behavior
in high-T, cuprates could be coherently understood in terms of
the EL coupling and the absence/presence of the intrinsic band
anisotropy. Further, Raman scattering would be a useful tool
to distinguish different roles played by electronic systems and
lattice (phononic) systems*** because the electronic contri-
butions to the Bj, Raman scattering intensity are suppressed
in the pseudogap regime.**

In addition to high-T, cuprates, electronic nematicity was
suggested for the double-layer ruthenates under an applied
magnetic field>*® and Fe-based high-7, superconductors
above magnetic phase transitions.®*” A number of theoretical
scenarios have been proposed, including microscopic phase
separation*®*° and quasi-one-dimensional orbital ordering>
for ruthenates, and fluctuating magnetic stripe order,’’> a
ferro-orbital ordering,”® and magnetoelastic coupling®*> for
Fe superconductors. It is worth investigating these scenarios
including EL coupling with electron correlations treated
beyond static mean-field approximations.

Summarizing, we investigated the C4 symmetry breaking
by the coupling between electrons and the lattice distortion
using an interacting model for cuprates within CDMFT. We
found the strong instability towards C4 symmetry breaking
in the underdoped pseudogap regime in the presence of the
strong interaction yielding the Mott transition. Thus, this
instability is a strong-coupling effect characteristic of a doped
Mott insulator. Additionally, a weak-coupling instability exists
near the Van Hove filling, but this instability is suppressed by
strong correlations because the imaginary part of the electron
self-energy smears the Van Hove singularity. On the other
hand, the imaginary part of the self-energy plays an essential
role for the strong-coupling symmetry breaking by increasing
the kinetic energy by recovering the quasiparticle coherence.
This leads to the characteristic Fermi arc reconnection below
the pseudogap temperature. Our finding can be tested by
high-spatial-resolution ARPES.
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