Scaling Laws for Damage Evolution in Quasi-brittle Materials
- An Application of Field Induced Percolation

Phani Kumar V.V. Nukala
Oak Ridge National Laboratory
Computer Science and Mathematics Division
Percolation Basics
What is Percolation?

25 x 25 square lattice

Phase transition:
System changes from connected phase to disconnected phase as the critical point $p_c = 0.592746$ is approached from above
Percolation and Fracture Similarity
Fracture is a phase transition:
From a connected system to a disconnected system
Stiffness of the system is the Order parameter:
- non-zero in the connected phase
- zero in the disconnected phase

Percolation theory describes how system approaches criticality

System behavior with change in length scale:
- couples meso- and macro- phenomena

System size effect

Scaling Laws

128 x 128 square lattice

1.0
0.0
0.2
0.4
0.6
0.8
1.0
SQUARE LATTICE LENGTH: 128
FRACTION OF OCCUPIED SITES
Order parameter
Disconnected
Connected
critical percolation threshold $p_c = 0.592746$
Field Induced Percolation

But, really, fracture is not a random percolation! Stress distribution plays a significant role.

Fields:
- mechanical: stress, strain
- thermal
- electrical
- magnetic

Microstructure (cluster) evolution:
- microcracks
- second-phases

Geometric percolation:
• clusters formed with randomly occurring events

Field induced percolation:
• current event is dependent on the past history of events
• applied field introduces a bias in the occurrence of events

Correlated Uncorrelated
General Applications
Materials Science Applications

Thermo-Mechanical Fields:
- Nucleation and growth of damage
 - Intergranular and transgranular cracking
- Dynamic recrystallization
- Stress induced boundary migration
 - Migration of both low and high angle flat boundaries
 - Twinning in ferromagnetic shape memory alloys

Electrical and Magnetic Fields:
- Evolution of magnetic domains
- Magnetic Fields in Solidification
 - Electromagnetic stirring (Dendrite morphology)
- Electro-migration of interfaces
 - Boundary migration related to grain boundary potential

Chemical Bond Fields:
- Polymer gelation, vulcanization; Glass transition
General Applications

Thermal Fields:
- Boiling of water: liquid-gas phase transition
- Paramagnetic to ferromagnetic phase transition

Electrical Fields:
- Fuse problem: conducting to non-conducting transition
- Dielectric breakdown: non-conducting to conducting transition

Fluid Flow: Geological Applications
- Flow through fractured rocks and porous media
- Earthquakes, fracture and fault patterns

Traffic Flow: Transportation Applications
- Traffic flow on a network

Information Flow on www: Computer Science Applications
- Information flow on www network
- Overloading of computer network within a massively parallel system

Graph Theory:
- Structural failure of a highly redundant system
Common Theme

System Behavior: undergoes phase transition at a critical point

System Model: random graph with vertices, mutual interactions as bonds

System Evolution: approaches criticality through a change in the interaction strength

Redistribution: underlying physics governs the redistribution of the applied field

Scaling Laws: comparison of system behavior at different length scales is possible

System size effect on system behavior
Damage Evolution in Brittle Materials
Motivation: Stress Induced Microcracking Evolution

Macroscopic properties and behavior of quasi-brittle materials are significantly effected by the internal microstructure and damage/microcracking evolution.

Controlling of microstructure state and damage evolution leads to improved macroscopic behavior.

Modeling at the mesoscale will lead to a fundamental understanding of the effect of microstructural features on the microcracking evolution in brittle materials.
Objective

Mesoscale System Response:
- depends on the system size
- computationally intractable

Open Questions?:
- How does a disordered solid breakdown?
- What is the size effect on failure?
- What are the scaling laws of failure?
- How does one quantify damage? and how do we compare the extent of damage between two specimens?
- What is the connection between mesoscopic damage and the phenomenological continuum damage evolution?

Objective:
- Describe continuum damage evolution based on mesoscopic modeling using scaling laws
Current Status of Material Models

Phenomenological Material Models:

- progressive damage and cracking are microstructure-insensitive
- based on simplified assumptions for the evolution of damage
 - valid only for moderate damage levels
- local stress field fluctuations and interactions are not considered

Solution:

Explicit modeling of material microstructure combined with the scaling theory accounts for size effects and local stress field interactions during damage/microcrack evolution
Numerical Methodology
Mesoscopic Simulation: Discrete Lattice Models

Focus of the study is not on any particular material
But, in capturing the generic features of damage evolution

Essential ingredients of breakage process:
 • Initial material disorder (inhomogeneities)
 • Redistribution of stresses due to damage evolution

Discrete Lattice Models:
 • Disorder in bond strength and stiffness
 • Elastic response characteristics of the bonds
 • Bond breaking rule (failure criteria)

Any realistic damage evolution description must be capable of reproducing the behavior of these idealized discrete lattice models

Perfectly brittle bond
Mesoscopic Modeling Approach

Failure of a bond is governed by:
- weakest bond of the disordered medium
- stress concentration around material inhomogeneities

Disorder Type
+ Lattice Topology
+ Lattice Bond Model

Discretization with random disorder distributions

Lattice system with disorder

Applied Stress

Failure Criteria

Mesoscopic Damage Evolution
Analysis Procedure

Procedure:

Step 0: For each bond in the lattice system, assign unit stiffness and random force threshold f_{i}^{th}

Step 1: Impose a unit macroscopic displacement $\Delta = 1$

Step 2: Calculate the force f_i in each bond through lattice equilibrium

$$K = \sum_i f_i^2$$

K Global stiffness

Step 3: Determine the bond i_c for which

$$\frac{1}{\lambda} = \max_i \left(\frac{f_i}{f_{i}^{th}} \right)$$

Step 4: Record the lattice displacement and force $(\lambda, K\lambda)$

Step 5: Remove the bond i_c and repeat steps 1-4, until the entire lattice system breaks apart
In the hardening regime, average material response is obtained with fewer number of samples, whereas in the softening regime, averaging over many number of samples is required to obtain a representative material response.
Lattice Response versus System Size

- Lattice response depends on the system size
- Scaling laws are required to obtain a “normalized” response that couples the mesoscopic scale response to the continuum scale response
Numerical Results
What is the Intensive Measure of Damage?

Nucleation Phase: Diffusive Damage

Growth Phase: Stress Concentration effects are dominant

Coalescence: Localization of damage to form a percolating crack

L = 24

L = 32
What is the intensive damage variable in the problem?

Damage Variable = \(\frac{1 - \text{Current Stiffness}}{\text{Initial Stiffness}}\)

Close to being intensive!

Mean-field Theory

Finite size effects

Scaling Law

\(p_{c_L} - p_c = cL^{-\alpha}\)

differentiation between connected and disconnected

\(p = \frac{n_b}{L^d}\)

critical crack size needed for macroscopic fracture
Scaling Laws for Lattice Response

Scaling proposed in the literature

\[\frac{\Delta}{L^{0.75}} \]

Valid in the hardening regime only

Proposed Scaling Law:

\[\frac{D}{D_{\text{peak}}} = \varphi \left(\frac{\sigma}{\sigma_{\text{peak}}} \right) \]

\[D_{\text{peak}} = 0.633 L^{-0.2} \]

\[\sigma_{\text{peak}} = 0.2605 + \frac{1.0649}{L} \]

Scaling is valid until fracture!
Scaling Laws for Lattice Strain

- Strain and broken bond density are not good measures in the softening regime.
- However, lattice force is a good measure of damage over the entire range.
Scaling of Failure Load Distribution

• Cumulative Probability Scaling Law

\[P(f \leq F) = \Phi \left(\frac{\ln(F) - \xi_f}{\zeta_f} \right) \]

Standard Variate = \((\ln(F) - \xi)/\zeta \)

Gumbel Distribution

Weibull Distribution

Lognormal Distribution
Size Effect on the Mean Failure Load

- Mean failure stress is inversely dependent on size

\[F = 0.2605 \times L + 1.0649 \]

\[\sigma_{\text{peak}} = 0.2605 + \frac{1.0649}{L} \]

Griffith’s crack driving force necessary for macrocrack propagation
Geometric Significance of Damage Variable

Normalized Mean Cluster Size

Normalized Second Cluster Moment

\[\frac{D}{D_{\text{peak}}} \]

Peak of Load-Deflection Curve

Second Cluster Moment

Damage

Mean Cluster Size

Correlation Length
- Measures correlation of statistical fluctuations in stress

Values of \(L \):
- \(L = 4 \)
- \(L = 8 \)
- \(L = 16 \)
- \(L = 24 \)
- \(L = 32 \)
Computing Requirements

<table>
<thead>
<tr>
<th>Lattice Size (L)</th>
<th>CPU Time (minutes) Standard Algorithm</th>
<th>CPU Time (minutes) New Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.008</td>
<td>0.003</td>
</tr>
<tr>
<td>8</td>
<td>0.012</td>
<td>0.005</td>
</tr>
<tr>
<td>16</td>
<td>0.032</td>
<td>0.014</td>
</tr>
<tr>
<td>24</td>
<td>0.12</td>
<td>0.05</td>
</tr>
<tr>
<td>32</td>
<td>0.3</td>
<td>0.15</td>
</tr>
<tr>
<td>64</td>
<td>5.1</td>
<td>2.5</td>
</tr>
<tr>
<td>128</td>
<td>185</td>
<td>51</td>
</tr>
</tbody>
</table>

CPU Time (minutes) = $9.036 \times 10^{-8} \cdot L^{4.14}$

For $L = 1000$, Time ~ 166 days!

Mesoscopic simulations require $O(L^4)$ cpu time for 2D and $O(L^6)$ for 3D, where “La” is the specimen size and “a” is the average grain size.

Computationally intractable using serial versions

Parallel implementation on multiple processors using domain decomposition techniques and parallel solvers is essential.
Meso to Macro: Preliminary Results
Mesoscopic to Continuum Damage Evolution

Uniaxial Case:

\[F = K_0 (1 - D) \Delta \]

Scaling Law:

\[\frac{D}{D_{\text{peak}}} = \varphi \left(\frac{\sigma}{\sigma_{\text{peak}}} \right) \]

\[D_{\text{peak}} = 0.633 L^{-0.2} \]

\[\sigma_{\text{peak}} = 0.2605 + \frac{1.0649}{L} \]

Damage Evolution:

\[\dot{D} = \frac{D_{\text{peak}}}{\sigma_{\text{peak}}} \varphi' \left(\frac{\sigma}{\sigma_{\text{peak}}} \right) \dot{\sigma} \]

Similar to plastic strain evolution in ductile materials
Includes scaling and size effects

Given: \(F \) and \(L \)
Compute: \(\sigma, \sigma_{\text{peak}}, D_{\text{peak}} \)
Estimate: \(D \) from scaling law
Compute: \(\Delta \)
Comparison of Damage within Different Specimens

Given:
Two different specimens of size L_1 and L_2 and the lattice forces F_1 and F_2 respectively

Compute:
- Scaled stresses σ_1 and σ_2 corresponding to F_1 and F_2
- $D_{1\text{peak}}$ and $D_{2\text{peak}}$ based on L_1 and L_2

Estimate:
Damage D_1 and D_2 within the specimens based on σ_1 and σ_2 using the scaling law for lattice forces

Compute:
Strains ε_1 and ε_2 within the specimens based on D_1 and D_2 using the scaling law for lattice strains

Damage estimates based on stresses exhibit excellent scaling compared to those based on strains
Summary: Scaling Laws and Size Effect in Brittle Materials

Scaling Laws

- Allow for comparison of damage between specimens of different sizes
- Couple mesoscopic and continuum damage evolution

Size Effect on Mean Failure Stress

- Mean peak stress is inversely dependent on lattice size
- CDF of peak load follows lognormal and exhibits excellent scaling with system size

Field induced percolation provides the necessary framework for developing damage evolution scaling laws in brittle materials
Mesoscopic Simulation:
Discrete versus Continuum Models

Discrete Lattice Models
• Suitable for studying the behavior of complex microstructures with heterogeneities
• Captures crack propagation and microstructure evolution with relative ease
• Ideal for studying statistical behavior including scaling and size effects
• Not readily applicable for capturing plasticity dominated phenomena

Continuum Models
• Suitable for studying the behavior of homogeneous solids
• Mesh size should be much smaller than typical inhomogeneity (crack, grain) size
• Captures inter-granular cracks using cohesive laws
• Not readily applicable for large number of heterogeneities
• Recent investigations on extended FE methods show promise in capturing inter- and trans-granular cracks and their interaction

Extended FE Models:
Multiple cracks, growth, interaction and coalescence
The submitted manuscript has been authored by a contractor of the U. S. Government under Contract No. DE-AC05-00OR22725. Accordingly, the U. S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes.

This research is sponsored by the Mathematical, Information and Computational Sciences Division, Office of Advanced Scientific Computing Research, U. S. Department of Energy under contract number DE-AC05-00OR22725 with UT-Battelle, LLC.