The Truncated Polynomial Expansion Method for Fermion Systems Coupled to Classical Fields

G. Alvarez
Computer Science and Mathematics Division
ORNL

Research performed at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725.
Outline

• Introduction to “Spin-fermion” models
• Polynomial Expansion of the *Fermionic* Density of States Method
• Performance and Reliability
• Parallelization and Scalability
• Software Library and Optimizations
• Conclusions
Physical Systems

Some systems that have been described by models of fermions coupled to classical fields:

- **Manganites**, \([\text{local } t_{2g} \text{ spin, local lattice distortions (phonons)}]\)

- **Diluted Magnetic Semiconductors** \([\text{local spin}]\)

- **High Temperature Superconductors** \([\text{local magnetization, local superconducting order parameter}]\)
 A. Moreo et al., PRL 84, 2690 (2000), G. Alvarez, cond-mat/0401474
Spin fermion: Manganese

\[H = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^\dagger c_{j\sigma} - J_H \sum_{i \alpha \beta} c_{i\alpha}^\dagger c_{i\beta} \vec{S}_i \cdot \vec{t}_{\alpha,\beta} \]

No approximations

Local spin

T \Delta

PM

AF

FM

0.0 0.5 1.0

\langle n \rangle

(electronic density)
Hamiltonian

General form:

\[H = \sum_{i,\alpha,j,\beta} c_{i\alpha}^\dagger H[\phi_{i,\alpha,j\beta}] c_{j\beta} \]

Example: Manganites:

\[H = -t \sum_{\langle i,j \rangle \sigma} c_{i\sigma}^\dagger c_{j\sigma} - J_H \sum_{i,\alpha} c_{i\alpha}^\dagger c_{i\beta} \vec{S}_i \cdot \vec{\tau}_{\alpha,\beta} \]

Partition Function

\[Z = \int \mathcal{D}\phi \int \mathcal{D}c^\dagger \mathcal{D}c \exp(-\beta H[\phi]) \]

After integrating fermions:

\[Z = \int \mathcal{D}\phi \prod_{\lambda} \left\{ 1 + \exp(-\beta \epsilon_{\lambda}[\phi]) \right\} \]
Diagonalization Method

- Hamiltonian is *quadratic* in fermion operators: 4^N Hilbert space but problem reduces to solve the “*one-particle*” Hilbert space ($2N$ states) and filling levels.
- Classical fields are integrated using classical Monte Carlo. Different “*Boltzmann Weight*” than Ising Model
- One diagonalization has a complexity of $O(N^3)$ but it must be repeated $\sim N$ times per Monte Carlo step \Longrightarrow total complexity is $O(N^4)$
Polynomial Expansion of the Density of States

N. Furukawa and Y. Motome, 2001

\[A(\phi) = \int_{-\infty}^{\infty} F(x)D(\phi, x)\,dx \]

Ex.: if A is number of particles:
\[F(x) = \text{fermi function} \]

\[F(x) = \sum_{m=0}^{\infty} f_m T_m(x) \]

\[f_m = \int_{-1}^{1} \alpha_m F(x)T_m(x)/\left(\pi\sqrt{1-x^2}\right) \]

\[A(\phi) = \sum_{m} f_m \mu_m(\phi) \]

\[\mu_m(\phi) = \sum_{\nu=1}^{N_{\text{dim}}} \langle n|T_m(H(\phi))|n \rangle \]

A(\phi): Observable
\[D(\phi, x) = \sum_{\nu} \delta(x-\varepsilon_{\nu}(\phi)) \]: Density of States or D.O.S.
\[T_m(x) \]: Chebyshev polynomial of order m

Sum over m needs to be done only up to a cut-off M

Sparse matrix-vector product, e.g. in \[T_m(H)|\nu \rangle \], yields a cost of \[O(N^2) \] for each conf., i.e. \[O(N^3) \] for each Monte Carlo step.
Truncating the Expansion: 1. Matrix-Vector Products

Define:

\[\mu_m(\phi) = \sum_n < n | n; m > \]

\[|n; m >= T_m(H) |n > \]

\[|n; 0 >= |n >, |n; 1 >= H |n; 0 > \]

Recursion

\[|n; m >= 2H |n; m - 1 > - |n; m - 2 > \]

moments of the density of states

N. Furukawa and Y. Motome 2003-2004
Truncating the Expansion: 1. Matrix-Vector Products

N. Motome, Y. Furukawa, cond-mat/0308298

Not only is the matrix sparse but the vectors \(|n;m>\) have very few non-zero/large entries.
Truncating the Expansion: 2. Action Difference

\[\frac{P(\phi^{new})}{P(\phi^{old})} = \exp(-\Delta S_{eff}), \quad S_{eff}(\phi) = \int F^s(x) D(\phi, x) dx \]

\[\Delta S_{eff} = S_{eff}(\phi^{new}) - S_{eff}(\phi^{old}) = \sum_m f^s_m \sum_n \Delta \mu_m \]

Complexities

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>ln;m></th>
<th>Trace</th>
<th>Delta S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diag.</td>
<td>------</td>
<td>------</td>
<td>O(N^3)</td>
<td>O(N^4)</td>
</tr>
<tr>
<td>full-PEM</td>
<td>O(MN)</td>
<td>O(N)</td>
<td>O(MN^2)</td>
<td>O(MN^3)</td>
</tr>
<tr>
<td>T-PEM</td>
<td>O(M^{d+1})</td>
<td>O(M^d)</td>
<td>O(M^{2d+1})</td>
<td>O(M^{2d+1}N)</td>
</tr>
</tbody>
</table>
Performance and Reliability

G. Alvarez et al.
submitted to Computer Physics Communications
Parallelization and Scalability

\[\mu_m(\phi) = \sum_{\nu=1}^{N_{\text{dim}}} \langle n | T_m(H(\phi)) | n \rangle \]

(Independent terms)

\[N_{\text{dim}} = \text{(size of the lattice)} \times \text{(internal degrees of freedom)} \]

Algorithm Scales: CPU Time \(\sim \frac{N_{\text{dim}}}{N_{\text{proc}}} \)

Up to \(N_{\text{proc}} = N_{\text{dim}} \)

DMS context: concentration=5%, 500 spins, 3 bands + spin

\((500 \times 100/5) \times 3 \times 2 = 60,000 \) processors

Manganites (CMR problem): 20\(^3\) lattice, 2 bands + spin:

\((20^3) \times 2 \times 2 = 32,000 \) processors
Parallelization and Scalability

\[T^{-1} \left(10^{-3} \text{ s}^{-1} \right) \]

- \(M = 30 \)
- \(J = 3 \)
- \(N = 6^3 \)
- \(\varepsilon_{pr} = 10^{-5} \)
- \(\varepsilon_{tr} = 10^{-3} \)

100 iterations

Number of CPUs vs. \(T^{-1} \) for different numbers of CPUs.
Software Library in C

- Model independent library for T/PEM.
- Use of Compressed Row Storage (CRS) for matrix storage.
- Entries to perform most operations related to the algorithm.
- Serial and Parallel (MPI) algorithms.
- G. Alvarez et al., submitted to Computer Physics Communications
- http://www.ccs.ornl.gov/~gonzalo/software/tpem/

FUTURE WORK: Optimize the library (sparse matrix - vector product) for High performance supercomputers (IBM, Cray, etc)
Conclusions

• T/PEM allows for the simulation of “spin-fermion” models much more efficiently than the exact diagonalization technique: $O(N)$ vs. $O(N^4)$.
• Larger lattices: Better Statistics.
• More realistic models (many bands, etc.).
• Wide range of applicability in condensed matter physics.
• Scalable parallelization.

Collaborators:
JAPAN: N. Furukawa, N. Motome.