“MxN” Parallel Data Redistribution Research in the
Common Component Architecture (CCA)

D. Bernholdt (ORNL), F. Bertrand (Indiana), R. Bramley (Indiana),
K. Damevski (Utah), J. Kohl (ORNL), S. Parker (Utah), A. Sussman (Maryland)

Summary

The “MxN problem” relates to sharing and exchanging decomposed data fields between two parallel
software components, each running on a different number of processes or with a disparate topology.
Cooperating parallel programs need this new fundamental capability for model coupling and
parallel computation/visualization pipelines, to negotiate the efficient exchange of parallel data
structures. Further, such parallel programs must functionally communicate with each other using
Parallel Remote Method Invocation (PRMI).

A major research focus for the Common
Component Architecture Forum is defining
semantics and efficient coupling schemes
between large-scale parallel scientific software
components. Part of this effort is captured in
solving the “MxN Problem,” where parallel
components running on differing numbers of
processors, possibly remote, must share and
exchange elements of decomposed data arrays.
The MxN problem is increasingly important,
as scientists begin to couple together large
single-domain codes to create higher-fidelity
integrated multidisciplinary simulations. The
number of processes used by each parallel code
can often be uniquely restricted, either by
algorithm (e.g., to powers of two), by resource
usage (e.g. batch scheduling systems), or
simply by the relative amount of work each
component needs to perform on its given
portion of an array. Therefore, efficient
mappings and “communication schedules”
must be generated to relate the elements of one
parallel array to those of another, to effectively
and efficiently share the data. This concept is
illustrated in Figure 1.

Within most modern distributed memory
programs, the most difficult aspect of MxN is
the bookkeeping associated with identifying
process ownership of data, and arranging the
communication schedule (the timing and
sequencing of messages) to keep the data
correctly updated. Most automated data
distribution systems and libraries handle this
bookkeeping for the user, yet there must still
be some generalized means for describing the
semantics of each given data distribution. In
component-based frameworks, such data
description services must be provided to enable
redistribution of data between one component
with M processes and one with N processes,
with possibly widely varying data layout for
each parallel component. The CCA Forum is
addressing these challenges in two ways: by
developing a uniform interface to describe the
data distributions held by parallel components,
and by creating components and framework
services to handle the synchronization and
transfer data elements for MxN redistribution.

![Figure 1: “MxN” Data Mapping Problem](image)

Because the majority of data in scientific
simulations appears as scalar values or arrays
of primitive types, CCA is developing a
distributed array descriptor interface that
succinctly describes the ways data arrays can
be distributed. Most standard decomposition
types are supported, including: block, cyclical,
generalized block, trees and explicitly indexed
patches.
Currently, MxN services are being provided for two classes of CCA frameworks. ORNL has developed a stand-alone MxN component for parallel direct-connect frameworks, i.e. where all of the interacting components are part of a single parallel program. This MxN component has an instance associated with each parallel process, providing an attachment point for all of the parallel components in the framework (Figure 2). This allows users to explicitly specify MxN transfers and data redistribution policies via a powerful API. The cohort of MxN component instances uses an “out of band” communication system, like PVM or MPI, to efficiently invoke the actual data transfers. Eventually, the encapsulating frameworks will be able to automatically negotiate an optimized MxN communication schedule, and will invoke redistribution as a service when needed between coupled parallel components.

Unfortunately, in distributed frameworks an MxN component cannot be collocated with application components, because each may exist on a different machine or be started with a separate run-time system. In this case, Parallel Remote Method Invocation (PRMI) must be applied to communicate among the distributed components. The University of Utah has extended SCIRun2 to define two types of PRMI: independent calls, where one process on each side participates. Collective SCIRun2 calls can handle disparities in the number of processes on each side by creating ghost arguments or return values, depending on which side has “extra” processes, respectively. Indiana University has created the Distributed CCA Architecture (DCA) framework, which uses MPI communicator groups to determine such distributed process participation. A user describes data layouts using MPI data types, displacements and counts, and the framework automatically provides the necessary remote parallel data redistribution operations.

Although each of these approaches are fundamentally different, the CCA can hide the underlying distinctions between parallel direct-connect and distributed frameworks by creating a common MxN interface. This interface allows users to portably define the transfer of data elements between disparate distributions, regardless of the specific framework being used.

While quite challenging, this MxN problem only scratches the surface of the more general problem of coupling parallel codes to create multidisciplinary simulations. A variety of spatial and temporal interpolation technologies, with flux conservation and even unit conversions, are required to couple real production codes, e.g. for domains like climate modeling, process simulation or fusion energy simulations. The CCA seeks to address these capabilities in its future research agenda.

For further information on this subject contact:

James A. Kohl
Oak Ridge National Laboratory
E-mail: kohlja@ornl.gov
http://www.csm.ornl.gov/cca/mxn/

Randall Bramley
Indiana University
E-mail: bramley@indiana.edu
http://www.cs.indiana.edu/~febertra/mxn/

Steven G. Parker
University of Utah
E-mail: sparker@cs.utah.edu
http://www.sci.utah.edu/

Research supported by the Mathematics, Information and Computational Sciences Office, Office of Advanced Scientific Computing Research, U. S. Department of Energy, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.