Structured ILU Preconditioner for Boltzmann Transport

Ed D’Azevedo
Computer Science and Mathematics Division

Bronson Messer
Center for Computational Sciences

Anthony Mezzacappa
Physics Division
Oak Ridge National Laboratory

2005 International Conference On Preconditioning Techniques For Large Sparse Matrix Problems In Scientific And Industrial Applications
May 19-21, 2005
Emory University
Atlanta, Georgia, U.S.A.
Acknowledgement

- This research was supported by the Scientific Discovery through Advanced Computing (SciDAC) Program of the Office of Science, U. S. Department of Energy and performed at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.
Overview

- 1D BOLTZTRAN for multi-group Boltzmann and convective hydrodynamics transport.
- Block tridiagonal systems.
- ADI like preconditioner.
- Sparse ILU for diagonal blocks
- Matlab experiments
1D hydrodynamics coupled to multi-group Boltzmann neutrino transport and used in modeling supernova core collapse.

BOLTZTRAN uses full Newton iteration with explicit construction of Jacobian. Typically require 6 newton iterations per time step for over 20,000 time steps.

- The sparse Jacobian is block tridiagonal, $[B_i, D_i, C_i]$ where D_i is $M \times M$ and dense but B_i, C_i are exactly diagonal.

- Dense diagonal block arising from discrete ordinates formulation of Boltzmann transport, off-diagonal blocks from 1D spatial discretization in hydrodynamic transport.
Development of 2D and 3D BOLTZTRAN as possible SciDAC application.

The sparse Jacobian has overall size $M \times N$, where N is number of spatial grid points, M is size of dense diagonal block.

In 1D, $M = 2 \times G \times Q + 2$, $M = 2 \times G \times (Q \times Q) + 2$ in 2D and 3D where G is number of energy groups, Q is number of quadrature points.

Astrophysicists consider $G = 12$, $Q = 4$, $N = 128 \times 64$ to be a low resolution ($M = 386$), and $G = 24$, $Q = 8$, $N = 512 \times 512$ a high resolution case ($M = 3074$).

High memory and computational costs associated with large dense diagonal blocks.
Linear solver

- Original code used a block variant of Thomas algorithm for tridiagonal systems. Recently added LAPACK DGBSV band solver.

- Consider iterative solver such as GMRES, BICGSTAB and even fixed point iteration.

- We consider two easily parallelizable preconditioners:
 - DBLOCK: just using the diagonal D_i dense blocks
 - ADI: additional correction using the diagonal part of D_i and off-diagonal blocks, $[B_i, \text{diag}(D_i), C_i]$.

- Preconditioner DBLOCK still requires $O(NM^3)$ work for factoring diagonal dense blocks. Band solver also requires $O((NM)M^2)$ work.
Sparisty Pattern

![Graph showing the sparisty pattern with nz = 6036]
By reordering spatial variables together, the second correction in ADI can be viewed as performing M independent tridiagonal solutions of size N.

ADI-like sweep where we alternately sweep along the spatial direction and separately handle the coupling among multi-group variables.

This correction may require costly ‘transpose-like’ communication in a parallel environment.

Solve $A \times x = b$, $[B_i, D_i, C_i] \times x_i = b_i$

(1) block diagonal part

B = diag(diag(A,-m),-m);

C = diag(diag(A,m),m);

DBLOCK = A - B - C;

y = DBLOCK \ b;

(2) ADI correction after DBLOCK

r = -(B + C) * x; # residual $r = b - A \times x$

compute correction

x = y + (diag(diag(A,0),0) + B + C) \ r;

Figure 1: Algorithm for ADI-like preconditioner in MATLAB notation.
Test cases

- Jacobian matrix has 102 blocks, each block is 34×34 ($34 = 4 \times 4 \times 2 + 2$)

<table>
<thead>
<tr>
<th>case</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-1,2,3,4</td>
<td>at core bounce with complex physics</td>
</tr>
<tr>
<td>60-1</td>
<td>well into the post-bounce heating phase, shock still moving out</td>
</tr>
<tr>
<td>90-1</td>
<td>shock has stalled, explosion might occur shortly</td>
</tr>
</tbody>
</table>

Table 1: Brief description of test cases.
Convergence of ADI preconditioner

![Graph showing convergence of ADI preconditioner](image)
Sparse ILU of 60_1

nz = 98

L with 1e−3

nz = 285

U with 1e−3
ILU of diagonal block

- Sparsity in L: \(\text{nz} = 795\)
- Sparsity in U: \(\text{nz} = 5547\)
- Sparser U: \(\text{nz} = 795\)
Sparse ILU with structure

- ILU as preconditioner to dense block.
- Exploit internal structure of diagonal block such as tight coupling within energy group, retain high energy interactions.
- Matrix-free method or on-the-fly recomputation to avoid high memory cost.
- Even sparser approximation to operate and store only approximate Jacobian.
- Approximate Jacobian likely lead to more newton iterations but may still have overall savings.
Significant entries in diagonal blocks

M30

\(nz = 232\)

M60

\(nz = 228\)

M90

\(nz = 233\)

M30 + M60 + M90

\(nz = 262\)
High energy coupling in U
High energy coupling in L and U

nz = 211
L

nz = 307
U

nz = 484
L*U
Comparison for 30-1

Problem 30−1: relative error, norm(A−LU)/norm(A)

U coupling
L&U coupling

condest before LU

condest after LU

U coupling
L&U coupling
Comparison for 30-1
Comparison for 60-1

Problem 60–1: relative error, \(\frac{\text{norm}(A-LU)}{\text{norm}(A)} \)

- **U coupling**
- **L&U coupling**

![Graphs showing relative error comparison for 60-1 problem](image)
Comparison for 60-1

nse60–1

10^0

10^−7

10^−6

10^−5

10^−4

10^−3

10^−2

10^−1

1
2
3
4
5
6
7
8
9
10

BICGSTAB+ILU
GMRES+ILU
BICGSTAB+LU
GMRES+LU
Comparison for 90-1

Problem 90–1: relative error, \(\text{norm}(A-\text{LU}) / \text{norm}(A) \)

- **U coupling**
- **L&U coupling**

condest before LU

condest after LU

\(\times \) U coupling

\(\circ \) L&U coupling
Comparison for 90-1

![Comparison graph for 90-1](image)
Larger problem

- 6 quadrature points, 12 energy groups

![Graphs of M140, M160, and M140+M160 showing nz counts of 967, 1051, and 1150 respectively.](image-url)
Comparison for 140-1

Problem nse140: relative error, norm(A−LU)/norm(A)

- L&U coupling
- L2&U2 coupling
- L3&U3 coupling
- L4&U4 coupling

condest before LU

condest after LU
Comparison for 140-1

![Comparison for 140-1](image)
Comparison for 160-1

Problem nse160: relative error, \(\text{norm}(A-LU)/\text{norm}(A) \)

- L&U coupling
- L2&U2 coupling
- L3&U3 coupling
- L4&U4 coupling

condest before LU

condest after LU
Comparison for 160-1
Nonlinear Newton iterations
Nonlinear Newton iterations

- The neutrino luminosities look to be different at only the 1% level.
- The inner iteration count (for the BiCG-STAB) seems essentially unchanged throughout collapse.
- More realistic energy gridding (12 groups instead of 4) is needed.
Summary

- Enhancement to ADI preconditioner to avoid costly LU factorization in diagonal blocks by taking advantage of structure in ILU.

- Structured ILU with predetermined sparsity pattern (within group coupling and highest energy coupling) seems to be an effective preconditioner for the diagonal blocks.

- Explore using sparse diagonal blocks as inexact Jacobian to reduce storage requirements.

- Simulations with more energy groups are needed.