2016 ACEEE Hot Water Forum – Heating Water with Integrated Heat Pumps

Modeling of Air-Source Integrated Heat Pumps

-simulation-driven design

Bo Shen, Keith Rice, Oak Ridge National Laboratory

February 23, 2016

ORNL is managed by UT-Battelle for the US Department of Energy

Contents

- 1. Air-Source Integrated Heat Pumps (AS-IHPs)
 - Reasons
 - Operation modes and components
- 2. Modeling ASIHPs with ORNL Heat Pump Design Model (HPDM)
 - Component and system modeling
 - Building energy simulation
- 3. Simulation Case Studies
- 4. Summary

Conceptual Installation of ASIHP – 3-ton Rated Cooling Capacity

1.1 Reasons For Single-Unit ASIHP

1. Maximize use of highly efficient but costly variablespeed compressor, blower, fan, and pump

- Recover waste heat for water heating in cooling season
 - Dual useful outputs from single power input
- Provide dedicated WH capability in shoulder months

2. Meet both high and lower capacity loads efficiently using speed modulation

Objective: Provide >50% annual energy savings for HVAC/WH functions

1.2 Various Components

Variable-Speed Flow Movers-compressors, fans and pumps

1.3 Multi Operation Modes Possible

→Single-Function Modes:

- 1. Space cooling mode (SC)
- 2. Space Heating Mode (SH)
- 3. Dedicated Water Heating Mode (DWH)

→Combined Modes:

- 4. SC + Water Heating Mode with Full Condensing (SCWH)
- 5. SC + Water Heating with Desuperheating (SCDWH)
- 6. SH + Water Heating with Desuperheating (SHDWH)

Multiple operation strategies and component states, e.g. speed, HX states.

2.1 Variable-Speed Compressor Modeling

 $Y = C_1 + C_2 T_e + C_3 T_c + C_4 T_e^2 + C_5 T_e T_c + C_6 T_c^2 + C_7 T_e^3 + C_8 T_c T_e^2 + C_9 T_e T_c^2 + C_{10} T_c^3$

→10-coefficient AHRI compressor map at rated inlet superheat;
Y represents the compressor mass flow and power use rates.

 \rightarrow Linear interpolation between speed levels.

 \rightarrow Mass flow rate adjustment for actual inlet superheat levels.

2.2 Advanced Heat Exchanger Modeling

Segment-to-segment modeling approach

Dry Coil Analysis Heat Transfer

Wet Coil (Dehumidification) - Heat & Mass Transfer

2.3 System Modeling - Component-Based Flexible Modeling Platform for Vapor Compression Systems

Component models have standard interfaces to the solving framework, and generic connections to each other.

Automatically connect components into required system configuration by user input file.

2.4 Extensive Connectivity

National Laboratory

3. Specific Issues Rated to AS-IHP Development

Four Simulation Case Studies

- 3.1 Convert Compressor Working Envelope to IHP Operation Constraints
- 3.2 Optimize combined efficiency
- 3.3 Optimize efficiency with SHR constraint
- 3.4 Solving competing demands

3.1 Operation Constraints in DWH Modes

-Discharge saturation temp constraint

Convert compressor working envelope to equipment operation constraints.

-Discharge temperature constraint

3.2 Optimize Combined Efficiency

3.3 Optimize Efficiency with SHR constraint

Indoor Airflow Needs to be Reduced When in Combined SC+WH Mode For = SHR Control

Balance optimum efficiency with acceptable comfort.

3.4 Competing Demands of SHDWH Mode

-initial design at fixed compressor speed and water flow rate

WH function in SHDWH mode may take away too much heat from space heating. -- increase compressor speed and lower water flow rate at low ambients to compensate

14 Prese

3.5.1 Predicted Annual Energy Savings in 5 U.S Locations (TRNSYS using HPDM performance maps) - For 242 m² (2600 ft²) well-insulated house

Location	% Energy Savings Versus Baseline HP w Electric WH
Atlanta	53.3
Houston	54.7
Phoenix	46.7
San Francisco	60.9
Chicago	46.0
US average	52.3

Baseline: Electric Resistance WH; HP (13.0 SEER/8.0 HSPF)

3.5.2 Predicted WH Savings in 5 U.S Locations

Location	% WH Energy Savings Versus Electric WH with 0.90 EF
Atlanta	70.0
Houston	75.7
Phoenix	72.2
San Francisco	69.4
Chicago	62.4
US average	69.9

4. Summary

- Simulations indicate ASIHP able to achieve annual energy savings > 50% in numerous US climate zones.
- 2. Demanding to design an ASIHP, e.g.
- operation constraints at different speed levels
- balance between efficiency & service/comfort requirements.
- competing demands of WH & space conditioning

An effective & flexible modelling tool is indispensable for the design process.

Discussion

Bo Shen, , Keith Rice SHENB@ORNL.GOV

Visit our website: www.ornl.gov/buildings

Follow me on: hpdmflex.ornl.gov Follow us on Twitter: @ORNLbuildings