Zero (or Low) Energy Home (ZEH) Equipment Needs in a Range of US Climates

> Van D. Baxter, R. W. Murphy, C. K. Rice, and W. G. Craddick

Building Technologies R&I Center Oak Ridge National Laboratory

Sponsored by DOE Buildings Technology Program

ASHRAE 2010 Annual Meeting Albuquerque, NM June 27, 2010

Assessment of Advanced HVAC/WH Technology Options for NZEH Applications

- Objective identify portfolio of system options with >50% savings potential
- Initial scoping studies of HVAC options
 - Identified integrated heat pump (IHP) concept as most promising equipment option for all electric homes
 - Based on small-capacity variable-speed compressor
 - System design options developed for air- and ground-source versions of IHP
- Energy savings evaluated against baseline of minimum efficiency individual equipment suite for 1800 ft² ZEH
 - 13 SEER heat pump; 0.9 EF water heater; 1.4 EFd dehumidifier; exhaust fans operated to achieve ventilation per ASHRAE std 62.2
 - and against suite of higher efficiency individual systems
 - 18 SEER heat pump; Energy Star heat pump water heater (2.0 EF); same DH & ventilation approach

ZEH/Low-Energy House Characteristics/Needs

- Highly insulated & very tight buildings
- Much lower space heating/cooling loads
 - smaller equipment capacities (1 1.5-ton for 1800 ft² size)
- Need for active ventilation and dehumidification (in some locales)
- Greater balance between water heating load (relatively unchanged) and space conditioning loads (smaller)
- Specifics for the building used in our analyses provided by NREL using their BEopt program

BEopt -> building energy optimization program

ZEH/Low Energy House 1800 ft² (167 m2) – heat pump size requirements for 5 U.S Locations

Location – climate zone	Heat Pump Cooling Capacity Tons (kW)
Atlanta – mixed humid	1.25 (4.4)
Houston – hot humid	1.25 (4.4)
Phoenix – hot dry	1.5 (5.3)
San Francisco – marine	1.0 (3.5)
Chicago - cold	1.25 (4.4)

ZEH/Low Energy House 1800 ft² (167 m2) – HVAC/WH Energy Service Loads for 5 U.S Locations

Location	Total Load on HVAC/WH System	% Load by component			
	kWh	Space heat	Space cool	Water heat	DDH*
Atlanta	13700	34.9	41.8	22.1	1.2
Houston	14900	11.9	66.6	16.8	4.7
Phoenix	13525	11.7	72.1	16.2	0
San Francisco	6400	45.0	1.4	52.9	0.7
Chicago	17875	64.0	14.2	21.3	0.5

* Dedicated dehumidification – to maintain ID RH≤60% year-round

DOE/ORNL IHP Development Objective

- Multifunction heat pump that provides:
 - -Space heating and cooling
 - **–Domestic HW**
 - -Dedicated dehumidification as needed, and
 - -Conditioning of the ventilation air
- To minimize energy consumption required to meet ZEH energy services (SH,SC, WH, humidity control, ventilation)
- To support meeting DOE goal of a ZEH at neutral owning cost

IHP - Initial Equipment Concept

- Split-System Air Source HP
 - Central indoor air handler with ducts in the conditioned space
- Single Compressor Design
 - High-efficiency at EER and SEER conditions
 - Modulating capacity
 - 2.8-to-1 turndown in cooling and heating,
 - 50% over-speed capability in heating
 - >1.5 hp design to reduce power electronics costs
- Modulating Fans and Pump
 - Wide-range air flow control, especially indoor
 - Multi-speed water flow
 - For range of conditioning requirements
- Water-to-Refrig. Coil
 - To meet water heating needs over a range of speeds
- Water-to-Air Coil

for the To assist with supply/ventilation air tempering

AS-IHP Concept

- Full integration to heat, cool, ventilate, dehumidify, and heat water as needed
- AS-IHP concept, in dehumidification/ventilation/WH mode, shown at right - many modes possible
 - H or C/ventilation/WH
 - Dedicated water heating
 - Dedicated dehumidification and/or humidification
 - Ventilation air pre-treatment; H in winter, C & dehumidify in spring/summer/fall

Lab prototype constructed and tested

Possible AS-IHP packaging approach

Lab prototype air handler

ref/air HX

water/air HX

blower

AS-IHP: Salient Technical Features

- 2 discrete but interactive loops (refrigerant and domestic hot water)
- 1 VS compressor and 2 VS fans
- 1 SS pump for domestic HW loop
- Means for dedicated humidity control
- 4 HXs for space conditioning and water heating
 - One water-to-ref HX, two air-to-ref, one reheat coil

GS-IHP Concept

- Performance expected to exceed that of AS-IHP in most locations
 - Geothermal source sink (ground HX, etc) generally provides more favorable operating conditions for compressor than OD air

GS-IHP system concept – dehumidification/ventilation/WH mode shown

GS-IHP: Salient Technical Features

- 3 discrete but interactive loops (refrigerant, domestic hot water & ground loop)
- 1 VS compressor and 1 VS fan
- 1 SS pump for domestic HW loop
- 1 MS pump for ground loop
- Means for dedicated humidity control
- 4 HXs for space conditioning and water heating
 - Two water-to- ref HXs, one air-to- ref, one reheat coil

IHP – Seasonal Performance Analysis

- Calibrated HPDM linked to TRNSYS simulation engine
 - Enabled sub-hourly analysis of IHP annual performance
 - using optimized R-410A based design
 - simulated multiple modes of operation per t-stat calls
 - linked with domestic water tank for inlet water temp history
- Detailed annual performance assessments vs. baseline system & hi-eff heat pump+HPWH system
- Baseline system individual systems to deliver same energy services
 - air-source heat pump + electric storage water heater + 40 pt/d stand alone dehumidifier (DH) + whole-house ventilation system
 - @ minimum efficiency levels (13 SEER, 0.9 EF) or "typical of market" (e.g., EFd=1.4 for DH)
- Predicted performance on following slides

AS-IHP in 167m² ZEH in Atlanta - ~54% savings vs. Baseline, ~20% more than for "Hi-Efficiency" stand-alone suite

TRNSYS/HPDM simulation results

Base system – rated SEER/HSPF/EF – 13/7.7/0.90 "Hi-Eff" system – rated SEER/HSPF/EF – 18/9.2/2.0 All systems include year-round humidity control and Std 162.2 minimum ventilation for the U.S. Department of Energy

National Laboratory

AS-IHP – Unit Sizing and Energy Savings Predictions for 1800 ft² (167 m²) ZEH in 5 U.S Locations

Location	Heat Pump Cooling Capacity Tons (kW)	HVAC/WH Energy Consumption Total & (I ² r) backup kWh	% Energy Savings Versus Baseline HVAC/WH System
Atlanta	1.25 (4.4)	3349 (142)	53.7
Houston	1.25 (4.4)	3418 (91)	53.7
Phoenix	1.5 (5.3)	3361 (19)	48.4 (~59%*)
San Francisco	1.0 (3.5)	1629 (100)	67.2
Chicago	1.25 (4.4)	10773 (941)	45.6

*Appx savings with evaporatively pre-cooled condenser Estimated GS-IHP savings ~10% pts higher for cold & mixed humid locations

AS-IHP – Summer afternoon utility peak reduction predictions for 1800 ft² (167 m²) ZEH in 5 U.S locations

Location	Heat Pump Cooling Capacity Tons (kW)	% Summer Peak Load Reduction Versus Baseline HVAC/WH System
Atlanta	1.25 (4.4)	42.9
Houston	1.25 (4.4)	50.0
Phoenix	1.5 (5.3)	19.0 (~40*)
San Francisco	1.0 (3.5)	50.0
Chicago	1.25 (4.4)	58.3

*Appx reduction with evaporatively pre-cooled condenser Estimated GS-IHP red. ~2x greater for Phoenix, ~10-15% for other locations

Alternative "Individual Equipment" System Options – Can they do as well as IHP?

Yes – with improved efficiencies

- "Best available" suite – 23 SEER/10 HSPF; 2.5 EF HPWH; 2.0
EFd DH (50 pt/d): can yield ~40% savings vs. baseline

- Approaches to "individual suite" options that could achieve ≥50% savings vs. baseline in all locations (including Chicago if heat pump has enough overspeed capability at low ambient)
 - -23 SEER/10 HSPF; 3.0 EF HPWH; 3.0 EFd DH
 - -33 SEER/15 HSPF + best available HPWH & standalone DH

Concluding Observations

- IHP system simulations show significant electricity savings potential vs. current baseline equipment for all electric ZEH/lowenergy homes in range of US climates
 - AS-IHP; 46% (Chicago) to 67% (San Francisco) improvement
 - GS-IHP; ~10% greater savings than AS-IHP in mixed-humid and cold climate locations
- Significant summer peak electric demand reduction also
 - AS-IHP; 19% (Phoenix) to 58% (Chicago) at utility peak time
 - GS-IHP; ~2x greater reduction than AS-IHP in Phoenix (~10-15% more in all other locations)
- Adding evaporative pre-cooling of outdoor condenser provides significant additional energy and peak savings in hot-dry climates for AS-IHP
- Efficiency of individual electric SH/SC, WH and DH systems will need relatively large increase to be able to match IHP energy savings potential

