Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

Keith Rice, Bo Shen, Van Baxter, and Som Shrestha, ORNL

Robert "Dutch" Uselton, Lennox

ANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF

General Motivation

- Strategic Focus of U.S. DOE Buildings Technology Office
 - Maximize energy efficiency of U.S. buildings
 - Reduce building energy consumption 50% by 2030 vs 2010 levels
 - Sub goal for HVAC 20% reduction by 2030
 - Sub goal for water heating (WH) 60% reduction by 2030
 - Relative to current minimum efficiency equipment
- Develop integrated heat pumps (IHPs) to help meet these goals
 - Ground-source IHP unit recently introduced to U. S. market
 - Air-source IHP designs under development with industry partners
 - Single-unit design is the subject of another paper at conference
 - <u>Two-unit design, for both new and retrofit market, is the focus of this paper</u>

Two-Unit IHP Concept

Specific Motivation For Two-Unit Design

- Forecast Trend is for Sensible Loads to be Reduced more than Latent
 - Dedicated WH-DH unit provides on-demand WH and humidity control
 - Independent operation separates and simplifies controls compared to all-in-one designs
 - Provides two useful outputs in warmer shoulder and summer months
 - Central duct connection circulates conditioned air throughout the house
 - Also provides conditioning for ventilation air
- Close matching of lower WH loads possible with smaller single-speed compressor
- Design can be applied to retrofit/upgrade and new applications
 - Using standard electric WHs and wide range of multi-capacity central heat pumps

WH/DH Unit - Mode Configurations

Water Heating Mode

Dehumidifier Mode

WH/DH Unit – Tube-In-Tube WH HX

Refrigerant-Outside, Water-Inside Double-Walled Fluted Tube Hx

WH/DH Unit - Hardware Configuration

CAD Representation

Lab-Tested Prototype

WH/DH Unit – Design Point Optimizations

Increasing Subcooling

Water Heating Mode

Dehumidification Mode

DH Energy Factor and Water Condensation Rate

Water Heating COP

Increasing Air Flow Rate

Increasing Subcooling

EXAMPLE 2 OAK RIDGE NATIONAL LABORATORY

WH/DH Unit - Installed in Test Chamber

WH/DH Unit - Lab S-S Test Conditions

Test Matrix for DH Mode			Test Matrix for WH Mode			
	Test Condition			Test Condition		
Test #	Inlet DB,	RH	Test #	Inlet DB,	RH	EWT
	°C	%		°C	%	°C
1	26.7	60	1	20.0	50	21.1
2	26.7	55	2	20.0	50	32.2
3	26.7	50	3	20.0	50	43.3
4	23.3	55	4	20.0	50	54.4
5	23.3	60	5	23.3	55	21.1
6	23.3	50	6	23.3	55	32.2
7	20.0	60	7	23.3	55	43.3
8	20.0	55	8	23.3	55	54.4
9	20.0	50	9	26.7	60	21.1
			10	26.7	60	32.2
			11	26.7	60	43.3
			12	26.7	60	54.4

Lab Test Results - S-S WH Capacity

Lab Test Results – S-S WH COP

Energy Factor (EF) Test Results

- Dehumidifier EF Ratings Test per ANSI/AHAM DH-1-2008
 - 6 hrs at 26.7C / 60% RH
 - Avg. EF from 2 tests of 2.08 and capacity of 1.47 L/hr
- DOE 24 hr Water Heater EF Test
 - Ambient air at 19.7C / 50% RH
 - 6 equal draws of 40.6 L over 3 min, 1 hour apart, followed by recovery / cool down in hours 6-24
 - Initial EF results of ~ 1.5 with significant heat losses
 - Subsequent tests with added insulation, isolation from airflow, and adjusted set points raised EF to 1.78
 - Next identified multiple thermosiphon events during cool down period
 - Elimination of these events by valving off inlet water line increased EF to 1.92

Lab Results – 24 Hr WH EF Test

Annual Performance Simulations

- Mapped S-S WH and DH performance with ORNL HPDM
 - Using calibrated models over wide range of air/water inlet conditions
 - Derated WH-DH unit to 20% lower airflow rate based on blower testing against expected external back pressure of central duct system
 - Dropped WH performance ~ 3.3% and DH EF by 1.2%
- Linked with TRNSYS house/weather project and type 534 WH tank module
 - 3-min time steps and nominal 50°C WH set point
- Paired WH-DH unit with two-capacity central air-source HP
 - 5.4 CSPF / 2.67 HSPF of same design capacity as baseline unit
- Compared versus baseline all-electric suite of min eff equipment
 3.8 CSPF / 2.3 HSPF HP, 0.9 EF WH, and 1.4 EF DH

Predicted Annual Energy Savings By Mode

Energy Use by Mode; 242 m ² Tight, Well-Insulated House								
	1-Speed Base	2-Speed w	WH-DH Unit, 113 L/s					
Operation Mode	Energy Use	Energy Use	Reduction from Base					
	kWh (l ² R)	kWh (I ² R)	(%)					
Atlanta								
space heating	2311	1965	15.0%					
resistance heat	(18)	(31)						
space cooling	1741	1059	39.2%					
water heating	3380	1553	54.1%					
resistance heat (3380)		(488)						
dedicated DH	319	299	6.2%					
ventilation fan	189	202	-6.9%					
totals	7941	5079	36.0%					
Houston								
space heating	995	906	9.0%					
resistance heat	(0)	(3)						
space cooling	3035	1975	34.9%					
water heating	2813	1169	58.5%					
resistance heat	(2813)	(246)						
dedicated DH	1154	1035	10.3%					
ventilation fan	189	179	5.6%					
totals	8187	5264	35.7%					
Chicago								
space heating	6214	4915	20.9%					
resistance heat	(916)	(669)						
space cooling	740	402	45.6%					
water heating	4218	2122	49.7%					
resistance heat (4218)		(906)						
dedicated DH	154	154	0.0%					
ventilation fan	189	169	10.5%					
totals	11514	7762	32.6%					

Summary and Recent Work

- Novel Prototype WH-DH Unit Developed and Tested
 - Provided basis for calibrated performance models and annual savings predictions
 - Average savings potential of ~35% predicted for tested unit in range of suitable U.S. climates
 - EF performance goals met for DH function and approached for WH mode
 - Heat losses from tube-in-tube HX found to be significant
- Recent Prototype Improvement
 - Enlarged both airflow openings and gained 40% more ext. static capability
 - Replacement of tube-in-tube with double-walled brazed plate HX
 - lighter weight, more compact, reduced thermal capacitance, easily insulated
 - "Risers" added to significantly reduce thermosiphon losses
 - − Energy Factors increased: DH 2.08 \rightarrow 2.12, WH 1.92 \rightarrow 2.0
- Would like to conduct field test beginning later in 2014

