Overview of DOE/ORNL Heat Pump Design Model and Use of Web Versions

C. Keith Rice Oak Ridge National Lab USNC/IIR Short Course on Simulation Tools July 13, 2004

Outline - First Part

- HPDM History
- General Capabilities
- HX Assumptions
- Solution Approach
- Application Modeling
 - Design Analysis
 - Off-Design Simulation
- Flow Control Types

Outline - Second Part

- Web-Based Models
 - Sample Demo Run
 - Parametrics
- Mark VI Changes
- Results HP Test Case
- Mark 7 Development

HPDM History

- MIT Origin (Hiller 76)
- Initial ORNL Version (78)
- Mark III (85), PC
- Mark IV (91), PC, Var-Speed, Params.
- Mark V (94-96), PC/Web
- Mark VI (98-04), Web
- Mark 7 (Under Development)

General Capabilities

- Air-to-Air Heat Pumps
 - Steady-State Cooling and Heating
 - Hardware-Based Representations
 - Fin-and-Tube HXs
 - Compressor Performance Maps
 - Single- or Variable-Speed Compr/Fans
 - Explicit or Implicit Flow Controls
 - Fixed Cycle Arrangement

Design/Simulation Capabilities

- Design or Off-Design Analysis
 - Charge Inventory Calculation or Balancing
- Sizing Options
 - For compressors and flow controls
- 1- or 2-Variable Parametrics
 - Ambient control options
 - ex., SH or SC as a F(ambient)

HX Assumptions

- Region-by-Region Refr.-Side Analysis
 - For Heat Transfer and Pressure Drop
 - 3-Region Condenser, 2-Region Evap
 - Crossflow Treatment of Airflow
 - Airflow Across Single-Phase Regions Determined by Refr. Fraction

Determining Refrigerant Region Fractions

HX Assumptions

- Parallel Equivalent Circuits
 - Equal Flow Split
 - Single Circuit Analysis
 - Much Faster than Tube-by-Tube
 - But More Idealized
 - No Circuit Branching
 - Assumes a Well-Balanced HX Design
 - With 2-Phase Refr. Regions Dominant
 - Diff. Regions See Same Inlet Air
 - or 1-phase is ahead of two-phase

Finned Tube Heat Exchanger With Parallel Circuits And Single-Phase Regions on Leading Edge

HX Assumptions

- Air-to Refrigerant H.T. Within Regions
 - Effectiveness/NTU Relations
 - Single-Phase Regions
 - Many-Row Unmixed on Both Sides (Mark V)
 - 1-to-N-Row Crossflow (Mark VI)
 - Two-Phase Regions
 - Use Two-Phase Temp. At Average Pressure
 - Flow Configuration Independent

Solution Approach

- Successive Substitution (Sequential)
 - Specify
 - Inlet Air Temps
 - HX Exit Conditions/Control
 - Or Design Charge in Place of One Condition
 - Guess Saturation Temps
- Generally Fast, Stable Convergence
 - Always Solving a Real System
 - Easier to Trace Problems That May Occur

Solution Approach

- Charge Independent Solution
 - Specify Inlet Temps, Evap. Exit Superheat
 - Adjust Sat. Temps until
 - High-Side Convergence on
 - Exit Subcooling -- if sizing flow controls
 - Mass flow -- if flow control specified
 - Low-Side Convergence on
 - Specified Inlet Temp
 - At Specified Exit Superheat

- Determine Required Charge (optional)

Solution Approach

 Charge Dependent Solution - Specify Refrigerant Charge In Place of One HX Exit Location Guess Cond SC or Evap SH for This Location - Adjust Sat. Temps for Hi-/Lo-Side Bal Find Charge for Guessed SC or SH - Iterate SC or SH until Required Charge is Matched

Application Modeling

Design Analysis

- Specify for Application

- Design Ambient Conditions
- Design Values of SC and SH
- And (optionally) Design Capacity

- Calculate

- Required Charge and Flow Control Sizes
- And (optionally) Required Compressor Size
- Design Condition Performance with Given HXs

Application Modeling

Off-Design Simulation

- Specify for Application
 - Off-Design Ambient Conditions
 - Design Charge and Flow Control Type/Size
 - Compressor Size
- Calculate
 - Cond SC and Evap SH
 - Off-Design Performance with Given Equipment

Cap Tube Flow Control -- Fixed Charge w Accum

Similar But Smaller SH/SC Trends with Short-Tube Orifice

Flow Control Types

• Explicit

- Capillary Tube(s)
 - with fixed SH or charge
- Short-Tube Orifice(s)
 - with fixed SH or charge
- Thermal Expansion Valve (TXV)
 - Fixed Opening
 - if used with fixed SH
 - Variable Opening (often unstable conv.)
 if fixed charge

Flow Control Types

- Implicit
 - SH/SC Control
 - fixed SH and SC
 - (simplest way to approx. TXV, TEV)
 - SH/Charge Control
 - fixed SH and SH
 - (can be used as TXV model)
 - SH/SC Programmed Control
 - SC and/or SH controlled as F(ambient or speed)
 - SC Control (can give conv. instabilities)
 - fixed charge and SC (SH may vary widely)

Web-Based HPDM

- Mark V & VI
- Fully Accessible Online from Any Web Browser
- Exportable Data Sets – Input & Output
- Design and Operating
 Parametrics
- Online Plots/Tables

Web Address www.ornl.gov/~wlj/hpdm/MarkVI.html

DOE Web Site for Software Tools

Web Address

http://erendev.nrel.gov/buildings/tools_directory/

Web Version of HPDM Has Seen Steady Use in Recent Years

15,000 Uses of Web Model in 2003, 55,000 Since Launch

Online Demo of Web Version

Model Walk Through

- Overview of Input Sheets for Sample HP
- Design Condition Case
 - View Cycle Output
- Setup Charge/Flow Control Values for Off-Design Run
- Run Off-Design Ambient Parametrics
 - View Output Options

Web-Based HPDM

- Fully Accessible Online
 from Browser
- Exportable Data Sets – Input & Output
- Design and Operating
 Parametrics
- Online Plots/Tables

DOE/ORNL Heat Pump Design Model

Available Web Versions Original Mark V New Mark VI

Two-Variable Design Parametrics EER for a Range of Tube Ids and Circuits

