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Abstract

Engineers used to search for “optimum” solutions
using intuition and parametric analysis

— Experience level

— Limited number of design variables

— Two objectives at most

Designs are getting more complex

— More variables are being considered

— More alternatives are being introduced

— More constraints and objectives are imposed
— Hence: require systematic techniques

Case study: real HVAC&R engineering optimization
problem



Optimization: a Definition

“an act, process, or methodology of making something (as a
design, system, or decision) as fully perfect, functional, or
effective as possible; specifically : the mathematical

procedures (as finding the maximum of a function) involved in
this” — Merriam-Webster Online Dictionary.

“In mathematics and computer science, optimization, or
mathematical programming, refers to choosing the best
element from some set of available alternatives.” - Wikipedia

“A branch of mathematics which encompasses many diverse
areas of minimization and optimization.” — Wolfram
Mathworld.



Single Objective Optimization

Minimize or maximize a
single function (objective)
Results in a single global
optimum solution

— Local optima
— Saddle point

Mathematical formulation:

minimize f(x)

Global Min.

Saddle Point
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Multi-Objective Optimization

Minimize and/or maximize 2 or more
conflicting objectives

Available techniques

— Weighted Sums (Linear aggregation)
* Asingle objective function is constructed
e Optimum design depend on weighing factors

— Pareto Optimization

e Simultaneous min/max of multiple objective
functions

e Results in “Pareto” optimum points
presenting the tradeoff between the
conflicting objectives (Pareto curve, Pareto
surface, or Pareto hypersurface)

minimize f(x)=> e f,(x)

subject to g,(x)< 0 i=1..,M
h.(x)=0 j=1..,N
Xo <x <x.  k=1..,

optimize f,(x) 1=1,.,L

subject to g,(x)< 0 i=1..M
h.(x)=0 =1..,N
X <x <x. k=1..,




Multi-Objective Optimization

Weighted Sum Pareto
Weighted Sum Optimization  Tradeoff between the
objective functions
ﬁ 2 e The design space is globally
[f' / “ , searched to find this tradeoff
{-"/!' “\ . /1,4 e “Non-dominated” designs
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Non-Dominated Sorting - MOGA
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Why Optimize?

 Engineers always seek optimum solution:
— Performance improvement (e.g. higher EER)
— Price reduction (e.g. less amount of materials)

— Quality improvement (e.g. better IAQ, better
reliability, etc.)

— And Making our life easier!



How to Optimize?

e |n the old days
— Intuition (only experienced engineers can)
— Parametric analysis (limited number of parameters —
time consuming)

e Mathematically rigorous practices:

— Using optimization algorithms
e Gradient based solvers
e Stochastic approaches

— Post processing results using scatter matrix plots and
multi-dimensional data representation



Intuition

* A near optimum solution can be obtained using
intuition for problems with a single variable

 Pressure drop minimization: use the larger possible
diameter

— AP = f(D#) laminar flow, AP = f(D) fully turbulent flow

— Not valid if larger diameter caused transition from
laminar to turbulent

— Does not account for:
e Impact on heat transfer rate (loss/gain)

* Impact on cost, (e.g. raw material, tooling, refrig. charge)
 Geometric constraints



Parametric Analysis — 1 variable

e Alocal optimum can be
obtained

e Good for limited range
with a smooth function:
e.g. charge optimization

— Usually performed at the
design conditions

— Performance is plotted
against charge and
optimum is identified

— Does not account for
seasonal performance
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Parametric Analysis — 2 Variables

Contour plots are required to
identify optimum

Good for smooth functions only
Constraints handling is not as
easy as systematic optimization
techniques

Advantages:

— Simple: reasonable engineering
time requirement

— Provides visual feedback of
predicted performance trends

— Same results can be used for
multiple optimization studies

Limitations:
— Solution depend on AX;
— Less efficient function evaluation

24

22 A

]
=

Condenser Subcooling Degree [R]

EER and SHR, Slit Fin

16

14 -

12 +

10 -

4105

10.7

10.6

10.7

0.45

0.50

0.55

0.60 0.65 0.70 0.75

Outdoor HX Area Fraction

----- SHR



Parametric Analysis — n Variables

— EER ----- SHR

e Computationally expensive (# of
experiment = ; _ 1T [AX]]
— For 6 variables each discretized

into 10 = 10° experiments are
needed

— Inefficient constraint handling

e Post processing required beyond
simple visualizations

e Non-dominated sorting
algorithms are needed to
identify Pareto solutions

— to identify optimal paths among
competing objectives
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Systematic Optimization

Deterministic Probabilistic

e Gradient Based (local * Stochastic
optimum) — Monte Carlo
_ Gradient descent — Simulated Annealing
— Newton’s method B Et.c. _
_ Etc * Heuristic

— Genetic Algorithms
— Evolutionary Algorithms

— Swarm Based: particle swarm,
ant colony

* Algebraic Geometry — Differential Evolution
* State Space Search (Al) — Ete.

e Branch and Bound

— Discrete, or combinatorial
problems



Optimization Tools

Several tools exist for optimization

Usually assume “Black box” function evaluation
Coupling efforts vary significantly

Some are readily implemented for specific software

Optimizer
Configuration

Optimization _flew Designs

Toolbox

Optimization
Result(s) ﬁ

Function

Constraints and )
Evaluation

Objective values
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A CASE STUDY:
PARAMETRIC ANALYSIS VS. SYSTEMATIC
OPTIMIZATION



Optimization Problem

Problem devised from 1997 paper by Rice

Maximize the EER of an R-410A air conditioner for

— Fixed Design Capacity = 2.67 TR (9.38 kW)

— Fixed total HX finned area

— Fixed total heat pump fan power =513 W

— Constant superheat = 5.6 K (10 R)

— Maximum allowable sensible heat ratio = 0.75
Variables

— Tube outer diameter and # circuits

— Fraction of the total HX finned area in the outdoor coil
e adjusted so as to maintain air-side pressure drops constant

— Condenser subcooling
— Compressor size adjusted automatically to maintain constant capacity

Parameters

— High temperature design conditions: DBT

utd
DBT/WBT, ;. = 299.85/292.55 K (80/67°F)

= 308.15 K (95°F);



Approach

Conventional — Model with Built-
In Parametric Analysis Capability

e The ORNL Heat Pump
Design Model (HPDM) is
readily capable of running
parametric analyses

e Results are displayed as
contour plots for 2 design
variables at a time (slices)

— Optimum points are
identified w.r.t. 2 variables at
a time

Systematic Optimization -
GenOpt

GenOpt: optimization
program for the
minimization of a cost
function evaluated by an
external simulation program

A wrapper was developed
to provide seamless
coupling between GenOpt
and HPDM



Conventional

e First, a 2-D parametric study is performed by
changing the condenser subcooling and
outdoor coil HX area fraction

— Optimum was found to be for 15 R of subcooling
with an outdoor HX size ratio of 0.69
* Second, the number of circuits and tube outer
diameter for the outdoor coil were varied
(another 2-D parametric study) using
optimum subcooling and outdoor HX area
fraction

— Optimum was found to be for D =0.42” and 2
circuits
e The optimum Design:

— Subcooling = 15 R, outdoor coil surface area
fraction = 0.69, outdoor coil D =0.42”, and
outdoor coil of 2 circuits

— EER =10.96, Refrigerant Charge = 7.825 |b_, SHR = oo \
0.751 W

10.95.
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Systematic Optimization - GenOpt

Optimization | Outdoor coil | Sub- Outdoor | Outdoor Ref-
algorithm face area cooling | coil tube | coil, rigerant

fraction [-] [R] outer equivalent | W.hr] charge
diameter | # of [1b]
[in] circuits [-]

GPS — Hooke
Jeeves (88
function
evaluation)

GPS -

0.694 17.82 0.325 3 10.89 0.75  6.0345

Coordinate

Search (160 0.694 15.94 0.4375 2 1096 0.75 8.382
function

evaluation)

4-D

. 0.69 15 0.42 2 10.96 0.751 7.825
Parametric
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Optimization for 6 Variables

e Considering indoor coil tube size and number of
circuits as additional design variables

e For the parametric analysis, a new 2-D parametric
analysis was performed

— D, was varied between 0.2 and 0.5”

— Number of equivalent circuits were varied between 2
and 6
* Optimum was found to be for D_, = 0.42" and 3
circuits

— EER = 11.14, SHR = 0.73, Refrigerant charge =9.16 |b



GenOpt Results

e 421 simulation runs

Outdoor | Sub- Outdoor | Outdoor | Indoor Indoor
coil face | cooling | coil tube | coil, # of | coil tube | coil, #

area [R] outer circuits | outer of
fraction diameter | [-] diameter | circuits

[-] [in] [in] [-]
0.675 15 0.42 2 0.375 3.5 11.171 0.746  8.686
0.675 15.5 0.42 2 0.36 4 11.153 0.747  8.605
6-D parametric analysis
0.69 15 0.42 2 0.42 3 11.14  0.73 9.16

22



Computational/Engineering Effort

Conventional — Built-In HPDM
Parametric Analysis Capability

Systematic Optimization -
GenOpt

Design was optimized on 2
steps

After the first step, the design
and parametric configuration
files were adjusted manually
(engineering time)

Each step require some
engineering time for post
processing

~ 2 man hours were required
to reach slightly sub-optimal
solution

Using the GPS coordinate
search algorithm, the
optimizer required 281
simulations

Post processing was trivial: the
design parameters of the
optimum point were specified
by the optimizer

No need for contour plots

No intermediate engineering
time is required



Multi-Objective Optimization

GenOpt: Weighting Sum

A weighting sum function
was constructed such that:

minimize f(x) =—ax EER + 3 x Charge

refrigerant
Refriger
ant
Charge
[Ib,,]
1 0 11.15 8.605
0 5.56 4.343
1 10.658 4.196
1 0.5 10.8483 4.473

Multi-Objective GA
e Using the Pareto approach:
7
; EER=11.1, E
6.5 i Charge =6.707 |b,,
EI | ;
6 |
s 1 cer=10.71,
ot Charge = 4.59 Ib,,
§ 5.5
d:o > EER =9.762
Charge = 4.26 Ib,,,
45
—141 5 -11 -10.5 -10 95
EER
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Conclusions

Parametric analysis can become computationally prohibitive as
number of variables are increased

Parametric analysis with 2 variables at a time might miss the
optimum for multivariable problems

Available optimization toolboxes can be coupled with other
simulation tools
— Need for interface development

Mathematical Optimization requires fewer function evaluations and
are more efficient in handling larger number of variables

— Local optima
* Deterministic: redo the optimization with different initial guess
* Probabilistic: re-run the optimization multiple times

Multi-objective optimization problem
— Weighted-Sum approach results depend on the weighting factors

— Pareto approach allow the engineer to use his judgment for selecting
the best design
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