Engineering Optimization: From Intuition to Systematic Techniques

Omar Abdelaziz, Bo Shen, and Keith Rice Oak Ridge National Laboratory

Abstract

- Engineers used to search for "optimum" solutions using intuition and parametric analysis
 - Experience level
 - Limited number of design variables
 - Two objectives at most
- Designs are getting more complex
 - More variables are being considered
 - More alternatives are being introduced
 - More constraints and objectives are imposed
 - Hence: require systematic techniques
- Case study: real HVAC&R engineering optimization problem

Optimization: a Definition

- "an act, process, or methodology of making something (as a design, system, or decision) <u>as fully perfect, functional, or effective as possible</u>; specifically: the mathematical procedures (as finding the maximum of a function) involved in this" Merriam-Webster Online Dictionary.
- "In mathematics and computer science, optimization, or mathematical programming, refers to <u>choosing the best</u> <u>element from some set of available alternatives</u>." - Wikipedia
- "A branch of mathematics which encompasses many diverse areas of minimization and optimization." – Wolfram Mathworld.

Single Objective Optimization

- Minimize or maximize a single function (objective)
- Results in a single global optimum solution
 - Local optima
 - Saddle point
- Mathematical formulation: minimize f(x)

subject to
$$g_i(x) \le 0$$
 $i = 1,..., M$

$$h_j(x) = 0 \qquad j = 1,..., N$$

$$x_k^L \le x_k \le x_k^U \qquad k = 1,..., d$$

Saddle Point

Global Min.

Multi-Objective Optimization

- Minimize and/or maximize 2 or more conflicting objectives
- Available techniques
 - Weighted Sums (Linear aggregation)
 - A single objective function is constructed
 - Optimum design depend on weighing factors
 - Pareto Optimization
 - Simultaneous min/max of multiple objective functions
 - Results in "Pareto" optimum points
 presenting the tradeoff between the
 conflicting objectives (Pareto curve, Pareto
 surface, or Pareto hypersurface)

minimize
$$\widetilde{f}(x) = \sum_{l} \alpha_{l} f_{l}(x)$$

subject to $g_{i}(x) \leq 0$ $i = 1,..., M$
 $h_{j}(x) = 0$ $j = 1,..., N$
 $x_{k}^{L} \leq x_{k} \leq x_{k}^{U}$ $k = 1,..., d$

optimize
$$f_l(x)$$
 $l = 1,..., L$
subject to $g_i(x) \le 0$ $i = 1,..., M$
 $h_j(x) = 0$ $j = 1,..., N$
 $x_k^L \le x_k \le x_k^U$ $k = 1,..., d$

Multi-Objective Optimization

Weighted Sum

Weighted Sum Optimization

Pareto

- Tradeoff between the objective functions
- The design space is globally searched to find this tradeoff
- "Non-dominated" designs

Non-Dominated Sorting - MOGA

Why Optimize?

- Engineers always seek optimum solution:
 - Performance improvement (e.g. higher EER)
 - Price reduction (e.g. less amount of materials)
 - Quality improvement (e.g. better IAQ, better reliability, etc.)
 - **—** ...
 - And Making our life easier!

How to Optimize?

- In the old days
 - Intuition (only experienced engineers can)
 - Parametric analysis (limited number of parameters time consuming)
- Mathematically rigorous practices:
 - Using optimization algorithms
 - Gradient based solvers
 - Stochastic approaches
 - Post processing results using scatter matrix plots and multi-dimensional data representation

Intuition

- A near optimum solution can be obtained using intuition for problems with a single variable
- Pressure drop minimization: use the larger possible diameter
- $-\Delta P = f(D^{-4})$ laminar flow, $\Delta P = f(D^{-5})$ fully turbulent flow
- Not valid if larger diameter caused transition from laminar to turbulent
- Does not account for:
 - Impact on heat transfer rate (loss/gain)
 - Impact on cost, (e.g. raw material, tooling, refrig. charge)
 - Geometric constraints

Parametric Analysis – 1 variable

- A local optimum can be obtained
- Good for limited range with a smooth function: e.g. charge optimization
 - Usually performed at the design conditions
 - Performance is plotted against charge and optimum is identified
 - Does not account for seasonal performance

From Wang, X., 2008, PERFORMANCE INVESTIGATION OF TWO-STAGE HEAT PUMP SYSTEM WITH VAPOR-INJECTED SCROLL COMPRESSOR, Ph.D. Dissertation, UMD http://hdl.handle.net/1903/7863

Parametric Analysis – 2 Variables

- Contour plots are required to identify optimum
- Good for smooth functions only
- Constraints handling is not as easy as systematic optimization techniques
- Advantages:
 - Simple: reasonable engineering time requirement
 - Provides visual feedback of predicted performance trends
 - Same results can be used for multiple optimization studies
- Limitations:
 - Solution depend on ΔX_i
 - Less efficient function evaluation

Parametric Analysis – n Variables

- Computationally expensive (# of experiment = $_{i=1}\Pi_{n}[\Delta X_{i}]$
 - For 6 variables each discretized into 10 → 10⁶ experiments are needed
 - Inefficient constraint handling
- Post processing required beyond simple visualizations
- Non-dominated sorting algorithms are needed to identify Pareto solutions
 - to identify optimal paths among competing objectives

13

Systematic Optimization

Deterministic

- Gradient Based (local optimum)
 - Gradient descent
 - Newton's method
 - Etc.
- Branch and Bound
 - Discrete, or combinatorial problems
- Algebraic Geometry
- State Space Search (AI)

Probabilistic

- Stochastic
 - Monte Carlo
 - Simulated Annealing
 - Etc.
- Heuristic
 - Genetic Algorithms
 - Evolutionary Algorithms
 - Swarm Based: particle swarm, ant colony
 - Differential Evolution
 - Etc.

Optimization Tools

- Several tools exist for optimization
- Usually assume "Black box" function evaluation
- Coupling efforts vary significantly
- Some are readily implemented for specific software

A CASE STUDY: PARAMETRIC ANALYSIS VS. SYSTEMATIC OPTIMIZATION

Optimization Problem

- Problem devised from 1997 paper by Rice
- Maximize the EER of an R-410A air conditioner for
 - Fixed Design Capacity = 2.67 TR (9.38 kW)
 - Fixed total HX finned area
 - Fixed total heat pump fan power = 513 W
 - Constant superheat = 5.6 K (10 R)
 - Maximum allowable sensible heat ratio = 0.75

Variables

- Tube outer diameter and # circuits
- Fraction of the total HX finned area in the outdoor coil
 - adjusted so as to maintain air-side pressure drops constant
- Condenser subcooling
- Compressor size adjusted automatically to maintain constant capacity

Parameters

- High temperature design conditions: $DBT_{outdoor} = 308.15 \text{ K } (95^{\circ}F);$ $DBT/WBT_{indoor} = 299.85/292.55 \text{ K } (80/67^{\circ}F)$

Approach

Conventional – Model with Built-In Parametric Analysis Capability

- The ORNL Heat Pump Design Model (HPDM) is readily capable of running parametric analyses
- Results are displayed as contour plots for 2 design variables at a time (slices)
 - Optimum points are identified w.r.t. 2 variables at a time

Systematic Optimization - GenOpt

- GenOpt: optimization program for the minimization of a cost function evaluated by an external simulation program
- A wrapper was developed to provide seamless coupling between GenOpt and HPDM

Conventional

- First, a 2-D parametric study is performed by changing the condenser subcooling and outdoor coil HX area fraction
 - Optimum was found to be for 15 R of subcooling with an outdoor HX size ratio of 0.69
- Second, the number of circuits and tube outer diameter for the outdoor coil were varied (another 2-D parametric study) using optimum subcooling and outdoor HX area fraction
 - Optimum was found to be for D = 0.42" and 2 circuits
- The optimum Design:
 - Subcooling = 15 R, outdoor coil surface area fraction = 0.69, outdoor coil D = 0.42", and outdoor coil of 2 circuits
 - EER = 10.96, Refrigerant Charge = $7.825 lb_m$, SHR = 0.751

Systematic Optimization - GenOpt

Optimization algorithm	Outdoor coil face area fraction [-]	Sub- cooling [R]	Outdoor coil tube outer diameter [in]	Outdoor coil, equivalent # of circuits [-]	EER [BTU/ W.hr]	SHR	Ref- rigerant charge [lb]
GPS – Hooke Jeeves (88 function evaluation)	0.694	17.82	0.325	3	10.89	0.75	6.0345
GPS – Coordinate Search (160 function evaluation)	0.694	15.94	0.4375	2	10.96	0.75	8.382
4-D Parametric	0.69	15	0.42	2	10.96	0.751	7.825

Optimization for 6 Variables

- Considering indoor coil tube size and number of circuits as additional design variables
- For the parametric analysis, a new 2-D parametric analysis was performed
 - D_{out} was varied between 0.2 and 0.5"
 - Number of equivalent circuits were varied between 2 and 6
- Optimum was found to be for D_{out} = 0.42" and 3 circuits
 - EER = 11.14, SHR = 0.73, Refrigerant charge = 9.16 lb_m

GenOpt Results

• 421 simulation runs

Outdoor coil face area fraction [-]	Sub- cooling [R]	Outdoor coil tube outer diameter [in]	Outdoor coil, # of circuits [-]	Indoor coil tube outer diameter [in]	Indoor coil, # of circuits [-]	EER [BTU/ W.hr]	SHR	Charge [lb]
0.675	15	0.42	2	0.375	3.5	11.171	0.746	8.686
0.675	15.5	0.42	2	0.36	4	11.153	0.747	8.605
6-D parametric analysis								
0.69	15	0.42	2	0.42	3	11.14	0.73	9.16

Computational/Engineering Effort

Conventional – Built-In HPDM Parametric Analysis Capability

- Design was optimized on 2 steps
- After the first step, the design and parametric configuration files were adjusted manually (engineering time)
- Each step require some engineering time for post processing
- ~ 2 man hours were required to reach slightly sub-optimal solution

Systematic Optimization - GenOpt

- Using the GPS coordinate search algorithm, the optimizer required 281 simulations
- Post processing was trivial: the design parameters of the optimum point were specified by the optimizer
- No need for contour plots
- No intermediate engineering time is required

Multi-Objective Optimization

GenOpt: Weighting Sum

 A weighting sum function was constructed such that:

minimize
$$\widetilde{f}(x) = -\alpha \times EER + \beta \times \text{Charge}_{\text{refrigerant}}$$

α	β	EER	Refriger ant Charge [lb _m]
1	0	11.15	8.605
0	1	5.56	4.343
1	1	10.658	4.196
1	0.5	10.8483	4.473

Multi-Objective GA

Using the Pareto approach:

Conclusions

- Parametric analysis can become computationally prohibitive as number of variables are increased
- Parametric analysis with 2 variables at a time might miss the optimum for multivariable problems
- Available optimization toolboxes can be coupled with other simulation tools
 - Need for interface development
- Mathematical Optimization requires fewer function evaluations and are more efficient in handling larger number of variables
 - Local optima
 - Deterministic: redo the optimization with different initial guess
 - Probabilistic: re-run the optimization multiple times
- Multi-objective optimization problem
 - Weighted-Sum approach results depend on the weighting factors
 - Pareto approach allow the engineer to use his judgment for selecting the best design

References

- Rice, C.K., "DOE/ORNL Heat Pump Design Model, Overview and Application to R-22 Alternatives", Presented at the 3rd International Conference on Heat Pumps in Cold Climates, Wolfville, Nova Scotia, Canada, August 11-12, 1997
- Wetter, M., "GenOpt^(R) Generic Optimization Program User Manual Version 3.0.0", May 11, 2009, Lawrence Berkeley National Laboratory Technical Report LBNL-2077E
- Weise, T., 2009, Global Optimization Algorithms— Theory and Application, 2nd ed., http://www.it-weise.de/
- Deb, K., 2001, "Multi-objective optimization using evolutionary algorithms", 1st ed., Chichester; New York: John Wiley & Sons.