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Abstract 
• Engineers used to search for “optimum” solutions 

using intuition and parametric analysis 
– Experience level 
– Limited number of design variables 
– Two objectives at most 

• Designs are getting more complex 
– More variables are being considered 
– More alternatives are being introduced 
– More constraints and objectives are imposed 
– Hence: require systematic techniques 

• Case study: real HVAC&R engineering optimization 
problem 
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Optimization: a Definition 

• “an act, process, or methodology of making something (as a 
design, system, or decision) as fully perfect, functional, or 
effective as possible; specifically : the mathematical 
procedures (as finding the maximum of a function) involved in 
this” – Merriam-Webster Online Dictionary. 

• “In mathematics and computer science, optimization, or 
mathematical programming, refers to choosing the best 
element from some set of available alternatives.” - Wikipedia 

• “A branch of mathematics which encompasses many diverse 
areas of minimization and optimization.” – Wolfram 
Mathworld. 
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Single Objective Optimization 

• Minimize or maximize a 
single function (objective) 

• Results in a single global 
optimum solution 
– Local optima 
– Saddle point 

• Mathematical formulation: 
 

Saddle Point 

Local Min. 

Global Min. 
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Multi-Objective Optimization 

• Minimize and/or maximize 2 or more 
conflicting objectives 

• Available techniques 
– Weighted Sums (Linear aggregation) 

• A single objective function is constructed 
• Optimum design depend on weighing factors 

– Pareto Optimization 
• Simultaneous min/max of multiple objective 

functions 
• Results in “Pareto” optimum points 

presenting the tradeoff between the 
conflicting objectives (Pareto curve, Pareto 
surface, or Pareto hypersurface) 
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Multi-Objective Optimization 

Weighted Sum Pareto 
• Tradeoff between the 

objective functions 
• The design space is globally 

searched to find this tradeoff 
• “Non-dominated” designs 
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Non-Dominated Sorting - MOGA 
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Why Optimize? 

• Engineers always seek optimum solution: 
– Performance improvement (e.g. higher EER) 
– Price reduction (e.g. less amount of materials)  
– Quality improvement (e.g. better IAQ, better 

reliability, etc.) 
– … 
– And Making our life easier! 
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How to Optimize? 

• In the old days 
– Intuition (only experienced engineers can) 
– Parametric analysis (limited number of parameters – 

time consuming) 
• Mathematically rigorous practices: 

– Using optimization algorithms 
• Gradient based solvers 
• Stochastic approaches 

– Post processing results using scatter matrix plots and 
multi-dimensional data representation 
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Intuition 

• A near optimum solution can be obtained using 
intuition for problems with a single variable 

• Pressure drop minimization: use the larger possible 
diameter 

– ΔP = f(D-4) laminar flow, ΔP = f(D-5) fully turbulent flow 
– Not valid if larger diameter caused transition from 

laminar to turbulent 
– Does not account for:  

• Impact on heat transfer rate (loss/gain) 
• Impact on cost, (e.g. raw material, tooling, refrig. charge) 
• Geometric constraints 
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Parametric Analysis – 1 variable 
• A local optimum can be 

obtained 
• Good for limited range 

with a smooth function: 
e.g. charge optimization 
– Usually performed at the 

design conditions 
– Performance is plotted 

against charge and 
optimum is identified 

– Does not account for 
seasonal performance 

 

From Wang, X., 2008, PERFORMANCE INVESTIGATION OF TWO-
STAGE HEAT PUMP SYSTEM WITH VAPOR-INJECTED SCROLL 
COMPRESSOR , Ph.D. Dissertation, UMD 
http://hdl.handle.net/1903/7863  
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Parametric Analysis – 2 Variables 
• Contour plots are required to 

identify optimum 
• Good for smooth functions only 
• Constraints handling is not as 

easy as systematic optimization 
techniques 

• Advantages: 
– Simple: reasonable engineering 

time requirement 
– Provides visual feedback of 

predicted performance trends 
– Same results can be used for 

multiple optimization studies 
• Limitations: 

– Solution depend on ΔXi 
– Less efficient function evaluation 
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Parametric Analysis – n Variables 
• Computationally expensive (# of 

experiment = i = 1Πn[ΔXi] 
– For 6 variables each discretized 

into 10  106 experiments are 
needed 

– Inefficient constraint handling 
• Post processing required beyond 

simple visualizations 
• Non-dominated sorting 

algorithms are needed to 
identify Pareto solutions 
– to identify optimal paths among 

competing  objectives 
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Systematic Optimization 

Deterministic 
• Gradient Based (local 

optimum) 
– Gradient descent 
– Newton’s method 
– Etc. 

• Branch and Bound 
– Discrete, or combinatorial 

problems 

• Algebraic Geometry 
• State Space Search (AI) 

 

Probabilistic 
• Stochastic 

– Monte Carlo 
– Simulated Annealing 
– Etc. 

• Heuristic 
– Genetic Algorithms 
– Evolutionary Algorithms 
– Swarm Based: particle swarm, 

ant colony 
– Differential Evolution 
– Etc. 
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Optimization Tools 

• Several tools exist for optimization 
• Usually assume “Black box” function evaluation 
• Coupling efforts vary significantly 
• Some are readily implemented for specific software 

Optimizer 
Configuration 

Optimization 
Toolbox 

Function 
Evaluation 

Constraints and 
Objective values 

New Designs Optimization 
Result(s) 
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A CASE STUDY: 
PARAMETRIC ANALYSIS VS. SYSTEMATIC 
OPTIMIZATION 
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Optimization Problem 
• Problem devised from 1997 paper by Rice 
• Maximize the EER of an R-410A air conditioner for 

– Fixed Design Capacity = 2.67 TR (9.38 kW) 
– Fixed total HX finned area 
– Fixed total heat pump fan power = 513 W 
– Constant superheat = 5.6 K (10 R) 
– Maximum allowable sensible heat ratio = 0.75 

• Variables 
– Tube outer diameter and # circuits 
– Fraction of the total HX finned area in the outdoor coil 

• adjusted so as to maintain air-side pressure drops constant 
– Condenser subcooling 
– Compressor size adjusted automatically to maintain constant capacity 

• Parameters 
– High temperature design conditions: DBToutdoor = 308.15 K (95°F); 

DBT/WBTindoor = 299.85/292.55 K (80/67°F) 
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Approach 
Conventional – Model with Built-
In Parametric Analysis Capability  
• The ORNL Heat Pump 

Design Model (HPDM) is 
readily capable of running 
parametric analyses 

• Results are displayed as 
contour plots for 2 design 
variables at a time (slices) 
– Optimum points are 

identified w.r.t. 2 variables at 
a time 

Systematic Optimization - 
GenOpt 

• GenOpt: optimization 
program for the 
minimization of a cost 
function evaluated by an 
external simulation program 

• A wrapper was developed 
to provide seamless 
coupling between GenOpt 
and HPDM 
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Conventional 
• First, a 2-D parametric study is performed by 

changing the condenser subcooling and 
outdoor coil HX area fraction 
– Optimum was found to be for 15 R of subcooling 

with an outdoor HX size ratio of 0.69 
• Second, the number of circuits and tube outer 

diameter for the outdoor coil were varied 
(another 2-D parametric study) using 
optimum subcooling and outdoor HX area 
fraction 
– Optimum was found to be for D = 0.42” and 2 

circuits 
• The optimum Design: 

– Subcooling = 15 R, outdoor coil surface area 
fraction = 0.69, outdoor coil D = 0.42”, and 
outdoor coil of 2 circuits 

– EER = 10.96, Refrigerant Charge = 7.825 lbm, SHR = 
0.751 
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Systematic Optimization - GenOpt 
Optimization 
algorithm 

Outdoor coil 
face area 
fraction [-] 

Sub-
cooling 
[R] 

Outdoor 
coil tube 
outer 
diameter 
[in] 

Outdoor 
coil, 
equivalent 
# of 
circuits [-] 

EER 
[BTU/
W.hr] 

SHR Ref-
rigerant 
charge 
[lb] 

GPS – Hooke 
Jeeves (88 
function 
evaluation) 

0.694 17.82 0.325 3 10.89 0.75 6.0345 

GPS – 
Coordinate 
Search (160 
function 
evaluation) 

0.694 15.94 0.4375 2 10.96 0.75 8.382 

4-D 
Parametric 0.69 15 0.42 2 10.96 0.751 7.825 
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Optimization for 6 Variables 

• Considering indoor coil tube size and number of 
circuits as additional design variables 

• For the parametric analysis, a new 2-D parametric 
analysis was performed 
– Dout was varied between 0.2 and 0.5” 
– Number of equivalent circuits were varied between 2 

and 6  
• Optimum was found to be for Dout = 0.42” and 3 

circuits 
– EER = 11.14, SHR = 0.73, Refrigerant charge = 9.16 lbm 
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GenOpt Results 

• 421 simulation runs 
 

Outdoor 
coil face 
area 
fraction 
[-] 

Sub-
cooling 
[R] 

Outdoor 
coil tube 
outer 
diameter 
[in] 

Outdoor 
coil, # of 
circuits 
[-] 

Indoor 
coil tube 
outer 
diameter 
[in] 

Indoor 
coil, # 
of 
circuits 
[-] 

EER 
[BTU/
W.hr] 

SHR Charge 
[lb] 

0.675 15 0.42 2 0.375 3.5 11.171 0.746 8.686 

0.675 15.5 0.42 2 0.36 4 11.153 0.747 8.605 

6-D parametric analysis 

0.69 15 0.42 2 0.42 3 11.14 0.73 9.16 
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Computational/Engineering Effort 
Conventional – Built-In HPDM 
Parametric Analysis Capability  
• Design was optimized on 2 

steps 
• After the first step, the design 

and parametric configuration 
files were adjusted manually 
(engineering time) 

• Each step require some 
engineering time for post 
processing 

• ~ 2 man hours were required 
to reach slightly sub-optimal 
solution 

Systematic Optimization - 
GenOpt 
• Using the GPS coordinate 

search algorithm, the 
optimizer required 281 
simulations 

• Post processing was trivial: the 
design parameters of the 
optimum point were specified 
by the optimizer 

• No need for contour plots 
• No intermediate engineering 

time is required 
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Multi-Objective Optimization 

GenOpt: Weighting Sum 
• A weighting sum function 

was constructed such that: 
 

Multi-Objective GA 
• Using the Pareto approach: 

α β EER Refriger
ant 
Charge 
[lbm] 

1 0 11.15 8.605 

0 1 5.56 4.343 

1 1 10.658 4.196 

1 0.5 10.8483 4.473 
24 

EER = 11.1,  
Charge = 6.707 lbm 

EER = 9.762  
Charge = 4.26 lbm 

EER = 10.71,  
Charge = 4.59 lbm 



Conclusions 
• Parametric analysis can become computationally prohibitive as 

number of variables are increased  
• Parametric analysis with 2 variables at a time might miss the 

optimum for multivariable problems 
• Available optimization toolboxes can be coupled with other 

simulation tools  
– Need for interface development 

• Mathematical Optimization requires fewer function evaluations and 
are more efficient in handling larger number of variables 
– Local optima 

• Deterministic: redo the optimization with different initial guess 
• Probabilistic: re-run the optimization multiple times 

• Multi-objective optimization problem 
– Weighted-Sum approach results depend on the weighting factors 
– Pareto approach allow the engineer to use his judgment for selecting 

the best design 
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