
 1

Indicators to support environmental sustainability of bioenergy systems 1 
 2 
Authors: Allen C. McBridea, Virginia H. Dalea,*, Latha M. Baskarana, Mark E. Downinga, 3 
Laurence M. Eatona, Rebecca A. Efroymsona, Charles T. Garten Jr.a, Keith L. Klinea, Henriette I. 4 
Jagera, Patrick J. Mulhollanda, Esther S. Parisha, Peter E. Schweizera, and John M. Storeyb 5 
  6 
* Corresponding author: Phone: 1-865-576-8043, Fax: 1-865-576-3989, dalevh@ornl.gov 7 

8                                                  
a Center for Bioenergy Sustainability, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, 
TN 37831, USA 
b Fuels, Engines and Emissions Research Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6472, 
USA, storeyjm@ornl.gov 
 
 
 

Manuscript is in press with the journal Ecological Indicators. 

January 24, 2011 

 



 2

ABSTRACT 9 
  10 

Indicators are needed to assess environmental sustainability of bioenergy systems. 11 
Effective indicators will help in the quantification of benefits and costs of bioenergy 12 
options and resource uses. We identify 19 measurable indicators for soil quality, water 13 
quality and quantity, greenhouse gases, biodiversity, air quality, and productivity, building 14 
on existing knowledge and on national and international programs that are seeking ways 15 
to assess sustainable bioenergy. Together, this suite of indicators is hypothesized to reflect 16 
major environmental effects of diverse feedstocks, management practices, and post-17 
production processes. The importance of each indicator is identified. Future research 18 
relating to this indicator suite is discussed, including field testing, target establishment, 19 
and application to particular bioenergy systems. Coupled with such efforts, we envision 20 
that this indicator suite can serve as a basis for the practical evaluation of environmental 21 
sustainability in a variety of bioenergy systems. 22 

 23 
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 25 
1. Introduction 26 
 27 

Indicators to assess the condition of the environment and monitor trends over time are 28 
needed to characterize conditions under which resource uses are sustainable. We define 29 
environmental indicators as environmental measures (Heink and Kowarik, 2010) that provide 30 
information about potential or realized effects of human activities on environmental phenomena 31 
of concern. We define environmental sustainability as the capacity of an activity to continue 32 
while maintaining options for future generations and considering the environmental systems that 33 
support the activity (Bruntland, 1987). Whereas much work has focused on the development of 34 
environmental indicators in general, only recently have stakeholders focused attention on 35 
developing indicators for sustainable bioenergy systems, and no consensus has yet emerged 36 
regarding which indicators should be given the highest priority (Buchholz et al., 2009). 37 

The bioenergy supply chain includes the production or procurement of biomass 38 
feedstock, post-production processing and conversion (referred to in this paper as “processing”), 39 
and various transportation stages. Beneficial co-products (e.g., distillers grains) and waste by-40 
products (e.g., biorefinery effluent) may be created in different stages of the supply chain. 41 
Feedstocks include annual and perennial plants, residues from agriculture, forestry, and related 42 
industries, and other organic wastes. The choice of feedstocks is a strong determinant in 43 
characterizing a given bioenergy pathway with implications for the applicable set of 44 
sustainability indicators. 45 

Bioenergy systems are expected to expand in coming decades for several reasons. First, 46 
leaders in many countries view domestic bioenergy systems as more secure and sustainable than 47 
imported fossil fuels. Second, economic growth is expected to increase energy demand overall. 48 
Third, bioenergy systems are perceived to support rural development and employment. Fourth, 49 
technological advances continue to increase the affordability and sustainability of bioenergy. 50 
Furthermore, government policies in the United States (U.S.) and Europe call for an expansion of 51 
liquid fuels generation and combustion from cellulosic bioenergy feedstock sources, although 52 
those feedstocks are not currently in heavy use. The Energy Independence and Security Act of 53 
2007 (EISA) mandates that at least 16 billion gallons (~60.6 billion liters) of cellulosic biofuel be 54 
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produced annually in the U.S. by 2022 (EISA, 2007). Member states of the European Union aim 55 
for biofuel to comprise 10% of their transportation fuel use by 2020, with incentives to 56 
encourage cellulosic and other second-generation biofuels (European Parliament and Council, 57 
2009). 58 

As societies increase use of bioenergy, stakeholders are questioning the environmental 59 
benefits of bioenergy compared to other energy options. Currently there is disagreement 60 
regarding whether bioenergy systems contribute to or ameliorate such environmental problems as 61 
depletion of nutrients in soil, erosion, runoff of nutrients and toxins, consumptive water use, 62 
greenhouse gas buildup, biodiversity loss, air pollution, and productivity loss (Jordan et al., 63 
2007; Keeney, 2008; Williams et al., 2009). Differences of opinion often relate to past land use, 64 
crop choice, management practices, processing, and prevailing environmental conditions where 65 
the feedstock is grown (Jordan et al., 2007; Robertson et al., 2008; Scharlemann and Laurance, 66 
2008; Kline et al., 2009). In the U.S., much of the debate has focused on the historic effects of 67 
conventional crop systems in the Midwest, the source of corn (Zea mays) for the majority of 68 
current U.S. ethanol production. However, cellulosic bioenergy is often perceived as holding 69 
greater opportunity for future sustainability than corn-based ethanol (Robertson et al., 2008; 70 
Kline et al., 2009). Because this debate coincides with an expected increase in bioenergy use and 71 
because of regulations that require bioenergy to be produced in an environmentally responsible 72 
manner, there is a need to characterize conditions under which bioenergy systems can be 73 
implemented sustainably (Hecht et al., 2009). This paper presents a set of indicators that can be 74 
used to characterize the environmental side of this equation. 75 

The set of environmental indicators selected for assessing the sustainability of different 76 
types of bioenergy systems should apply to both large regions and local sites and should be 77 
useful to diverse stakeholders. For example, policymakers may focus on sustainability of the 78 
entire supply chain, agronomists may recommend sustainable bioenergy feedstock crops and 79 
management practices for different locations, and operation managers may seek to improve their 80 
feedstock production and processing systems. Indicators may also help in the implementation of 81 
certification programs (several are already in development) that can be applied throughout the 82 
supply chain or to its components (van Dam et al., 2008). 83 

Although much work is still needed to identify, test, and implement a small set of 84 
environmental indicators that is useful to the diverse stakeholders involved in bioenergy systems, 85 
progress has been made. Sustainability attributes of agricultural practices in general have been 86 
discussed and defined by the Millennium Ecosystem Assessment (MEA, 2005), the National 87 
Sustainable Agriculture Information Service (Sullivan, 2003; Earles and Williams, 2005), and 88 
Dale and Polasky (2007). In addition, several national and international efforts are underway to 89 
select sustainability indicators for bioenergy, including the Roundtable on Sustainable Biofuels 90 
(RSB, 2010), U.S. Biomass Research and Development Board, Global Bioenergy Partnership 91 
(GBEP, 2010), and Council on Sustainable Biomass Production (CSBP, 2010). The preliminary 92 
suites of indicators arising from these efforts are diverse, and the differences among them are 93 
important, but here we note two broad characteristics. First, these suites tend to include 94 
numerous, broadly-defined indicators. Second, many of the indicators in these suites tend to 95 
focus on assessments of management practices and their predicted environmental effects rather 96 
than on measurements that relate to realized environmental effects. These approaches have 97 
advantages. Large numbers of broad indicators can in principle capture a wide range of 98 
environmental effects. Also, assessing management practices may often be less expensive than 99 
making empirical measurements; indeed, simple measurements of some effects, such as 100 
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tropospheric ozone formation, may not be feasible with respect to particular bioenergy systems. 101 
On the other hand, measuring large numbers of indicators can be prohibitively expensive (NRC, 102 
2008a). Furthermore, current understanding of the effects of bioenergy management practices on 103 
the environment is limited, especially for systems not yet in wide use, such as cellulosic 104 
bioenergy. Therefore a need remains for a small set of concrete indicators that focus on realized 105 
environmental effects of bioenergy systems.  106 

This paper identifies a suite of 19 indicators selected to collectively characterize 107 
important effects that many bioenergy systems have or are likely to have on environmental 108 
sustainability. The suite is organized according to six categories: soil quality, water quality and 109 
quantity, greenhouse gases, biodiversity, air quality, and productivity. These categories were 110 
selected to reflect the major areas of environmental concern surrounding bioenergy systems. 111 
They are also similar to categories used by national and international efforts working to establish 112 
suites of sustainability indicators for bioenergy. For each category, we discuss the relationship of 113 
proposed indicators to ecosystem properties and address measurement considerations. After 114 
presenting indicators in each category, we discuss future research directions, applications of 115 
these indicators to specific bioenergy systems, and interpretation of these indicators. This paper 116 
provides a basis for other researchers and investigators to move forward to evaluate and 117 
implement environmental indicators for bioenergy systems.  118 
 119 
2. Approach 120 
 121 

Where feasible, indicators were selected to empirically measure environmental effects 122 
rather than to infer such effects through assessment of management practices. In some cases, 123 
however, models based on management practices are the only feasible way to estimate the 124 
environmental effects of bioenergy systems (e.g., greenhouse gas fluxes or secondary particulate 125 
formation, discussed below in Sections 3.3 and 3.5, respectively).  126 

Our selection of indicators was based on research in the disciplines related to each 127 
category of indicators, on other efforts to select sets of indicators, and on previous work 128 
describing criteria for selecting useful indicators [e.g., Dale and Beyeler (2001), Table 1]. The 129 
diversity of indicators needed to broadly assess environmental sustainability may not allow for a 130 
uniform, well-defined indicator selection process (NRC, 2008a); therefore, expert judgment is an 131 
important part of the selection process. Collectively, the proposed suite of indicators forms a 132 
hypothesis of how environmental effects of bioenergy systems may be assessed, and that 133 
hypothesis needs to be tested in diverse bioenergy systems. 134 

------------------------------- 135 
Insert Table 1 about here 136 
------------------------------- 137 

 138 
3. Categories of indicators 139 
 140 
3.1. Indicators of soil quality 141 
 142 

Among the environmental systems for which indicators have been chosen, soils are 143 
especially important because soil quality affects the broader ecosystem, the immediate 144 
productivity of bioenergy crops, and the maintenance of productive capacity for future 145 
generations. Our selection of soil indicators was influenced by prior research on soil indicators in 146 
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general (Doran and Parkin, 1996; Garten et al., 2003; Karlen et al., 2003; Pattison et al., 2008; 147 
Adair et al., 2009) as well as on agronomy research focused on bioenergy crops in particular 148 
(Mann and Tolbert, 2000; Tolbert et al., 2002; Moscatelli et al., 2005; Garten et al., 2010). 149 

Four indicators of soil quality are recommended: total organic carbon, total nitrogen, 150 
extractable phosphorus, and bulk density (Table 2). These indicators were selected based on their 151 
ability to reveal changes in soil properties as a function of bioenergy crop management, 152 
including carbon balance, nutrient availability and mineralization, cation exchange capacity 153 
(CEC), humification, microbial community dynamics, erosion, leaching potential, soil porosity, 154 
and soil water holding capacity. 155 

------------------------------- 156 
Insert Table 2 about here 157 
------------------------------- 158 

Total organic carbon (TOC) is often seen as the most important indicator of soil quality 159 
(Reeves, 1997). TOC integrates a wide range of important soil properties and functions and also 160 
is a direct cause of several positive soil responses. First, it serves as the primary source of energy 161 
for soil microbial communities, which, in turn, promote crop growth by supporting nitrogen 162 
mineralization (NRCS, 2009). Second, high TOC suggests high humus levels, which promote 163 
water holding capacity, infiltration, and CEC. Third, compounds in soil organic matter, which 164 
correlates with TOC, help bind soil aggregates in non-calcareous soils, contributing to porosity 165 
and further enhancing water holding capacity and infiltration (NRCS, 2009). 166 

In addition to the role of TOC as an indicator in assessing soil quality, accurate 167 
measurements of soil carbon are also important in estimating carbon dioxide flux associated with 168 
bioenergy systems, as discussed in Section 3.3. Soil carbon changes are likely to occur because 169 
of land-use changes associated with the initial implementation of bioenergy systems, as well as 170 
during the ongoing operation of those systems. 171 

Total nitrogen (N) and extractable phosphorus (P) measure the two most important soil 172 
nutrients in typical productive land management systems. Most N in soil is bound in organic 173 
compounds and is not available to plants. However, total N is considered a valid indicator 174 
because N mineralization is driven by the availability of organic N in the soil, so that plant-175 
available N (ammonium and nitrate) is closely related to total N (Vlassak, 1970). Excessive soil 176 
N and P can result in nutrient runoff and leaching, leading to downstream eutrophication. In 177 
addition, excess soil nitrate may increase N volatilization as the potent greenhouse gas nitrous 178 
oxide (Dalal et al., 2003; Snyder et al., 2009). Conversely, depletion of soil N and P threatens the 179 
future productivity of soil. 180 

Finally, bulk density is recommended as a physical indicator of soil quality. Bulk density 181 
can rapidly be affected by human agronomic practices (Unger and Kaspar, 1994). Bulk density is 182 
especially of concern in forestry, because tree harvesting activities can cause soil compaction 183 
(Hatchell et al., 1970). Increases in bulk density are usually considered harmful (Unger and 184 
Kaspar, 1994), but in some crops, such as switchgrass (Panicum virgatum), it is desirable to have 185 
light surface soil compaction before sowing in order to improve seed-soil contact (Monti et al., 186 
2001). 187 

Techniques for measuring TOC and bulk density can be found in Doran and Jones (1996). 188 
Techniques for measuring total N can be found in Bremner and Mulvaney (1982). Mehlich 189 
(1984) and Olsen et al. (1954) describe techniques for measuring extractable P in acidic and 190 
calcareous soils, respectively. The appropriate depth of measurement for soil indicators depends 191 
on depth of soil layers and cultivation practices on a given site and should remain constant over 192 



 6

time.  193 
 194 
3.2. Indicators of water quality and quantity 195 
 196 

The properties of water in streams draining bioenergy croplands or forest stands influence 197 
the ecosystems within and downstream from those streams. Indicators based on water properties 198 
can be used to assess whether the agricultural aspects of bioenergy production allow for the 199 
maintenance of soil quality, aquatic ecosystems, and clean and plentiful water for human use. 200 
Water indicators are affected by some of the same pressures that influence soil indicators (e.g., 201 
fertilizer application and vegetative cover). In contrast with soil indicators, water indicators can 202 
change more rapidly and integrate changes over an entire watershed, thereby allowing for finer 203 
temporal resolution and broader spatial integration of relevant effects. In this sense water quality 204 
and quantity reflect the diversity of environmental conditions and land practices that occur 205 
upstream and upslope as well as in the past. For example, runoff attributes are influenced by 206 
current and past land cover, chemical applications, and soil conditions. 207 

Seven indicators of water quality and quantity are recommended: stream concentrations 208 
of nitrate, total phosphorus, suspended sediment, and herbicides; peak storm flow; minimum 209 
base flow; and consumptive water use (Table 2). These indicators were selected based on their 210 
ability to reveal changes in several environmental properties that might occur as a result of 211 
bioenergy crop management: water availability, water potability, aquatic biodiversity, 212 
eutrophication, dissolved oxygen, soil erosion, sediment loading, soil leaching potential, soil 213 
porosity, and soil water holding capacity. In selecting these indicators, we assume that in most 214 
cases, water from feedstock production sites will drain into streams (some of which may be only 215 
ephemeral) before reaching lakes, estuaries, or other lentic waters. 216 

Concentrations of nitrate and total phosphorus (P) in streams are indicators of potential 217 
eutrophication. Whereas aquatic systems respond to nitrogen (N) in other forms, nitrate is usually 218 
the most abundant form, relatively inexpensive to measure, highly mobile, and expected to be 219 
sensitive to the management of bioenergy feedstock systems. Furthermore, nitrate in drinking 220 
water is also associated with health risks such as methemoglobinemia (Ward et al., 2005). In 221 
streams, total P includes dissolved phosphate, organic phosphorus, and phosphate sorbed to 222 
suspended sediment. Measurement of total P in streams is especially important during storm 223 
events, because P export during storm events tends to dominate watershed P export and is 224 
sensitive to crop management practices (Sharpley et al., 2008). 225 

Recent meta-analyses suggest that lotic, lentic and coastal marine ecosystems are 226 
generally responsive to both N and P (Francoeur, 2001; Elser et al., 2007). Environmental effects 227 
of eutrophication were reviewed by Smith et al. (1999) and are characterized by increased 228 
biomass of algae, periphyton, and/or phytoplankton, decreased dissolved oxygen, and death of 229 
fish and other animals. In the U.S., the contributions of N and P export to hypoxia in the Gulf of 230 
Mexico are of particular concern (Alexander et al., 2008; Dale et al., 2010a). 231 

Concentration of herbicides in streams measures exposure of aquatic life to these 232 
chemicals and their potentially toxic effects. Most pesticide use in the U.S. consists of 233 
herbicides. In 2000 and 2001 combined, 62% of conventional pesticides used (by mass of active 234 
ingredient) consisted of herbicides (Kellogg et al., 2000; Kiely et al., 2004). Schäfer et al. (2007) 235 
found that various pesticides, including herbicides, were detrimental to stream macroinvertebrate 236 
community structure and ecosystem function when they occur at concentrations lower than those 237 
previously known to have such effects. Measuring herbicide concentrations is expensive, and 238 
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therefore we recommend that only herbicides known to be used or of concern in a given area 239 
should be measured. 240 

Suspended sediment concentration is an indicator of stream habitat quality. Siltation 241 
diminishes interstitial space in stream substrata, impairs fish spawning grounds, and reduces the 242 
ability of sessile benthic organisms to attach to streambeds. Increased turbidity reduces the 243 
ability of benthic plants and attached algae to photosynthesize. Reduced benthic productivity and 244 
biodiversity can reduce available food for grazing organisms. Suspended sediment also clogs the 245 
gills of fish and hinders nutrient uptake by filter feeders. These and other effects of sediment load 246 
in lotic environments were reviewed by Wood and Armitage (1997). In addition to its adverse 247 
effects on aquatic habitat, suspended sediment also serves as an indicator of soil erosion, which 248 
can be used to assess the sustainability of bioenergy systems (Smeets and Faaij, 2010).  249 

In addition to concentrations of nitrate, total P, herbicides, and sediments, export levels 250 
per unit watershed area of these substances are also important. Whereas concentrations are 251 
indicators of the effects these substances may have on the streams in which they are measured, 252 
export levels are related to the effects of these substances on downstream bodies of water (e.g., 253 
hypoxia in the Gulf of Mexico or propagation of sediment downstream during flushing events). 254 
Area-specific export levels can be calculated by multiplying stream concentrations of each 255 
substance by flow measurements and dividing by total watershed area. Because estimating 256 
watershed area is straightforward and flow measurements are recommended as indicators in the 257 
following paragraph, we do not treat these area-specific export levels as separate indicators. 258 

Two flow properties, peak storm flow and base flow, are indicators of environmental 259 
effects of changes in soil and crop hydrologic processes. Base flow is related both to availability 260 
and quality of aquatic habitat and to the availability of water for human use. These two issues are 261 
considered separately. Interpreting flow measurements requires also measuring rainfall on 262 
similar timescales in order to separate the effects of rainfall from those resulting from changes in 263 
soil and crop hydrologic properties. 264 

Increased peak flow during storm events can be caused by decreased infiltration and 265 
water holding capacity in soil. High peak flows during storms can increase erosion (de Lima et 266 
al., 2003) and sediment loading (Lawler et al., 2006). In addition, high peak flows can reduce 267 
benthic organism biomass and habitat as a result of streambed scouring and can contribute to 268 
potential flood damage downstream. 269 

As an indicator of water quality, base flow should be considered at its minimum, often 270 
occurring in summer or early fall, because lotic habitat quality can be limited by minimum base 271 
flow (Bunn and Arthington, 2002). During periods of low base flow, dissolved oxygen levels in 272 
streams are usually at their lowest due to lower rates of oxygen diffusion into water from the 273 
atmosphere and greater depletion of available oxygen supplies in water from respiration by 274 
aquatic organisms. Very low dissolved oxygen levels can lead to stress or death of some aquatic 275 
organisms, particularly fish. 276 

In addition to its utility as an indicator of lotic habitat quality, base flow also serves as 277 
one of two measures of consumptive water use, the seventh recommended water-related 278 
indicator. Consumptive water use in bioenergy systems, mostly during feedstock production and 279 
in biorefineries, may affect the amount of water available for other human uses (Berndes, 2002; 280 
de Fraiture et al., 2008; Stone et al., 2010). Changes in base flow can reflect consumptive water 281 
use in feedstock production. For this purpose, base flow should be considered throughout the 282 
growing season. It should also be measured sufficiently downstream to capture both irrigation 283 
return flow (Huffaker, 2010) as well as the surface discharge of groundwater sources drawn upon 284 
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by deep-rooted crops.  285 
Water withdrawn from public sources is recommended as an indicator reflecting 286 

consumptive water use in biorefineries (NRC, 2008b). Most consumptive water use in 287 
biorefineries consists of evaporation from cooling towers and dryers/evaporators during 288 
distillation (NRC, 2008b; Wu et al., 2009). Total water withdrawal is typically metered and 289 
easily reported by biorefinery managers. Not all water withdrawn represents consumptive use; 290 
however, the extent to which water withdrawal overestimates consumptive use is decreasing as 291 
water recycling in biorefineries increases (NRC, 2008b). Consumptive water use in biorefineries 292 
can be locally intense (NRC, 2008b). 293 

Standard methods for measuring nitrate, total P, suspended sediment, and several 294 
common herbicides can be found in Eaton et al. (2005). Techniques for measuring stream flow 295 
can be found in Buchanan and Somers (1969) and in Hudson (1993). 296 
 297 
3.3. Indicator of greenhouse gas flux 298 
 299 

Estimated net carbon equivalent (Ceq) flux to the atmosphere is recommended to measure 300 
the effect of bioenergy systems on atmospheric concentration of greenhouse gases that contribute 301 
to climate change (IPCC, 2007) (Table 2). The direct and indirect environmental effects of 302 
elevated atmospheric Ceq concentrations differ regionally, but, because the atmosphere is well-303 
mixed, those effects do not depend on the locations of Ceq release or sequestration. Therefore, Ceq 304 
release and sequestration throughout the bioenergy supply chain can be summed, and the 305 
marginal environmental effects of those fluxes can be estimated using standard global climate 306 
models. Hansen et al. (2006) and McMichael et al. (2006) discuss the expected effects of 307 
increasing greenhouse gas concentrations on climate, environment, and human health, such as 308 
increases in temperature, sea level, extreme weather events, species loss, and disease. 309 

To estimate net Ceq flux associated with bioenergy, we recommend that nitrous oxide 310 
(N2O) flux and carbon dioxide (CO2) flux be considered. N2O is emitted directly from soil during 311 
both nitrification and denitrification (Bouwman et al., 2010), as well as indirectly when 312 
volatilized nitric oxide and nitrogen dioxide (NOx) and ammonia (NH3) are deposited offsite and 313 
converted to N2O or when leached nitrate is denitrified in waterways (Adler et al., 2007). In 314 
agricultural systems, N2O emissions are strongly dependent on the amount of N fertilizer applied 315 
to the soil (Crutzen et al., 2008). In addition to application-related emissions, N2O is also 316 
released, typically in smaller amounts, during the production of nitrate fertilizers, specifically 317 
during the intermediate step of nitric acid production (Snyder et al., 2009). 318 

The bioenergy supply chain also contains several sources and sinks for CO2 that must be 319 
considered in estimating net greenhouse gas flux. Where feedstocks are produced, these sources 320 
and sinks include changes in carbon stocks in biomass and soil, dissolution of agricultural lime, 321 
and fossil fuel used in sowing, tilling, harvest, and application of soil inputs. Offsite sources 322 
upstream from feedstock production include fossil fuel used in the manufacture and transport of 323 
agricultural inputs such as fertilizer, pesticide, seed, and agricultural lime. Offsite sources 324 
downstream from feedstock production include fossil fuel used in processing (such as at 325 
biorefineries) and in the transportation of feedstock and fuel. In addition, electricity must be 326 
generated off-site for use in all stages of the supply chain. This list of sources and sinks is an 327 
extension of that used by West et al. (2010) for agriculture. The exclusion from this list of carbon 328 
fixed in photosynthesis or released through the oxidation of biomass is consistent with the 329 
assumption of other researchers (e.g., West et al., 2010) that any difference between these two 330 
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quantities is represented by changes in soil or standing biomass carbon stocks. 331 
Estimated values for these various sources and sinks of N2O and CO2 can be collected 332 

and summed using the life cycle assessment (LCA) approach. Standard and useful tools for LCA 333 
are multidimensional spreadsheet models such as the GREET (Greenhouse gases, Regulated 334 
Emissions, and Energy use in Transportation) and GHGenius software models, which are 335 
designed to address full fuel cycle (or well-to-wheels) effects (Wang, 2002; Stanciulescu and 336 
Fleming, 2006). These spreadsheet models have advantages in that they are user-friendly, 337 
publicly available, straightforward, and relatively transparent. By default, such spreadsheet 338 
models often have built-in statistical submodels that can be retained or overridden with measured 339 
values or with the results of more sophisticated, external submodels. This flexibility allows users 340 
simultaneously to take advantage of information relevant to a given problem and to make use of 341 
standard estimates where problem-specific information is not available. 342 

Some default values in spreadsheet models are best replaced with empirical 343 
measurements where available. For example, soil carbon measurements are recommended as an 344 
environmental indicator of sustainability in part because they relate not only to several aspects of 345 
soil quality but also to greenhouse gas flux. Assuming soil carbon measurements are made, the 346 
accuracy of site-specific LCAs can be improved by substituting those measurements for 347 
statistically modeled estimates in spreadsheet models. 348 

Default emission factors in spreadsheet models for N2O released from soil can be 349 
replaced with empirical measurements or with more sophisticated models when appropriate data 350 
are available. Default factors may be based on straightforward statistical models that estimate 351 
N2O emissions from N fertilizer application rate alone (Wang et al., 2008). Such approaches are 352 
appropriate for global emissions but fail to capture important site- and management-specific 353 
variations in the relationship between applied N and N2O flux (Del Grosso et al., 2010). Ideally, 354 
local N2O emissions are measured empirically, but the two common methods for measuring N2O 355 
emissions face practical challenges: eddy covariance towers (e.g., Eugster et al., 2007) are 356 
expensive to establish and maintain, and chamber measurements are also expensive when 357 
enough chambers are used to detect the effects of “hotspots,” small areas with high N2O 358 
emissions compared to surrounding soil (Neftel et al., 2007; Hellebrand et al., 2008). Because of 359 
these challenges, models are often used to estimate soil N2O flux from agronomic systems, 360 
including bioenergy production (Adler et al., 2007; Bouwman et al., 2010). The simulation 361 
model DAYCENT (Parton et al., 1998) has been used to estimate soil N2O flux from various 362 
bioenergy crops, using as inputs daily weather simulations, soil texture and hydraulic properties, 363 
crop growth dynamics, N application rate, harvest schedule, and tillage (Adler et al., 2007). 364 
However, modeling of N2O emissions faces “tremendous challenges” because the potentially 365 
confounding influences and interactions of several factors (such as the pore space characteristics, 366 
bulk density, temperature, pH, and carbon content of soil) are not well understood (Farquharson 367 
and Baldock, 2008). As data become more widely available, measurements should be used to 368 
validate modeled estimates of N2O flux (e.g., Del Grosso et al., 2010).  369 

In addition to CO2 and N2O, methane (CH4) can be important in calculating Ceq 370 
emissions. In bioenergy systems, CH4 is emitted primarily when solid biomass is burned on 371 
small scales, such as for domestic cooking and heating, or when open biomass burning is a part 372 
of feedstock production. In these cases CH4 may be a small but significant contributor to Ceq 373 
flux, contributing 14% or less of total combustion-related Ceq emissions (Yevich and Logan, 374 
2003; Ito and Penner, 2004; Macedo et al., 2008). Changes in land management may alter the 375 
balance of methanogenesis and methanotrophy in soil, but such changes typically do not affect 376 
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the Ceq balance of bioenergy systems as much as do changes in CO2 and N2O fluxes (Ussiri et al., 377 
2009; Cherubini, 2010; Shurpali et al., 2010). 378 

Estimates of net Ceq flux from bioenergy systems based on LCAs differ, even for similar 379 
systems. Reviews of greenhouse gas LCAs for bioenergy have sought to identify sources of 380 
those differences (Liska and Cassman, 2008; Cherubini et al., 2009; Davis et al., 2009; 381 
Gnansounou et al., 2009). Differences in system boundaries were important (e.g., inclusion of 382 
co-products and use of economic models to attempt prediction of indirect land-use changes). 383 
Most reviews also cited differences in the treatment of reference conditions (i.e., displaced fossil 384 
fuel systems). Such methodological challenges compound challenges in accurately estimating 385 
components of Ceq flux, such as soil carbon and N2O emission from soils. Despite these 386 
difficulties, the openness and flexibility of greenhouse gas LCAs makes them an appropriate tool 387 
for different stakeholders to evaluate and compare the Ceq flux of different bioenergy systems. 388 
 389 
3.4. Indicators of biodiversity 390 
 391 

Measures of biodiversity are valuable indicators of sustainability in agroecosystems 392 
(Biala et al., 2005). Biodiversity can relate to any type of organism, including plants, animals, 393 
fungi, and microbes. Biodiversity indicators are useful in comparing different agricultural 394 
systems because, in addition to being valued for its own sake, biodiversity is affected by other 395 
environmental changes such as erosion, nutrient loss, and land-use change. Bioenergy systems 396 
are likely to affect biodiversity in several ways. For example, feedstock cultivation in extensive 397 
monocultures or pollution from biorefineries may cause loss of species, changes in abundance of 398 
species, and habitat degradation or loss. By contrast, appropriately managed perennial bioenergy 399 
cropping systems can improve habitat for some species, such as grassland birds (Murray et al., 400 
2003). For the purpose of selecting biodiversity indicators, we focus on the direct effects on 401 
biodiversity of land-use changes involved in the production or procurement of feedstocks 402 
because those effects are likely to be measureable in the short term and can be spatially 403 
extensive. 404 

The presence and habitat area of taxa of special concern are recommended as indicators 405 
to measure the effects of bioenergy systems on biodiversity (Table 2). The actual taxa that are of 406 
special concern vary in identity and number by site and region. Examples include rare native 407 
species, biodiversity-related keystone species, and taxa that are part of bioindicators. These three 408 
examples are defined and discussed below. Other taxa of special concern include species of 409 
commercial value, cultural importance, or recreational value. 410 

Native species that are locally or globally rare (whether naturally or through human 411 
activity) or that could become rare due to bioenergy system implementation are examples of taxa 412 
of special concern. Rare or potentially rare species may be at greater risk of extinction (local or 413 
global) than common species; therefore, monitoring their presence may lead to a relatively larger 414 
probability of capturing a decrease in biodiversity due to their extirpation. In an effort that 415 
focused on rare species at risk [using the definition of Master (1991)], Lawler et al. (2003) found 416 
that habitat of at-risk species correlated well with the habitat of other species in the Middle 417 
Atlantic region of the U.S., thus serving as an indicator of biodiversity beyond the at-risk species 418 
themselves. 419 

Biodiversity-related keystone species are another example of taxa of special concern. 420 
Power et al. (1996) defined a keystone species as “one whose impact on its community or 421 
ecosystem is large, and disproportionately large relative to its abundance.” Power et al. (1996) 422 
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explained that “impact” can be defined with respect to various ecosystem traits. Here we are 423 
interested in species with disproportionate effects on biodiversity, such as the gopher tortoise 424 
(Gopherus polyphemus) in the southeastern U.S., whose burrows provide habitat for a large 425 
number of other species (McCoy and Mushinsky, 2007) or other ecosystem engineers such as 426 
prairie dogs (Cynomys spp.) in arid grasslands (Bangert and Slobodchikoff, 2006; Shipley and 427 
Reading, 2006). The impact of the loss of such a species from an ecosystem can be amplified by 428 
the resultant loss of other species. 429 

Other taxa of special concern are those that comprise what are commonly termed 430 
“bioindicators,” which are taxa frequently used to monitor the condition of an environment or 431 
ecosystem. Bioindicators often consist of aquatic taxa and are used to assess the impacts of 432 
anthropogenic stresses on water quality. The presence of some taxa in aquatic systems 433 
downstream from bioenergy feedstock production may indicate positive effects of bioenergy 434 
systems (e.g., if bioenergy land management results in less chemical or sediment loading than 435 
prior land use). The presence of other taxa may indicate negative effects of bioenergy (e.g., if 436 
crops require more fertilizers, herbicides or pesticides than prior land use).  437 

In addition to aquatic organisms, other generalizations can be made about types of taxa 438 
likely to be affected by bioenergy systems, even though the selection of particular indicator taxa 439 
is inherently site- or region-specific. Organisms likely to be affected include aquatic animals, 440 
arthropods (Gardiner et al., 2010) as well as birds, small mammals, and ground flora (Semere 441 
and Slater, 2007).  442 

For many species of special concern, it is more feasible to measure the extent of suitable 443 
habitat than to measure the presence or abundance of a taxon directly. For example, Turlure et al. 444 
(2010) demonstrated the validity of using habitat area as a proxy for population size for two 445 
vulnerable peat bog butterflies. By showing that habitat area worked best as a proxy when 446 
defined according to functional resources rather than host plants, their study emphasized the 447 
importance of carefully defining suitable habitat. Because species of special concern in different 448 
systems differ widely in habit, methods for measuring presence and habitat area of those taxa 449 
also differ. 450 
 451 
3.5. Indicators of air quality 452 
 453 

Most air pollutants resulting from bioenergy use derive directly or indirectly from 454 
combustion in feedstock production and processing as well as in final use (e.g., powering 455 
vehicles by burning liquid biofuels). Carbon monoxide, tropospheric ozone, and two fractions of 456 
suspended particulate matter (PM10 and PM2.5) are recommended as indicators to measure the 457 
effects of bioenergy on air quality (Table 2). 458 

Almost all carbon monoxide (CO) emissions related to bioenergy derive from 459 
combustion. Combustion throughout the bioenergy supply chain includes combustion of biofuels 460 
for vehicles, heat, and electricity, as well as the combustion of fossil fuels used in the production 461 
of bioenergy. However, CO emissions from cars and other transportation sources have been 462 
virtually eliminated with the advent of the catalytic converter in the 1970s and replacement of 463 
the legacy fleet. CO is a minor contributor to climate change, but it is of environmental concern 464 
primarily for two reasons. First, it has severe effects on human health in high concentrations and 465 
may also be harmful at low, chronic concentrations (Townsend and Maynard, 2002; Chen et al., 466 
2007). Second, it is a precursor to ozone production, as discussed below. The emission of CO in 467 
biofuel combustion varies widely based on fuel type and combustion method. In some cases, an 468 
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increase in the overall efficiency of a combustion process can have a counterintuitive inverse 469 
relationship with CO emissions (Venkataraman and Rao, 2001). Because present-day liquid 470 
biofuels are oxygen-containing compounds, burning biofuel either as an additive to petroleum 471 
products or as a primary fuel can result in lower CO emissions than burning pure gasoline or 472 
petroleum diesel fuel. 473 

Tropospheric ozone is an important pollutant and is also associated with smog and haze. 474 
Ozone can aggravate or damage the respiratory system and can also damage vegetation, 475 
potentially reducing crop yields and biodiversity. Tropospheric ozone is formed by the reaction 476 
of nitric oxide and nitrogen dioxide (NOx) with non-methane organic gases (NMOGs) (Atkinson, 477 
2000) or with CO (NRC, 1977). These compounds are emitted in varying amounts from all 478 
combustion processes involved in the production and use of bioenergy. NOx is particularly 479 
associated with distillation processes for ethanol production. The reaction of these ozone 480 
precursors may occur far from emission sources; therefore, NOx associated with bioenergy may 481 
react with NMOGs or CO from unrelated sources or vice versa. Ambient air quality standards for 482 
ozone in the U.S. (EPA, 2010) have been growing stricter, and many regions, mostly urban, have 483 
entered or will enter non-attainment status for ozone. Thus, any effect of bioenergy production or 484 
use on ambient ozone levels will be closely monitored by regulators. 485 

PM2.5 measures mass per unit volume of all airborne particles less than 2.5µm in 486 
diameter, also known as the fine particle fraction. Fine particles can be emitted directly from 487 
point sources; such particles (soot, for example) are called “primary” (Seinfeld and Pankow, 488 
2003). Fine particles such as ammonium nitrate, ammonium sulfate, and secondary organic 489 
aerosols (SOA) are formed in the atmosphere from gaseous emissions and are known as 490 
“secondary” (Seinfeld and Pankow, 2003). Bioenergy systems can contribute to fine particulate 491 
pollution through solid biomass combustion or through the emission of various secondary 492 
particulate precursors through biofuel combustion (i.e., NMOGs leading to SOA), through 493 
burning of fossil fuels during feedstock production or processing [i.e., oxides of sulfur (SOx), 494 
NOx], or from soil biochemical processes during feedstock production (i.e., ammonia). Fine 495 
particles are associated with increased mortality due to lung cancer, cardiopulmonary disease, 496 
and other factors (Pope et al., 2002). This association with increased mortality is especially 497 
strong for fine particles associated with combustion (Laden et al., 2000). Because the diameters 498 
of fine particles in the atmosphere are close to the wavelengths of visible light, fine particles also 499 
scatter light effectively and typically reduce visibility more than larger particles (Malm, 1999). 500 

PM10 measures mass per unit volume of all airborne particles less than 10µm in diameter 501 
and thus includes those particles measured by PM2.5. In addition to fine particles, PM10 includes 502 
coarse particles, those between 2.5µm and 10µm in diameter. Agricultural systems can affect this 503 
coarse fraction through tilling and solid biomass combustion (Aneja et al., 2009). As with the 504 
fine fraction, the coarse fraction can affect human respiratory health, though health effects may 505 
be restricted to the short term (Brunekreef and Forsberg, 2005). Coarse particles also impair 506 
visibility, though also to a lesser extent than fine particles (Malm, 1999). The lesser 507 
environmental concerns relating to coarse particles, as well as the confounding inclusion of both 508 
fine and coarse particles in PM10, are drawbacks to using PM10 as an indicator of environmental 509 
aspects of bioenergy sustainability. Nonetheless, we recommend its use for two reasons. First, the 510 
coarse fraction may have greater influence on health and visibility issues where it dominates the 511 
fine fraction in abundance, such as on feedstock production sites and where solid biomass is 512 
burned. Second, because of historical Environmental Protection Agency (EPA) regulations in the 513 
U.S., more infrastructure exists to measure PM10 than to measure PM2.5; therefore, even where 514 
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the fine fraction is of primary concern, PM10 may serve as a rough but affordable proxy measure 515 
of the fine fraction. 516 

Methods for measuring CO, tropospheric ozone, PM2.5, and PM10 vary by location. 517 
Extensive ambient air monitoring networks have been installed in many regions of the U.S. 518 
(AIRNow, 2010) as well as in Europe. The U.S. EPA requires large emitters such as biorefineries 519 
to report emissions of some pollutants. Feedstock producers can report equipment usage, which 520 
can be combined with data sources such as the EPA’s Mobile Source Observation Database 521 
(MSOD) to calculate emissions of CO and primary PM2.5. Because tropospheric ozone and much 522 
PM2.5 are created at a regional scale from locally emitted precursor pollutants, models such as 523 
Community Multiscale Air Quality (CMAQ) (Appel et al., 2007; Appel et al., 2008) must be 524 
employed to connect regional PM2.5 and tropospheric ozone measurements to bioenergy-related 525 
precursor emissions. Emissions from liquid biofuel combustion in mobile sources can be 526 
estimated from country-scale estimates of consumption by fuel type combined with estimates of 527 
emissions from those fuels (Niven, 2005; Anderson, 2009; Gaffney and Marley, 2009). 528 
Emissions estimates by fuel type should also be country-specific, as emissions vary with 529 
atmospheric conditions and policy-influenced design factors. For example, in some countries 530 
ethanol is consumed as an 85% blend with gasoline in specially-equipped vehicles, whereas in 531 
other countries ethanol may be blended at lower levels with gasoline and consumed in all 532 
vehicles. 533 
 534 
3.6. Indicator of productivity 535 
 536 

One indicator, aboveground net primary productivity (ANPP), is recommended to assess 537 
the ecosystem productivity of bioenergy-associated land use (Table 2). The selection of this 538 
indicator is motivated by the importance of net primary productivity (NPP), which is defined as 539 
the net flux of carbon from the atmosphere into green plants per unit time and measures the rate 540 
of production of useful net energy by all plants in an ecosystem. NPP is a measure of the 541 
condition of both the land (e.g., soil fertility, topography, vegetation type, and prevailing weather 542 
conditions) and several ecological processes (including photosynthesis and autotrophic 543 
respiration as affected by local hydrology and temperature). Cramer et al. (1999) noted that “a 544 
better grasp upon the controls and distribution of … NPP … is pivotal for sustainable human use 545 
of the biosphere.” 546 

NPP manifests physically as total new plant biomass generated by photosynthesis per unit 547 
time (typically measured per year). Even so, the continual death and decay of plant tissue, 548 
especially belowground, as well as the import and export of organic compounds to and from the 549 
environment, make direct measurement of NPP difficult (Clark et al., 2001; Scurlock et al., 2002; 550 
Matamala et al., 2003). 551 

Because of these and other challenges in directly measuring NPP, ANPP is often used as a 552 
substitute for NPP. Even measuring ANPP accurately is not trivial; however, certain difficult-to-553 
measure components of ANPP (e.g., biomass consumed by herbivores or that dies and 554 
decomposes during the growing season) are often assumed to be small enough to ignore (Clark et 555 
al., 2001; Scurlock et al., 2002). 556 

In agricultural systems, producers routinely measure yield, which in the case of biomass 557 
crops, can serve as a proxy for ANPP. For some bioenergy systems in which not all aboveground 558 
biomass is harvested, such as corn starch ethanol, harvest indices are available for specific sites 559 
and systems (e.g., Pordesimo et al., 2004). A harvest index is the ratio of dry grain mass to total 560 
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dry aboveground biomass for a given crop, and it varies somewhat with local varieties, 561 
conditions and management practices (Prince et al., 2001).  562 

Because ANPP can be roughly approximated for both managed and unmanaged 563 
ecosystems, it provides a simple way to compare ecosystems that may differ dramatically in 564 
many respects. In cases where bioenergy feedstock crops replace less intensively managed 565 
ecosystems, the yield or estimated annual aboveground biomass of the feedstock crop can be 566 
compared to the ANPP of the prior ecosystem, measured either before bioenergy system 567 
implementation or on similar nearby proxy sites. Coupled with harvest indices to estimate NPP 568 
based on ANPP, such comparisons can also serve as one component for calculating the effects of 569 
land-use change on carbon dioxide flux.  570 
 571 
4. Discussion 572 
 573 
4.1. Developing and testing suite of indicators 574 
  575 

These 19 indicators collectively represent how bioenergy systems may affect 576 
environmental sustainability with respect to soil quality, water quality and quantity, greenhouse 577 
gas concentrations, biodiversity, air quality, and productivity. Transitions from fossil-fuel based 578 
energy systems to bioenergy systems can affect environmental sustainability because of increases 579 
or decreases in various anthropogenic stresses, including resource exploitation; changes in land 580 
use, water use, and disturbance regime; and emissions of waste, pollutants, and greenhouse 581 
gases. Measured over time, this suite of indicators should reveal many of the effects of changes 582 
in these stressors not only pertaining to the current state of ecosystems but also relating to their 583 
resilience (Folke et al., 2004).  584 

The suite of indicators presented here was selected with the goal of being useful in 585 
reflecting the environmental sustainability of a wide range of bioenergy systems. Even so, it is 586 
clear that particular applications may require modifications to the proposed suite of indicators as 587 
discussed in Section 4.2. The range of bioenergy systems includes variation in management and 588 
environmental context such as differences in feedstock choice, tillage and inputs, processing 589 
pathways, past land use, climate, and soil type. The desired utility of the suite of indicators 590 
across this range of systems includes the extent to which the indicators provide information as 591 
expected regarding environmental effects of concern as well as whether any indicators in the 592 
suite prove redundant with each other. It also includes the extent to which indicators are feasible, 593 
given available resources of money, time, access, and expertise. The success of this indicator 594 
suite at meeting these goals must be evaluated through field testing before it can be adopted. 595 

Field testing consists of measuring the full suite of indicators in a set of established or 596 
pilot bioenergy systems. This set of systems should represent the range of potential production 597 
pathways and may require testing at various scales. One test with respect to feedstock production 598 
would consist of replicated pairs of experimental watersheds with each pair including a 599 
watershed that supports bioenergy production and a watershed that does not. Watersheds 600 
represent an ideal spatial resolution of focus for water quality and quantity indicators, which are 601 
most easily interpreted in the context of whole-watershed treatments. 602 

In addition to assessing whether the suite meets goals relating to information and 603 
feasibility, field testing can also help in estimating variability and establishing appropriate targets 604 
for the suite of indicators in the context of particular bioenergy systems. By “variability” we 605 
mean the dispersion of an indicator’s values both among the variety of bioenergy systems and 606 
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within those with similar environmental and management context. Estimates of variability are 607 
needed to calculate the power of statistical tests performed to compare indicators over time, 608 
among different bioenergy systems, or between bioenergy systems and alternative land uses or 609 
energy sources. 610 

Targets reflect knowledge about the sustainability of bioenergy systems given possible 611 
values of indicators and inform management responses to those values. Targets, along with 612 
guidelines for management actions, can be part of a comprehensive set of best management 613 
practices (BMPs) for bioenergy systems. Some targets take the form of thresholds or ranges, 614 
where measurements below, above, or between certain points are acceptable. Other targets might 615 
take the form of desired trends; for example, a target might be a continued increase in soil carbon 616 
over several years. Because the indicator suite presented here should be interpreted as an 617 
integrated whole, targets for each indicator depend on the overall effects of bioenergy systems on 618 
the environment as measured by the full suite of indicators, as well as on economic and social 619 
aspects of sustainability, discussed in Section 4.4.  620 

Finally, experience from field testing can also help in establishing detailed protocols for 621 
measuring the values of the indicators. In this paper we have provided references to standard 622 
methods for some indicators, but important details are left unspecified (e.g., frequency of 623 
measurement). Establishing more detailed protocols is an iterative process that should be part of 624 
field testing but should also extend into subsequent use of the suite of indicators. Standardization 625 
of protocols is desirable to increase comparability among indicator values estimated from 626 
different bioenergy systems. On the other hand, different situations require somewhat different 627 
methods, as discussed in Section 4.2.  628 

The proposed indicator suite will undoubtedly be modified over time as knowledge and 629 
technology develop. As experience is gained with bioenergy systems and sustainability 630 
assessments, it will likely become apparent that some indicators measure attributes that are 631 
important but not changing with some bioenergy production pathways. And new indicators may 632 
prove necessary to measure conditions that change in unexpected ways. It may be useful to 633 
eliminate indicators in the former case and to add others in the second case in order to provide 634 
more detailed information about unexpected effects of bioenergy systems. In addition, 635 
advancements in technology will allow updates of the suite of environmental indicators for 636 
bioenergy sustainability. Ease of measurement is one reason that certain indicators have been 637 
chosen over others. More advanced and cost-effective instrumentation may allow for the 638 
replacement of some indicators identified here by others that measure related environmental 639 
effects more directly. 640 
 641 
4.2. Adapting the suite of indicators for particular situations  642 
 643 

The suite of 19 indicators presented here is not intended to be applied directly to 644 
particular bioenergy systems and management goals. Instead, this suite is intended as a basis or 645 
starting point for the selection of indicator suites for particular situations, which may require a 646 
subset or expansion of this proposed indicator suite. The choice of indicators for those suites may 647 
be driven by environmental context as well as cost. There are several advantages to giving 648 
special weight to a standard set of indicators when selecting indictor suites for specific purposes. 649 
First, to the extent that a standard suite has been field tested in a variety of conditions, 650 
stakeholders can have greater confidence in their suitability for similar scenarios. Second, if sets 651 
of indicators chosen for different applications are similar, their measured values are more likely 652 
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to be comparable. Finally, improved coordination among those selecting indicators will improve 653 
coherence and efficiency in certification of sustainable biomass, avoid proliferation of redundant 654 
or nonaligned standards, and provide direction for the appropriate approach (van Dam et al., 655 
2008). 656 

The context of particular bioenergy systems and accompanying environmental concerns 657 
may suggest the selection of additional indicators beyond the 19 presented here. For example, 658 
indicators that measure contamination by heavy metals may be useful in systems where sewage 659 
sludge is used as fertilizer (McBride, 1995) or where bioenergy crops are expected to filter or 660 
immobilize contamination from other sources (e.g., Wu et al., 2003). Where genetically 661 
engineered feedstocks are grown, it may be important to monitor the spread of engineered genes 662 
and their effects on ecosystems (Snow et al., 2005). Similarly, where concern exists that 663 
feedstocks may become invasive in a given area (Barney and Ditomaso, 2008; Simberloff, 2008), 664 
their presence beyond the feedstock production site should be monitored. Where feedstock 665 
production is expected to exacerbate or ameliorate other biological invasions, it may be similarly 666 
important to monitor those invasive species on or near feedstock production sites. When water 667 
for irrigation is withdrawn from deep aquifers whose discharge to surface water is too slow or 668 
distant to be captured by base flow, groundwater levels should be monitored as an additional 669 
measure of consumptive water use. 670 

By contrast, cost and management goals may require the elimination of some indicators. 671 
There are large costs involved in establishing a rigorous scientific monitoring of soil quality, 672 
water quality and quantity, greenhouse gases, biodiversity, air quality, and productivity. For 673 
example, although water indicators are important, they can be especially expensive to measure. 674 
Calculating flows, concentrations, and exports may require combinations of measurements using 675 
flumes or weirs, in situ instrumentation, and periodic sampling surveys, all in multiple locations 676 
and with high temporal resolution (Haan et al., 1994). The costs and feasibilities of measuring 677 
other indicators vary with different bioenergy systems. For example, the cost of accurately 678 
estimating net Ceq emissions varies depending on whether relevant data on fossil fuel 679 
consumption and feedstock management are readily available or must be collected specifically 680 
for indicator assessment. Similarly, the feasibility of estimating the abundance or habitat area of 681 
species of special concern depends on whether such species are already identified in a given 682 
system as well as the form and habit of those species. 683 

In addition to adding or removing indicators to the suite, different situations and goals 684 
also require modifications to the protocols used in applying indicators. For example, measuring 685 
productivity in forests requires different techniques than measuring productivity in crops. In 686 
addition, cost constraints of efforts to estimate the suite of indicators may call for different 687 
methodologies relating to tradeoffs between the cost, precision, and accuracy of specific 688 
protocols. Stakeholder goals may affect protocols as well. For example, bioenergy systems are 689 
often envisioned as integral parts of sustainable landscape designs (Dale et al., 2010a). 690 
Consideration of landscape patterns and diversity in planning feedstock production systems may 691 
result in environmental benefits such as increased biodiversity and decreased erosion and runoff 692 
pollution (Firbank, 2008; Dale et al., 2010b). To assess the success of management practices that 693 
consider landscape design, indicators might best be applied to extents larger than individual 694 
bioenergy operations.   695 
 696 
4.3. Interpreting the suite of indicator measurements 697 
 698 
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Indicators should be interpreted in view of baseline conditions and the particular context 699 
of a proposed bioenergy system. Baseline conditions are a set of observations or data that are 700 
used for comparison to new activities or for a reference case. With regard to the environmental 701 
sustainability of bioenergy, baseline conditions attempt to characterize environmentally relevant 702 
aspects of a situation in which a given bioenergy system had not been implemented. Ideally, a 703 
comparison between indicator values and baseline conditions should reveal the marginal 704 
environmental effects of a bioenergy system. Some baseline conditions can be represented by 705 
initial values of indicators if measurements are taken before bioenergy operations are initiated. 706 
For example, indicators that characterize land-use attributes, such as those relating to soil and 707 
water, can be measured prior to bioenergy-related land-use change. As a proxy, when initial 708 
values of indicators are not available, baseline conditions can be measured in areas that are 709 
similar to the prior state of production land – most often at a nearby location that has similar 710 
weather, topography, soils, vegetation, drainage area/hydrology, and management practices as the 711 
initial conditions of the bioenergy production site. Similarly, air quality indicators, especially 712 
important in relation to processing facilities such as biorefineries, can be measured before the 713 
facility is brought on line or at a suitable proxy site; however, the complex regional dynamics of 714 
air pollutants such as ozone and PM2.5 may complicate the selection of such sites. 715 

Because business-as-usual scenarios for energy are based on fossil fuels, the baseline for 716 
bioenergy sustainability should consider environmental implications of fossil fuel exploration, 717 
drilling, mining, production, transportation, and use (Gorissen et al., 2010). However, data are 718 
rarely available to determine the full environmental effects of fossil fuel systems. Even so, life-719 
cycle analysis (LCA) for fossil fuel systems demonstrates that the environmental effects of those 720 
systems vary widely with geography and other factors (Furuholt, 1995). 721 

In addition to baseline conditions, contextual variables must be used to interpret indicator 722 
measurements. Contextual variables measure characteristics of the operation of a bioenergy 723 
system that may affect the value of an indicator. Some contextual variables change with time but 724 
are beyond the direct control of operation managers. As an example, information on rainfall 725 
intensity and frequency is used to interpret measures of stream flow. Similarly, soil, water, and 726 
biodiversity indicators depend on disturbance regimes including the frequency and intensity of 727 
fire and floods. Some contextual variables are site characteristics that change little or not at all 728 
over time (e.g., land-use history, soil texture, slope, and aspect) and thus may be measured with 729 
lower frequency. Other contextual variables are aspects of land management, such as crop 730 
choice, tillage intensity, frequency of burning, percentage of residue removed, and applications 731 
of fertilizers, pesticides, and herbicides. For example, measures of soil nitrogen and stream 732 
nitrate should be considered in the context of the amount of nitrogen fertilizer applied to the soil. 733 
These management-related contextual variables can further be divided into those under the 734 
control of bioenergy operation managers and those under the control of other resource managers, 735 
such as farmers growing non-bioenergy crops upstream from bioenergy crops. Those variables 736 
under direct control of bioenergy operation managers serve not only as contextual variables but 737 
also as objects of manipulation for the application of BMPs. Table 2 lists examples of 738 
management-related contextual variables with respect to each of the indicators presented. 739 

As an indicator of environmental sustainability, measurement of aboveground net primary 740 
productivity (ANPP) is especially important to interpret along with contextual variables. For 741 
example, rainfall records may allow a decline in feedstock ANPP to be attributed to 742 
unsustainable soil degradation or to drought or other conditions beyond the control of land 743 
managers. Similarly, increasing ANPP may reflect increasing sustainability if accompanied by 744 
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the adoption of precision agriculture techniques or by a shift to crops or crop varieties better 745 
suited for a given site. On the other hand, such an increasing trend may reflect decreasing 746 
sustainability if accompanied by increases in fertilizer or irrigation input. As a third example, the 747 
maintenance of ANPP at relatively consistent levels in the context of disturbances such as 748 
hurricane, drought, or disease may reflect a resilient agroecosystem. 749 

In response to given management practices, some indicators are likely to change in 750 
favorable directions and others in unfavorable directions. Such differences represent the 751 
unavoidable tradeoffs that make sustainable management challenging. To some extent, 752 
determining optimal management practice depends on inherently subjective judgments on the 753 
part of stakeholders regarding the importance of different indicators or the extent that options for 754 
potential environmental benefits should be maintained over time. A multivariate analysis of the 755 
19 indicators’ values will provide a basis for stakeholders to discuss characteristics of 756 
environmentally sustainable bioenergy systems. Sustainability polygons (also known as cobweb 757 
polygons, star plots, or radar charts) represent one method for visualizing the measured values of 758 
suites of indicators as multivariate observations (e.g., Gomez et al., 1996; de Vries et al., 2010). 759 
 760 
4.4. Economic and social sustainability 761 
 762 

Indicators of environmental sustainability also provide information about economic and 763 
social sustainability, because economies and societies rely on the continued provision of 764 
ecosystem services, defined as the benefits people obtain from ecosystems (MEA, 2005). The 765 
indicators of environmental sustainability identified here relate to the provisioning, regulating, 766 
cultural, and supporting ecosystem services (MEA, 2005) that can be enhanced or degraded by 767 
bioenergy systems. However, because sustainable economies and societies rely on conditions 768 
other than the provision of ecosystem services, indicators of social and economic sustainability 769 
are needed in addition to the indicators of environmental sustainability proposed in this paper 770 
(Niemi and McDonald, 2004). Developing comprehensive suites of sustainability indicators for 771 
bioenergy is the goal of the Roundtable on Sustainable Biofuels (RSB, 2010), the Global 772 
Bioenergy Partnership (GBEP, 2010), and other national and international organizations. The 773 
current paper strives to support those efforts by presenting a short list of environmental 774 
indicators that can be used to evaluate bioenergy systems.  775 
 776 
5. Conclusion 777 
 778 

We identify a suite of 19 indicators in six categories to measure the environmental 779 
sustainability of bioenergy systems. The suite is intended to be a practical toolset for capturing 780 
key environmental effects of bioenergy across a range of bioenergy systems, including different 781 
pathways, locations, and management practices. To evaluate the hypothesis that the suite meets 782 
this goal, and also to help measure variability and establish appropriate targets, the suite should 783 
be field tested in systems spanning a wide variety of conditions. If the hypothesis is confirmed, 784 
the suite can be implemented more broadly, modified as necessary for particular contexts. This 785 
broader implementation will further two goals. First, it will help stakeholders judge the relative 786 
environmental sustainability of different bioenergy systems, including the question of which 787 
feedstocks, management practices, and post-production processes are appropriate for different 788 
locations as well as the question of how bioenergy systems compare with alternative energy 789 
systems. Second, it will help provide an empirical foundation for indicators designed to assess 790 
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environmental sustainability based on the predicted effects of management practices, such as 791 
many of the indicators proposed for use in certifying sustainable bioenergy systems (e.g., GBEP, 792 
2010; RSB, 2010). 793 
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Table 1. Criteria for selection of useful environmental indicators. Adapted from Dale and Beyeler 1176 
(2001). 1177 

 Are easily measured 1178 
 Are sensitive to stresses on system 1179 
 Respond to stress in a predictable manner 1180 
 Are anticipatory: signify an impending change in the environmental system 1181 
 Predict changes that can be averted by management actions 1182 
 Are integrative: the full suite of indicators provides a measure of coverage of the key 1183 

gradients across the environmental systems (e.g., soils, vegetation types, temperature, 1184 
etc.) 1185 

 Have a known response to natural disturbances, anthropogenic stresses, and changes over 1186 
time 1187 

 Have known variability/spread in response to given environmental changes 1188 
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Table 2. List of recommended environmental indicators for bioenergy sustainability, along with 1189 
associated management pressures and environmental effects expected to be captured by each 1190 
indicator. 1191 
Category Indicator Units Related 

management 
pressures 

Potential related 
environmental 
effects 

Reference that 
discusses 
methods used to 
collect data 

Soil quality 
  
  
  

1. Total organic 
carbon (TOC) 

Mg/ha Crop choice, tillage Climate change, N 
mineralization, 
humification, 
water holding 
capacity, 
infiltration, CEC 

Doran and Jones, 
1996 

2. Total nitrogen 
(N) 

Mg/ha Crop choice, tillage, 
N fertilizer 
application, 
harvesting practices 

Eutrophication 
potential, N 
availability 

Bremner and 
Mulvaney, 1982 

3. Extractable 
phosphorus (P) 

Mg/ha Crop choice, tillage, 
P fertilizer 
application, 
harvesting practices 

Eutrophication 
potential, P 
availability 

Olsen et al., 1954; 
Mehlich, 1984 

4. Bulk density g/cm3 Harvesting practices, 
tillage, crop choice 

Water holding 
capacity, 
infiltration, crop 
nutrient availability 

Doran and Jones, 
1996 

Water quality 
and quantity 
  
  
  
  
  
  

5. Nitrate 
concentration in 
streams (and 
export) 

concentration: 
mg/L; 
export: 
kg/ha/yr 

Crop choice, % of 
residue harvested, 
tillage, N fertilizer 
application 

Eutrophication, 
hypoxia, potability 

Eaton et al., 2005 

6. Total 
phosphorus (P) 
concentration in 
streams (and 
export) 

concentration: 
mg/L; 
export: 
kg/ha/yr 

Crop choice, % of 
residue harvested, 
tillage, P fertilizer 
application 

Eutrophication, 
hypoxia 

Eaton et al., 2005 

7. Suspended 
sediment 
concentration in 
streams (and 
export) 

concentration: 
mg/L; 
export: 
kg/ha/yr 

Crop choice, % of 
residue harvested, 
tillage 

Benthic habitat 
degradation 
through siltation, 
clogging of gills 
and filters 

Eaton et al., 2005 

8. Herbicide 
concentration in 
streams (and 
export) 

concentration: 
mg/L; 
export: 
kg/ha/yr 

Crop choice, 
herbicide application, 
tillage 

Habitat 
degradation 
through toxicity, 
potability 

Eaton et al., 2005 

9. Peak storm 
flow 

L/s Crop choice, % of 
residue harvested, 
tillage 

Erosion, sediment 
loading, infiltration 

Buchanan and 
Somers, 1969 

10. Minimum 
base flow 

L/s Crop choice, % 
reside harvested, 
tillage 

Habitat 
degradation, lack 
of dissolved 
oxygen 

Buchanan and 
Somers, 1969 
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11. Consumptive 
water use 
(incorporates 
base flow) 

feedstock 
production: 
m3/ha/day; 
biorefinery: 
m3/day 

Crop choice, 
irrigation practices, 
downstream biomass 
processing 

Availability of 
water for other 
uses 

Feedstock 
production: 
calculated from 
flow 
measurements. 
Biorefineries: 
reported total water 
withdrawn used as 
proxy. 

Greenhouse 
gases 

12. CO2 
equivalent 
emissions (CO2 
and N2O) 

kgCeq/GJ N fertilizer production 
and use, crop choice, 
tillage, liming, fossil 
fuel use throughout 
supply chains 

Climate change, 
plant growth 

Spreadsheet 
models (e.g., 
GREET; Wang, 
2002), with various 
submodels. 

Biodiversity 
  

13. Presence of 
taxa of special 
concern 

Presence Crop choice, regional 
land uses, 
management 
practices 

Biodiversity Various methods 
exist depending on 
taxa selected. 

14. Habitat area 
of taxa of special 
concern 

ha Crop choice, regional 
land uses 

Biodiversity Various methods 
exist depending on 
taxa selected; for 
one approach see: 
Turlure et al., 
2010. 

Air quality 
  
  
  

15. Tropospheric 
ozone 

ppb Fossil fuel use in 
production and 
processing, quality 
and mode of 
combustion of biofuel

Human health, 
plant health 

Combination of 
sources and 
methods 
necessary, for 
example: EPA 
Mobile Source 
Observation 
Database, 
Community 
Multiscale Air 
Quality model (for 
example: Appel et 
al., 2007), reports 
from biorefineries, 
collation of vehicle 
use with emissions 
data per fuel type 
(for example: 
Gaffney and 
Marley, 2009). 

16. Carbon 
monoxide 

ppm Fossil fuel use in 
production and 
processing, mode of 
biofuel combustion 

Human health 

17. Total 
particulate matter 
less than 2.5μm 
diameter (PM2.5) 

µg/m3 N fertilizer 
application, fossil fuel 
use in production and 
processing, mode of 
biofuel combustion 

Visibility, human 
health 

18. Total 
particulate matter 
less than 10μm 
diameter (PM10) 

µg/m3 Fossil fuel use in 
production and 
processing, other 
agricultural activities, 
solid biomass 
combustion 

Visibility, human 
health 

Productivity 19. Aboveground 
net primary 
productivity 
(ANPP) / Yield 

gC/m2/year Crop choice, 
management 
practices 

Climate change, 
soil fertility, 
cycling of carbon 
and other 
nutrients 

Grasslands: 
Scurlock et al., 
2002. 
Forests: Clark et 
al., 2001. 
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