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Spatial uncertainty analysis of population models
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Abstract

This paper describes an approach for conducting spatial uncertainty analysis of spatial population models, and illustrates
the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial population models typically
simulate birth, death, and migration on an input map that describes habitat. Typically, only a single “reference” map is available,
but we can imagine that a collection of other, slightly different, maps could be drawn to represent a particular species’ habitat.
As a first approximation, our approach assumes that spatial uncertainty (i.e., the variation among values assigned to a location
by such a collection of maps) is constrained by characteristics of the reference map, regardless of how the map was produced.
Our approach produces lower levels of uncertainty than alternative methods used in landscape ecology because we condition
our alternative landscapes on local properties of the reference map. Simulated spatial uncertainty was higher near the borders
of patches. Consequently, average uncertainty was highest for reference maps with equal proportions of suitable and unsuitable
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habitat, and no spatial autocorrelation. We used two population viability models to evaluate the ecological conseq
spatial uncertainty for landscapes with different properties. Spatial uncertainty produced larger variation among pred
spatially explicit model than those of a spatially implicit model. Spatially explicit model predictions of final female pop
size varied most among landscapes with enough clustered habitat to allow persistence. In contrast, predictions of
growth rate varied most among landscapes with only enough clustered habitat to support a small population, i.e., nea
mediated extinction threshold. We conclude that spatial uncertainty has the greatest effect on persistence when the
arrangement of suitable habitat are such that habitat capacity is near the minimum required for persistence.
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1. Introduction
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variation, spatial structure can have a strong influ-
ence on the dynamics of populations (Ritchie, 1997).
This is why models used for population viability anal-
ysis (PVA) typically include environmental variation
to assess a population’s chances for persisting into
the future. Spatially explicit population models (e.g.,
Dunning et al., 1995) are often used in PVA when the
populations of concern inhabit spatially heterogeneous
landscapes.

1.1. Monte Carlo analysis of spatial models

Spatially explicit population models require geo-
referenced input data about habitat (e.g., vegetation,
soil, habitat suitability). The influence of uncertainty
in the values provided as spatial inputs on model pre-
dictions is, therefore, a concern (e.g.,Hansen et al.,
1999; Bennett et al., 2000; Hunsaker et al., 2001; Elith
et al., 2002). Understanding the effects of these spa-
tial inputs adds a new wrinkle to the process of model
testing and evaluation.

Population models are expected to go through un-
certainty and sensitivity analysis as part of their devel-
opment and testing (McCarthy et al., 1995; Bart, 1995).
Sensitivity analysis ranks parameters according to their
relative influence on model predictions, whereas uncer-
tainty analysis quantifies the variation in model pre-
dictions due to variation in parameters. The purpose
of sensitivity analysis is to identify key parameters for
more careful measurement in the hope of reducing un-
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and Gustafson, 2004). Geostatistical models provide
an alternative that results in more-realistic alternative
maps. Geostatistical models assume that spatial uncer-
tainty is controlled by the average statistical proper-
ties (e.g., mean, variance–covariance, and spatial auto-
correlation) of the landscape. Describing spatial auto-
correlation is, therefore, an important aspect of spatial
uncertainty analysis.Heuvelink (1998)demonstrated
spatial uncertainty analysis for continuous data. In this
paper, we outline an approach that uses a geostatistical
model to simulate spatial uncertainty in multinomial
data.

Here, we describe a method for spatial uncertainty
analysis that constrains the generated landscapes to
share certain properties of a reference map, includ-
ing (1) the average proportion of different habitat cat-
egories, (2) the spatial autocorrelations among cate-
gories, and (3) local fidelity at a regular grid of loca-
tions. We generate alternative maps by conditioning
multinomial probabilities used to classify each loca-
tion on the surrounding data. Because values are con-
ditioned on a coarse grid from the reference map, our
approach produces a more realistic, less variable, col-
lection of alternative maps than those produced using
null landscape generators such as RULE. Our method
preserves large-scale features that would be unlikely to
change in different renditions of a map. To illustrate
our approach, we focus on binary habitat maps used as
input to population models.

Our main goal is to demonstrate a method for spa-
t ls.
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mpose very little constraint and result in very diff
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ial uncertainty analysis of population viability mode
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.2. Representing spatial life histories using a
opulation model

The spatial life history of a species influences
bility of its populations to persist in different lan
capes. Similarly, the sensitivity of a spatial popula
odel to spatial uncertainty may depend, in part, on

patial life history of the species represented.
Two main features of a species’ spatial life h

ory are its habitat requirements and its movement
erns. To demonstrate our technique, we use two
ial population models to compare hypothetical spe
hat differ in spatial life history. A source–sink mod
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Fig. 1. Flow chart of the procedure for generating alternative land-
scapes for spatial uncertainty analysis.

is used to compare species that differ in habitat re-
quirements: one species that requires edge habitat and
one species that requires interior habitat. We expect
that edge-dependent species will be more sensitive to
changes in the size and shape of habitat patches asso-
ciated with spatial uncertainty than interior species. A
spatially explicit model is used to compare species with
high and low mobility. We expect that a mobile species
that integrates over the landscape in a course-grained
manner will be less sensitive to spatial uncertainty than
a less-mobile species that uses the landscape in a fine-
grained manner (Levins, 1968).

2. Methods

Our approach to spatial uncertainty analysis is de-
picted in Fig. 1 and described in four sections be-
low. Normally, a reference landscape would be the
starting point for spatial uncertainty analysis. Because
this paper explores the implications of using a refer-
ence map with different spatial statistical properties,
we generated reference maps with known properties.
We describe our methods for generating these refer-
ence landscapes in the first section below. The second
section below describes the generation of alternative
landscapes from a reference map. The third section
describes how we quantified the resulting spatial un-
certainty. The fourth section describes the propagation
o tion
m .

All of the geostatistical methods described here
were implemented using GSTAT (Pebesma and
Wesseling, 1998; http://www.frw.ruu.nl/gstat/).

2.1. Generation of reference landscapes

We began by producing original reference land-
scapes with known spatial–statistical properties
(Fig. 2). We studied six different reference landscapes
to better understand how the frequency of suitable
habitat,p, and the degree of spatial autocorrelation,C,
influence spatial uncertainty. Each reference map was
created by producing a single unconditional simulation
from the random model in Eq.(1), with the values of
p andC shown inTable 1. For some analyses, we also
produced maps withp= 0.9 (suitable habitat is com-
mon) by switching suitable and unsuitable categories
in maps withp= 0.1 (suitable habitat is rare).

Each reference landscape was generated on a
500× 500 grid, with a grid cell size of 20 m× 20 m.
We assigned each cell a habitat type with two possible
values,I = 0 (unsuitable) or 1 (suitable).

We used unconditional simulation (Burgess and
Webster, 1980) to generate each reference map. Un-
conditional simulation of categorical data requires a
mean frequency,p, and a semivariogram model,γ(h)
that describes the probability that pairs of locations sep-
arated by distanceh belong to the same category, or in
our case, that they are both either suitable or not.
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We adopted an exponential semivariogram wi
ange parameter fixed at 1000 m, nugget parametθ1,
nd sill parameterθ2. The ratioC= θ2/(θ1 + θ2) de-
cribes the degree of spatial autocorrelation.

γ(h) = θ1 + θ2

(
1 − exp

(
−h

1000

))
, h > 0

θ1 + θ2 = Var(I) = p(1 − p)
(1)

.2. Generation of alternative landscapes

We assume that spatial uncertainty is constraine
he spatial properties of the reference map. In prac
e would be handed a reference map without know

he underlying process and parameters that gene
t. Therefore, we pretend the parameter values ar
nown and begin by estimating parameter values
he reference map, as described in Section2.2.1below.
ext, we generate a sample of alternative landsc
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Fig. 2. Reference landscapes generated for each of six scenarios. White areas are locally unsuitable for all species. The proportion of suitable
habitat in landscapes isp= 0.5 in the top row andp= 0.1 in the bottom row. The degree of spatial autocorrelation increases from left to right
(C= 0, 0.5, and 1).

using conditional simulation (Section2.2.2). These
landscapes share the global spatial–statistical proper-
ties of the reference map, as well as local features from
a subset of locations.

2.2.1. Spatial autocorrelation
To characterize each reference map, we estimate the

proportion of cells with suitable habitat and spatial au-

tocorrelation. To describe the latter, we estimate pa-
rameters of an exponential semivariogram model from
a sample drawn from each reference map. We designed
the semivariogram sample (Fig. 1) to characterize au-
tocorrelation well for short separation distances (where
autocorrelation and predictive value is high) and to
obtain uniform spatial coverage. A stratified, random
sampling design that combined a sample of points from

Table 1
Experimental design to evaluate the role of reference map characteristics

Mean frequency of category Spatial autocorrelation

I = 0 I = 1 None (C= 0) Moderate (C= 0.5) Strong (C= 1)

0.1 (rare) 0.9 θ1 = 0.09 θ1 = 0.045 θ1 = 0.0
θ2 = 0.0 θ2 = 0.045 θ2 = 0.09

0.5 (half) 0.5 θ1 = 0.25 θ1 = 0.125 θ1 = 0.0
θ2 = 0.0 θ2 = 0.125 θ2 = 0.25

Values of two variogram parameters,θ1 (nugget) andθ1 + θ2 (sill), andC (ratio of θ2 to sill) are given for each of the six landscape types.



H.I. Jager et al. / Ecological Modelling 185 (2005) 13–27 17

a regular, coarse grid with a sample of randomly drawn
neighbors addresses both criteria (Warrick and Meyers,
1987).

Next, we fit one semivariogram model to the sample
data forI = 0 (unsuitable habitat) and another forI = 1
(suitable habitat). We specified an exponential model
with the known range of 1000 m and used GSTAT
to estimate the remaining semivariogram parame-
ters. Iteratively reweighted least squares (Neuman and
Jacobson, 1984; Cressie, 1985) estimates the sill and
nugget parameters by minimizing

20∑
i=1

wi(γ̂(hi) − γ(hi))
2, wherewi = Ni

γ(hi)
. (2)

The semivariogram fit improved when we excluded
data pairs farther apart than half the range. This 500-m
distance was divided evenly into 20 intervals,i. Larger
weights,wi, were assigned to intervals with (1) more
pairs of sample locations and (2) with less variability.
For all six scenarios, we set the initial parameter esti-
mates forθ1 andθ2 to the true parameter values from
Table 1. We used semivariogram models with these pa-
rameter estimates in generating each of the alternative
landscapes.

2.2.2. Stochastic simulation
We used stochastic simulation (seeRossi et al.,
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formly at random from the reference map (i.e., the start-
ing cell was drawn at random from the top-left corner;
from that point the placement of the rest of the sample
grid was fixed). We chose a small percentage because
preliminary simulations with higher conditioning sam-
ple sizes showed very little variation among replicate
landscapes.

The simplest way to understand stochastic simu-
lation is to think of adding a random normal deviate
to the kriged mean surface, where the deviate drawn
at each location has zero as its mean and the kriging
variance as its variance. We used a sequential simula-
tion algorithm (Gotway and Rutherford, 1994; Gomez-
Hernandez and Cassiraga, 1994) because it is computa-
tionally efficient and can be used with any type of vari-
able and distribution (Bierkens and Burrough, 1993).
Each realization is drawn from a multivariate proba-
bility distribution function where every location has its
own random variable. Through repeated application of
Bayes’ theorem, the multivariate distribution is con-
structed at each newly simulated location as a product
of univariate conditional simulations. Once the value
at a location is simulated, it is added to the condition-
ing data for a given realization. For the special case of
categorical spatial data, the appropriate method is se-
quential indicator simulation (Gomez-Hernandez and
Srivastava, 1990; Isaaks, 1984).

2.3. Quantifying spatial uncertainty
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.4. Propagating spatial uncertainty

The goal of spatial uncertainty analysis is to as
he variation in model predictions that result from s
ial variation in inputs. The simplest models of po
ation viability assume that population size tracks
mount of suitable habitat (e.g.,Harris et al., 1992).
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Therefore, we first calculate variation in the amount of
suitable habitat provided by each alternative landscape.

Next, we evaluate consequences of spatial uncer-
tainty using two population models that address differ-
ent aspects of the spatial life history of species. Both
models are described inAppendix A. The source–sink
model distinguishes between the amount of source and
sink habitat and their influence on birth, death, and
migration, but it does not consider their spatial ar-
rangement. This model cannot, therefore, reveal the
effects of spatial uncertainty on mobility, but it is
well suited for comparing edge-dependent and interior
species.

The second model, Program to Assist in Track-
ing Critical Habitat (PATCH), is a spatially explicit,
individual-based population model (Appendix A). The
PATCH model does not simulate juxtapositional habi-
tat requirements (i.e., edge-dependent versus interior),
but it is well suited for comparing interior species with

low and high mobility. The population responses sim-
ulated by each model are described inAppendix A.

3. Results

The results presented here include the amounts of
spatial uncertainty produced for landscapes with dif-
ferent characteristics, and the variation in predictions
made by the two population models due to spatial un-
certainty in spatial inputs.

3.1. Spatial uncertainty

Spatial uncertainty, defined as the variance in habi-
tat quality among replicate maps, was highest at the
boundaries of patches (black inFig. 3) and lowest in
the center of patches (white inFig. 3). This can best be
seen by comparing the areas of high spatial uncertainty

F The pr d
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t

ig. 3. Maps of spatial uncertainty for each of six scenarios.
= 0.1 in the bottom row. The degree of spatial autocorrelation
esignated as suitable in half of the replicate maps (black). Un

he replicate landscapes (white).
oportion of suitable habitat in landscapes isp= 0.5 in the top row an
es from left to right (C= 0, 0.5, and 1). Uncertainty is highest in locati
ty is lowest in locations with either suitable or unsuitable habi
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in Fig. 3with the locations of patches of suitable habitat
(black) inFig. 2.

Fig. 4 summarizes the average and S.D. of spatial
uncertainty among cells for maps with different proper-
ties. Average variation among our binary habitat maps
was highest when half of the replicate maps were un-
suitable (I = 0), as illustrated by maps in the top row of
Fig. 3and the right side ofFig. 4. This is to be expected
because the variance of a binomial variable reaches a
maximum of 0.25 when exactly half of the replicates
belong to one category and the other half belong to the
other value.

Average spatial uncertainty was also higher in un-
correlated landscapes (maps in left-most column of
Fig. 3 and open bars inFig. 4) than in landscapes
with high spatial autocorrelation (right-most column
of Fig. 3and black bars inFig. 4).

We also looked at the reclassification rate for one
particular category. For example, the reclassification
rate for suitable habitat is the proportion of cells suit-
able in the reference map that were classified as unsuit-
able in replicate maps. Like spatial uncertainty, the av-
erage reclassification rate for one category was higher
in uncorrelated landscapes than in correlated land-
scapes. Unlike spatial uncertainty, the rate of reclas-
sification for a particular category was highest when
the category was rare in the reference map.

F
a ividual
b opor-
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(

3.2. Predictions of the source–sink model

Variation among replicate landscapes in the pro-
portion of source habitat predicted by the source–sink
model was small for all species and landscape types
(Table 2). This is shown by the lack of vertical scatter
among points (each point is the result for one land-
scape) inFig. 5a.

Overall population growth rates,λ, predicted by the
source–sink model (seeAppendix A) were also insen-
sitive to differences among replicate landscapes. The
largest standard deviation inλ among 10 replicate land-
scapes was less than 0.04 (Table 3). However, near
the population growth rate threshold (λ = 1) this small
variation among landscapes can have important conse-
quences. For some replicate landscapes, the population
model predicts overall population increase (λ > 1); in
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moderate, and strong.
ig. 4. Average spatial uncertainty, measured as the S.D. ofI-values
mong replicate landscapes, averaged across map cells. Ind
ars show average values for reference maps differing in the pr

ion of suitable habitat,p, and the degree of spatial autocorrela
error bars show among cell variation = 1 S.D.).
ig. 5. Predictions of (a) percent source habitat and (b) popu
rowth rate were generated by the source–sink model for an in
pecies and an edge-dependent species on ten replicate land

n each of nine landscape categories. Landscape categories in
hree proportions of suitable habitat: common (p= 0.9), half (p= 0.5),
nd rare (p= 0.1), and three levels of spatial autocorrelation: n
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Table 2
Standard deviation in the percent of source habitat predicted by the source–sink model for two species types and nine landscape types

Proportion suitable Species type Degree of spatial autocorrelation

None Moderate Strong

0.1 Interior 0.0179 0.0521 0.2309
Edge-dependent 0.3687 0.2156 0.1038

0.5 Interior 0.3954 0.1792 0.2847
Edge-dependent 0.6441 0.4587 0.1706

0.9 Interior 0.9463 0.5188 0.1397
Edge-dependent 0.6618 0.3615 0.1381

Note that we produced maps with switched suitable and unsuitable use the maps in which suitable habitat has an expected frequencyp= 0.9 by
switchingI = 0 to 1, and vice versa, in maps withp= 0.1.

Table 3
Standard deviation in overall population growth rate predicted by the source–sink model for two species types and nine landscape types

Proportion suitable Species type Degree of spatial autocorrelation

None Moderate Strong

0.1 Interior 0.0034 0.0117 0.0358
Edge-dependent 0.0008 0.0028 0.0085

0.5 Interior 0.0139 0.0085 0.0106
Edge-dependent 0.0033 0.0020 0.0025

0.9 Interior 0.0178 0.0093 0.0031
Edge-dependent 0.0042 0.0022 0.0007

Note that we produced maps with switched suitable and unsuitable use the maps in which suitable habitat has an expected frequencyp= 0.9 by
switchingI = 0 to 1, and vice versa, in maps withp= 0.1.

others, the model predicts that the population will de-
cline (λ < 1) to extinction (Fig. 5b).

Interior and edge-dependent species showed differ-
ent responses to reference landscape properties. The
interior species derived more source habitat and faster
population growth from landscapes with more suitable
habitat and strong spatial autocorrelation, whereas the
edge-dependent species performed best on landscapes
with equal amounts of suitable and unsuitable habi-
tat and no autocorrelation (Fig. 5). However, as noted
above, spatial uncertainty had little impact on popula-
tion growth rates.

3.3. Predictions of the PATCH model

Spatial uncertainty produced more variation in pre-
dictions of the PATCH model than in predictions of the
source–sink model. Variation among individual repli-
cates is shown inFig. 6a and b, and the S.D. in two
predictions (seeAppendix A), final female population,
Nf and population growth rate are shown inTable 4.

Variation inNf was higher for landscape types with
a high carrying capacity, i.e., more suitable habitat
(p= 0.5) and/or higher spatial autocorrelation. The S.D.
in Nf was higher for populations simulated on land-
scapes types with higher averageNf and no extinctions
(S.D. > 180 inTable 4) than for those simulated on land-
scape types on which some replicates reached extinc-
tion (S.D. < 90 inTable 4).

In contrast to the results forNf , variation in popu-
lation growth rate (Fig. 6b) was greatest for landscape
types with a low carrying capacity, suggested by a low
averageNf (Fig. 6a). Depending on spatial details of
a particular replicate map, populations might saturate
breeding territories or decline to extinction. The S.D.
in average population growth rate was zero in land-
scape types on which no populations persisted; low
(0.005–0.02) in landscape types that had no extinctions;
and high (0.05–0.45) in landscape types with extinc-
tions for some replicate simulations (Table 4). Spatial
uncertainty caused the highest variation among pre-
dictions of population growth in landscape types with
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Table 4
Results predicted by the spatially explicit model for two species types and six landscape types

Proportion suitable Species type Degree of spatial autocorrelation

None Moderate Strong

Proportion persisting,P
0.1 Non-mobile 0.0 0.8 1.0

Mobile 0.0 1.0 1.0

0.5 Non-mobile 1.0 1.0 1.0
Mobile 1.0 1.0 1.0

S.D. in final female number,Nf

0.1 Non-mobile 0.0 66.7 184.3
Mobile 0.0 87.4 232.7

0.5 Non-mobile 264.6 327.8 267.4
Mobile 262.9 228.6 330.0

S.D. in population growth rate
0.1 Non-mobile 0.0 0.438 0.015

Mobile 0.0 0.094 0.017

0.5 Non-mobile 0.059 0.027 0.010
Mobile 0.057 0.022 0.006

small averageNf (p= 0.1, moderately correlated land-
scapes for mobile and less-mobile species andp= 0.5,
uncorrelated landscapes for the less-mobile species in
Fig. 6a and b).

On average, populations of the mobile species at-
tained larger final female sizes than those of the less-
mobile species (Fig. 6a). The mobile and less-mobile
species showed a similar response to spatial uncer-
tainty, except in one case where the difference in av-
erageNf placed one species closer to an extinction
threshold. For landscapes withp= 0.5 and no autocor-
relation, theNf predictions for the non-mobile species
were much nearer zero than those for the mobile species
(Fig. 6a); therefore population growth rates of the non-
mobile species varied more (Fig. 6b). Populations of
the less-mobile species reached extinction within 500
years in two replicate landscapes (Fig. 7a), but all popu-
lations of the mobile species persisted (Fig. 7b). We do
not attribute this difference in the effect of spatial un-
certainty to species mobility, but rather to the proximity
of averageNf predictions to zero. If we had simulated
a lower proportion of suitable habitat, sayp= 0.05,
perhaps populations of the less-mobile species would
have gone uniformly extinct and the mobile species
would have produced the more variable response of the
two.

4. Discussion

The main goal of this study was to demonstrate a
method for spatial uncertainty analysis of population
models, as discussed in Sections4.1 and 4.2below.
The case studies did not use very many replicate land-
scapes or population models, and can therefore only
suggest patterns. Although preliminary, our results be-
gin to understand what species attributes and landscape
properties make animal population models sensitive to
spatial uncertainty. We discuss these results in Section
4.3below.

4.1. Generation of alternative landscapes

One feature that distinguishes landscapes generated
by this method from null landscapes is that they honor
the spatial statistical properties of the original reference
landscape. To draw an analogy with painting, a ran-
dom map is non-representational, modern art, whereas
each of our maps is an impressionist’s rendering of
the original landscape. Maps produced for the purpose
of error analysis are meticulously generated repro-
ductions obtained by analyzing and modeling varia-
tions among paintings of the same landscape by dif-
ferent artists. By sharing properties at a small subset
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Fig. 6. Predictions of (a) final number of females (Nf ) and (b) pop-
ulation growth rate were generated by the PATCH model for ten
replicate landscapes in each of nine landscape categories. Landscape
categories included two proportions of suitable habitat: rare (p= 0.1)
and half (p= 0.5), and three levels of spatial autocorrelation: none
(C= 0), moderate (C= 0.5), and strong (C= 1).

of locations in the conditioning sample, our method
pins the gross features of the alternative landscapes to
the original map. Unlike random maps, our maps pre-
serve the spatial orientation of larger patches in the
original map because the conditioning sample tends
to seed these larger patches. Our approach does not,
however, go so far as to analyze and mimic error in
the process used to create the original map (Jager and
King, 2004). GIS data rarely come with the metadata
needed to develop an error budget, which is a signifi-
cant undertaking in its own right. Instead, our approach
estimates map-to-map variation from the geostatisti-
cal properties of a single original map that is typically
available.

Our results highlight two statistical properties of cat-
egorical spatial data. First, variation among landscapes
is higher in uncorrelated landscapes than in correlated
landscapes, and higher in landscapes with equal pro-

Fig. 7. PATCH simulations of female population size over time on
10 replicate landscapes with rare (p= 0.1), locally suitable habitat
and moderate spatial autocorrelation (C= 0.5) for (a) a less-mobile
species and (b) a mobile species.

portions of suitable and unsuitable habitat. By exten-
sion, for maps with more than two categories, we would
expect the highest average uncertainty when the refer-
ence map has equal proportions in each category. Sec-
ond, spatial uncertainty is higher near the boundaries of
patches in the original landscape than in the middle of
its large patches.McGwire and Fisher (2001)compare
two maps describing the spatial uncertainty generated
by a method similar to ours describing differences be-
tween LANDSAT-classified and ground-truth data. Al-
though they conclude that the two are clearly different,
we observe that both maps share this tendency toward
higher uncertainty near boundaries.

4.2. Future directions in methodology

We envision two directions for future research to
improve the technique proposed here for spatial uncer-
tainty analysis. First, our method for generating spatial
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uncertainty does not preserve the patch-size distribu-
tion of reference landscapes. Our generated landscapes
tend to be highly fragmented near the boundaries of
large patches, and they tend not to have inclusions
(small patches) within the interior of large patches.
Keitt et al. (1997)suggested that overestimation of
small patches is a real feature of error in classified im-
agery. This artificial fragmentation might be reduced by
designing a heuristic swapping algorithm to bring the
patch-size distribution of generated landscapes close to
that of the original landscape.Johnson et al. (1999)sug-
gested that a technique for minimizing differences be-
tween conditional frequency distributions of simulated
and actual multinomial landscapes could be developed
in future.

Another need that we perceive for uncertainty anal-
ysis of categorical data is to develop a method that
accounts for the hierarchical structure in land cover
classification. An approach that first generates higher-
level classes and then generates the sub-classes within
them would account for the fact that two sub-classes are
less likely to be mistaken for one-another if they belong
to different classes. For example, first classify patches
as forest or grassland; then, classify areas within for-
est patches as deciduous or coniferous forest, and ar-
eas within grassland patches as tallgrass or shortgrass
prairie.

4.3. Effects of spatial uncertainty on model
predictions

pa-
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and populations increase or decrease slowly enough
that neither absorbing state is reached by the end of the
simulation’s time horizon.

Case1: When the amount and arrangement of suitable
habitat are such that this species cannot persist, varia-
tion among alternative landscapes is unimportant, and
all landscapes lead to extinction.
Case2: When the amount and arrangement of suitable
habitat are such that habitat capacity is large, variation
among alternative landscapes has a small effect, prob-
ably because of differences in their carrying capaci-
ties. On landscapes with sufficient clustered habitat,
variation in persistence is zero, variation in popula-
tion growth rate is low, and variation in predictions of
population size,Nf , is high.
Case 3: When the amount and arrangement of suit-
able habitat are such that habitat capacity is small,
spatial uncertainty has the greatest effect on persis-
tence and population growth rate. When the habi-
tat becomes saturated at a low population size, the
population experiences an elevated risk of extin-
ction.

The concept of Minimum Amount of Suitable Habi-
tat (MASH; Hanski et al., 1999) suggests that know-
ing the amount of habitat available is sufficient for de-
termining the likelihood of persistence. In this study,
spatial autocorrelation also had a strong effect on vi-
ability predictions. Our results suggest that extinction
thresholds can be more precisely defined based on both
p spa-
t
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l ow
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We were surprised by the lack of influence that s
ial uncertainty in input data had on predictions of
ource–sink model. Compared with the influenc
ean spatial properties, the influence of uncerta
as very small. One reason may be that the model
ggregate summaries of spatial data rather than s

ating space explicitly.
Spatial uncertainty produced larger variation in p

ictions of the PATCH model. Results for this mo
uggests to us that the effects of spatial uncerta
re mediated by the size of the basin of attraction
odel predictions. Consider three cases: (1) situa
hen the amount of suitable habitat and its spatia

angement are such that a populations of a species
ot persist, (2) situations when populations saturat
abitat, reaching a size that is not vulnerable to ex

ion, and (3) situations when habitat capacity is l
roperties; for example, persistence is possible if
ial autocorrelation >Xand suitable habitat >Y%. Near
his threshold, the potential effect of spatial uncerta
n predictions of persistence and population gro
ate is greatest.

Both population viability models revealed imp
ant effects of species’ spatial life history on po
ation persistence, but only small differences in h
pecies respond to spatial uncertainty. Spatial u
ainty had negligible effects on two species with c
rasting source habitat requirements in the source–
odel. However, simulated populations of the

pecies showed very different responses to ave
andscape properties. In particular, viability of the
erior species increased with increasing spatial a
orrelation, whereas viability of the edge-depend
pecies decreased with increasing spatial autoc
ation.
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Our results with the PATCH model did not support
our hypothesis that less-mobile species are more sensi-
tive to spatial uncertainty than mobile species. Predic-
tions ofNf for the mobile species were always greater
than or equal to those for the non-mobile species be-
cause non-mobile females had more trouble finding
new breeding territories once the populations reached
saturation than their mobile counterparts. Only one
case resulted in a difference in variation betweenNf
predictions for the two species. In this case, the aver-
ageNf difference placed one species closer to an ex-
tinction threshold than the other species. Differences
caused by species mobility might be greater in a model
that imposes higher movement costs than does PATCH.

These results lead us to speculate that the same pro-
cesses that shape basins of attraction for population
size control the effects of spatial uncertainty. We spec-
ulate that life history attributes and environments that
produce complex dynamics are most sensitive to spa-
tial uncertainty. Populations in habitats that promote
chaotic population dynamics are likely to show very
high sensitivity to slight shifts in demographic param-
eters associated with the details of a particular land-
scape. Although the case studies presented here are
merely illustrative, they suggest interesting patterns to
guide future research in this area.
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Appendix A

A.1. Source–sink model

We use a simple two-box spatially implicit model to
describe the population dynamics of individuals breed-
ing in source and sink habitat (Pulliam, 1988), with mi-
gration between the two habitat types (Pulliam, 1996).
Source habitat serves as a net exporter of animals and
h one.
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t ;
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q
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han one that would lead to local extinction in the
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at;n(2) is the number of breeders in the sink habitatλ1
s the finite rate of population increase in source hab
1 is the maximum number of breeders in the sou
abitat. Parametersλ2 and k2 are the correspondin
uantities for sink habitat.
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Excess breeders in the source habitat emigrate to
the sink habitat whenn(2)

t > k1. The overall rate of
population increase is given by:

λ = λ1n
(1)
t + λ2n

(2)
t

n
(1)
t + n

(2)
t

(4)

The overall population cannot grow (λ > 1) unless
the ratio of source to sink population sizes,R, is above
a threshold value,

R∗ = λ1 − 1

1 − λ2
.

Although the spatial aspects of this model are mini-
mal, we include space implicitly as habitat area by plac-
ing constraints on suitable habitat that could function as
source habitat. We defined source habitat for two hypo-
thetical species with different “juxtapositional” habitat
requirements. In other words, for each species it is not
enough to know that a particular cell is suitable. To
serve as source habitat, it must also occur in a required
juxtaposition with other suitable or unsuitable habitat.
We represent an edge-dependent species that requires
habitat within 60 m of the edge of suitable habitat, and
an interior species that requires a minimum core patch
area of at least 3600 m2. A 20 m× 20 m cell of suitable
habitat is considered edge habitat if it is within 60 m of
unsuitable habitat. Otherwise, we consider it core (in-
terior) habitat. A cell is considered sink habitat if it is
suitable except that it occurs in the wrong juxtaposition
t
d ed a
s

urce
a
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p -
s e
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m den-
s akes
i wth
r itat
t

λ

With this modification of the model in (3) and (4),
we can explore the effects of spatial uncertainty on the
areas of source and sink habitat and the resulting im-
pact on overall population growth rate. We compare
variation among model predictions for ten generated
landscapes representing each of the six reference land-
scapes and each of the two species with different source
habitat requirements.

A.2. PATCH model

The PATCH model (Schumaker, 1998; Schumaker
et al., 2004) is spatially explicit—it represents the habi-
tat as a georeferenced grid of cells that differ in qual-
ity, and represent the activities of individual animals
on the grid. PATCH links habitat maps with data on
species’ habitat preferences, territory size, vital rates,
and movement ability. The model uses an annual time
step to simulate survival, breeding, and movement of
females, and to predict changes in population size over
time.

PATCH produces a map of hexagonal breeding
territories. We created a territory map with 20,958
hexagons, 12 pixels per side, from each replicate land-
scape for each of the six landscape types (Table 1).
The minimum territory size was 3200 m2 (eight 400-
m2 pixels). We estimated the maximum territory size
as 9600 m2 (24 pixels) by multiplying the minimum
territory size by 3.0, which is the modal ratio of max-
imum to minimum territory radius of values that we
f lity
a

noc-
c ula-
t way
b en-
t est
q or-
h

ss-
m cies
s (i.e.,
a the
m 0 m
a n fe-
m ure
t year.
W site
o other habitat. For example, a cell that hasI = 1, but
oes not occur within 60-m of an edge is consider
ink for an edge-dependent species.

For each species, we calculate the area of so
nd sink habitat by using FRAGSTATS (McGarigal
nd Marks, 1995). Source habitat is assigned a lo
opulation growth rate ofλ1 = 1.3; sink habitat is as
igned a population growth rate ofλ2 = 0.8. We assum
hat populations completely avoid areas of unsuit
abitat (I = 0). We reduce the number of parameters
anageable number by assuming that equilibrium

ities in source and sink habitats are equal. This m
t possible to calculate the overall population gro
ate,λ, as a function of the growth rate in each hab
ype, and the areas of source,A1, and sink habitat,A2:

= λ1A1 + λ2A2

A1 + A2
(5)
ound in a survey of published population viabi
nalyses.

Simulated animals search for suitable and u
upied breeding sites between years. In our sim
ions, animals use a random walk strategy mid
etween completely ignoring the quality of pot

ial territories and always moving to the best (high
uality) breeding territory within the search neighb
ood.

We contrast simulations of a mobile and a le
obile species. Individuals of the less-mobile spe

earch a minimum and maximum distance of 20 m
djacent hexagons only), whereas individuals of
obile species search a minimum distance of 10
nd a maximum distance of 1000 m. We also assig
ales of the mobile species low site fidelity to ens

hat adults search for a new breeding site each
e assign females of the less-mobile species high
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fidelity to ensure that they remain at the same breeding
site indefinitely.

The average habitat quality of a territory influences
the survival, reproduction, and movement of its occu-
pant. We assume that both species had two age classes,
juvenile and adult, with the same maximum vital rates
(survival = 0.5 for juveniles and 0.5 for adults; average
fecundity = 3 offspring/female). We chose these values
because they result in saturation of the breeding terri-
tories for landscapes with spatial–statistical attributes
that permit persistence. Each breeding female’s vital
rate is a product of the maximum rate and the propor-
tion of suitable habitat in her territory.

Simulations begin with 500 adult females, run for-
ward for 500 year, and report two predictions: the num-
ber of adult females in the final year, and the time-
averaged population growth rate (λ) for each replicate
with a non-zero final population. We present the mean
and standard error of these responses for ten replicate
maps for each species on each of the six landscape types
in Fig. 2.
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