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Abstract

This paper describes an approach for conducting spatial uncertainty analysis of spatial population models, and illustrates
the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial population models typically
simulate birth, death, and migration on an input map that describes habitat. Typically, only a single “reference” map is available,
but we can imagine that a collection of other, slightly different, maps could be drawn to represent a particular species’ habitat.
As a first approximation, our approach assumes that spatial uncertainty (i.e., the variation among values assigned to a location
by such a collection of maps) is constrained by characteristics of the reference map, regardless of how the map was produced.
Our approach produces lower levels of uncertainty than alternative methods used in landscape ecology because we condition
our alternative landscapes on local properties of the reference map. Simulated spatial uncertainty was higher near the borders
of patches. Consequently, average uncertainty was highest for reference maps with equal proportions of suitable and unsuitable
habitat, and no spatial autocorrelation. We used two population viability models to evaluate the ecological consequences of
spatial uncertainty for landscapes with different properties. Spatial uncertainty produced larger variation among predictions of a
spatially explicit model than those of a spatially implicit model. Spatially explicit model predictions of final female population
size varied most among landscapes with enough clustered habitat to allow persistence. In contrast, predictions of population
growth rate varied most among landscapes with only enough clustered habitat to support a small population, i.e., near a spatially
mediated extinction threshold. We conclude that spatial uncertainty has the greatest effect on persistence when the amount and
arrangement of suitable habitat are such that habitat capacity is near the minimum required for persistence.
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1. Introduction

- _ _ Environmental variability (spatial and temporal)
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variation, spatial structure can have a strong influ- and Gustafson, 2004Geostatistical models provide
ence on the dynamics of populatiorRitchie, 1997. an alternative that results in more-realistic alternative
This is why models used for population viability anal- maps. Geostatistical models assume that spatial uncer-
ysis (PVA) typically include environmental variation tainty is controlled by the average statistical proper-
to assess a population’s chances for persisting into ties (e.g., mean, variance—covariance, and spatial auto-
the future. Spatially explicit population models (e.g., correlation) of the landscape. Describing spatial auto-
Dunning et al., 199pare often used in PVA when the correlation is, therefore, an important aspect of spatial
populations of concern inhabit spatially heterogeneous uncertainty analysisdeuvelink (1998)demonstrated

landscapes. spatial uncertainty analysis for continuous data. In this
paper, we outline an approach that uses a geostatistical
1.1. Monte Carlo analysis of spatial models model to simulate spatial uncertainty in multinomial
data.
Spatially explicit population models require geo- Here, we describe a method for spatial uncertainty

referenced input data about habitat (e.g., vegetation, analysis that constrains the generated landscapes to
soil, habitat suitability). The influence of uncertainty share certain properties of a reference map, includ-
in the values provided as spatial inputs on model pre- ing (1) the average proportion of different habitat cat-
dictions is, therefore, a concern (e.plansen et al., egories, (2) the spatial autocorrelations among cate-
1999; Bennett et al., 2000; Hunsaker et al., 2001; Elith gories, and (3) local fidelity at a regular grid of loca-
et al., 2002. Understanding the effects of these spa- tions. We generate alternative maps by conditioning
tial inputs adds a new wrinkle to the process of model multinomial probabilities used to classify each loca-
testing and evaluation. tion on the surrounding data. Because values are con-

Population models are expected to go through un- ditioned on a coarse grid from the reference map, our
certainty and sensitivity analysis as part of their devel- approach produces a more realistic, less variable, col-
opment and testing{cCarthy etal., 1995; Bart, 1995 lection of alternative maps than those produced using
Sensitivity analysis ranks parameters according to their null landscape generators such as RULE. Our method
relative influence on model predictions, whereas uncer- preserves large-scale features that would be unlikely to
tainty analysis quantifies the variation in model pre- change in different renditions of a map. To illustrate
dictions due to variation in parameters. The purpose our approach, we focus on binary habitat maps used as
of sensitivity analysis is to identify key parameters for input to population models.
more careful measurement in the hope of reducingun-  Our main goal is to demonstrate a method for spa-
certainty. The purpose of uncertainty analysis is to pro- tial uncertainty analysis of population viability models.
vide confidence limits on model predictions. Existing Our secondary objective is to begin to understand what
tools to evaluate non-spatial models in ecology (e.g., species attributes and landscape properties make ani-
Gardner et al., 1981are now being supplemented by mal population models sensitive to spatial uncertainty.
others that are capable of dealing with spatial inputs.

Tools for spatial uncertainty analysis answer the 1.2. Representing spatial life histories using a
guestion, “Given the variation known to existamong re- population model
alistic alternative landscapes, how variable are model
predictions?” This question is answered by generat- The spatial life history of a species influences the
ing alternative landscapes, using each one as input toability of its populations to persist in different land-
the population model of interest, and quantifying the scapes. Similarly, the sensitivity of a spatial population
variation among model predictions. Alternative land- model to spatial uncertainty may depend, in part, on the
scapes are often generated using a statistical model thaspatial life history of the species represented.
serves as a caricature of spatial variation in model in-  Two main features of a species’ spatial life his-
puts. In the ecological literature, alternative landscapes tory are its habitat requirements and its movement pat-
have often been produced using fractal models that terns. To demonstrate our technique, we use two spa-
impose very little constraint and result in very differ-  tial population models to compare hypothetical species
ent realizations (e.gWith and King, 2001; Gardner that differ in spatial life history. A source—sink model
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All of the geostatistical methods described here
were implemented using GSTATPébesma and
Wesseling, 199¢http://www.frw.ruu.nl/gstajl
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2.1. Generation of reference landscapes

& We began by producing original reference land-
scapes with known spatial-statistical properties
parameters (Fig. 2). We studied six different reference landscapes
to better understand how the frequency of suitable
o — o habitat,p, and Fhe degree. of spatial autocorrelatiGn,
Jandscapes I nodel results influence spatial uncertainty. Each reference map was
created by producing a single unconditional simulation
from the random model in E¢1), with the values of
p andC shown inTable 1 For some analyses, we also

produced maps witpp=0.9 (suitable habitat is com-

. d ies that differ in habi mon) by switching suitable and unsuitable categories
is used to compare species that differ in habitat re-Oin maps withp = 0.1 (suitable habitat is rare).

quirements: one species that requires edge habitat an Each reference landscape was generated on a
one species that requires interior habitat. We expect 500 500 grid, with a grid cell size of 20m 20m

tr;]at edge_-dehpen_dent sge(;,:es W"; Eebr_nore ser;]sitive tOWe assigned each cell a habitat type with two possible
changes in the size and shape of habitat patches asSOya1ues | =0 (unsuitable) or 1 (suitable).

ciated with spatial uncertainty than interior species. A We used unconditional simulatiorB(rgess and
spatiallyexplicit quel is used to compare speciesvyith Webster, 198Dto generate each reference map. Un-
h|gh.and low mobility. We expect thqtamobﬂe SPECIES  ;onditional simulation of categorical data requires a
that integrates over the landscape in a course-grained, . - frequencyp, and a semivariogram model(h)

manner W'”. be Iess_sensmve to spatial uncertam_ty th_an that describes the probability that pairs of locations sep-
a Ie_ss-moblle species that uses the landscape in a f'ne'arated by distandebelong to the same category, or in
grained mannedevins, 1968. our case, that they are both either suitable or not.

We adopted an exponential semivariogram with a
range parameter fixed at 1000 m, nugget parandgter
and sill parametep,. The ratioC=0,/(61 +6>) de-

] ) o scribes the degree of spatial autocorrelation.
Our approach to spatial uncertainty analysis is de-

picted inFig. 1 and described in four sections be- ;) — g, + 6, (1 _ eXP(ﬁgo)), h>0
low. Normally, a reference landscape would be the

starting point for spatial uncertainty analysis. Because 01+ 02 = Var(/) = p(1— p)

this paper explores the implications of using a refer-

ence map with different spatial statistical properties, 2.2. Generation of alternative landscapes
we generated reference maps with known properties.

We describe our methods for generating these refer-  We assume that spatial uncertainty is constrained by
ence landscapes in the first section below. The secondthe spatial properties of the reference map. In practice,
section below describes the generation of alternative we would be handed a reference map without knowing
landscapes from a reference map. The third section the underlying process and parameters that generated
describes how we quantified the resulting spatial un- it. Therefore, we pretend the parameter values are un-
certainty. The fourth section describes the propagation known and begin by estimating parameter values from
of spatial uncertainty through each of two population the reference map, as described in Seci@lbelow.
models, and our methods for summarizing results. Next, we generate a sample of alternative landscapes

Run
conditional
simulations

Fig. 1. Flow chart of the procedure for generating alternative land-
scapes for spatial uncertainty analysis.

2. Methods

1)


http://www.frw.ruu.nl/gstat/

16 H.l. Jager et al. / Ecological Modelling 185 (2005) 13-27

Fig. 2. Reference landscapes generated for each of six scenarios. White areas are locally unsuitable for all species. The proportion of suitabl
habitat in landscapes &= 0.5 in the top row ang=0.1 in the bottom row. The degree of spatial autocorrelation increases from left to right
(C=0,0.5,and 1).

using conditional simulation (SectioR.2.9. These tocorrelation. To describe the latter, we estimate pa-
landscapes share the global spatial—statistical proper-rameters of an exponential semivariogram model from
ties of the reference map, as well as local features from a sample drawn from each reference map. We designed

a subset of locations. the semivariogram sampl€&i. 1) to characterize au-
tocorrelation well for short separation distances (where
2.2.1. Spatial autocorrelation autocorrelation and predictive value is high) and to

To characterize each reference map, we estimate theobtain uniform spatial coverage. A stratified, random
proportion of cells with suitable habitat and spatial au- sampling design that combined a sample of points from

Table 1

Experimental design to evaluate the role of reference map characteristics

Mean frequency of category Spatial autocorrelation

1=0 =1 None C=0) Moderate C=0.5) StrongC=1)

0.1 (rare) 0.9 01 =0.09 01 =0.045 01=0.0
62=0.0 62=0.045 02=0.09

0.5 (half) 0.5 01=0.25 01=0.125 01=0.0
62=0.0 02=0.125 02=0.25

Values of two variogram parameteég, (nugget) and; + 6, (sill), andC (ratio of 9, to sill) are given for each of the six landscape types.
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aregular, coarse grid with a sample of randomly drawn
neighbors addresses both criteMégfrick and Meyers,
1987).

Next, we fit one semivariogram model to the sample
data forl =0 (unsuitable habitat) and another for1
(suitable habitat). We specified an exponential model
with the known range of 1000m and used GSTAT
to estimate the remaining semivariogram parame-
ters. Iteratively reweighted least squardg@man and
Jacobson, 1984; Cressie, 19&stimates the sill and
nugget parameters by minimizing

20

; wi(F(h) — y(h))?,  wherew; = %

The semivariogram fit improved when we excluded

)

17

formly atrandom from the reference map (i.e., the start-
ing cell was drawn at random from the top-left corner;
from that point the placement of the rest of the sample
grid was fixed). We chose a small percentage because
preliminary simulations with higher conditioning sam-
ple sizes showed very little variation among replicate
landscapes.

The simplest way to understand stochastic simu-
lation is to think of adding a random normal deviate
to the kriged mean surface, where the deviate drawn
at each location has zero as its mean and the kriging
variance as its variance. We used a sequential simula-
tion algorithm Gotway and Rutherford, 1994; Gomez-
Hernandez and Cassiraga, 19Bdcause itis computa-
tionally efficient and can be used with any type of vari-
able and distributionRierkens and Burrough, 1993

data pairs farther apart than half the range. This 500-m Each realization is drawn from a multivariate proba-

distance was divided evenly into 20 intervald,arger
weights,w;, were assigned to intervals with (1) more
pairs of sample locations and (2) with less variability.
For all six scenarios, we set the initial parameter esti-
mates ford; andd; to the true parameter values from
Table 1 We used semivariogram models with these pa-

bility distribution function where every location has its
own random variable. Through repeated application of
Bayes’ theorem, the multivariate distribution is con-
structed at each newly simulated location as a product
of univariate conditional simulations. Once the value
at a location is simulated, it is added to the condition-

rameter estimates in generating each of the alternativeing data for a given realization. For the special case of

landscapes.

2.2.2. Stochastic simulation
We used stochastic simulation (sB®ssi et al.,

categorical spatial data, the appropriate method is se-
guential indicator simulationGomez-Hernandez and
Srivastava, 1990; Isaaks, 1984

1993 to produce a sample of 10 alternative landscapes 2.3. Quantifying spatial uncertainty

sharing the spatial—statistical qualities of each refer-
ence map. This relatively small collection does a rea-

We define spatial uncertainty as the variance among

sonable job of describing variation produced by our habitat values assigned to the same location by a col-
method, and simplifies our presentation for illustrative lection of alternative maps. Because our binary maps
purposes. Stochastic simulation produces a collection represent habitat quality, we present maps showing the

of rough surfaces (realizations) that reproduce the vari-

ability in a spatial field Journel and Huijbregts, 19Y.8

variance in habitat quality € 0 or 1) among replicate
landscapes. By extension, spatial uncertainty among

The mean of many realizations is the smoothed kriged habitat maps with more than two categories could be

surface.
Simulated surfaces can be conditioned on avail-

able data, forcing each surface to converge to mea-

sured values at sampled locations. Conditioning pro-

guantified by the evenness in the distribution of cate-
gories (e.g., habitat types) assigned to a particular lo-
cation by replicate maps (sdager and King, 2004

duces landscapes with a closer resemblance to the ref-2.4. Propagating spatial uncertainty

erence map than unconditional simulation. The density

of the conditioning sampleHg. 1) controls the de-

gree of realism in alternative maps. Simulations with
a larger proportion of pixels sampled from the refer-
ence map have lower variability. We conditioned our
simulations on a 3% conditioning sample drawn uni-

The goal of spatial uncertainty analysis is to assess
the variation in model predictions that result from spa-
tial variation in inputs. The simplest models of popu-
lation viability assume that population size tracks the
amount of suitable habitat (e.ddarris et al., 199p
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Therefore, we first calculate variation in the amount of low and high mobility. The population responses sim-
suitable habitat provided by each alternative landscape. ulated by each model are describedippendix A

Next, we evaluate consequences of spatial uncer-
tainty using two population models that address differ-
ent aspects of the spatial life history of species. Both 3. Results
models are described Appendix A The source-sink
model distinguishes between the amount of source and  The results presented here include the amounts of
sink habitat and their influence on birth, death, and spatial uncertainty produced for landscapes with dif-
migration, but it does not consider their spatial ar- ferent characteristics, and the variation in predictions
rangement. This model cannot, therefore, reveal the made by the two population models due to spatial un-
effects of spatial uncertainty on mobility, but it is certainty in spatial inputs.
well suited for comparing edge-dependent and interior

species. 3.1. Spatial uncertainty
The second model, Program to Assist in Track-
ing Critical Habitat (PATCH), is a spatially explicit, Spatial uncertainty, defined as the variance in habi-

individual-based population modéd\gpendix A). The tat quality among replicate maps, was highest at the
PATCH model does not simulate juxtapositional habi- boundaries of patches (black kig. 3) and lowest in

tat requirements (i.e., edge-dependent versus interior),the center of patches (white lig. 3). This can best be
but it is well suited for comparing interior species with seen by comparing the areas of high spatial uncertainty

-~
A

Fig. 3. Maps of spatial uncertainty for each of six scenarios. The proportion of suitable habitat in landsqep8s5iin the top row and
p=0.1in the bottom row. The degree of spatial autocorrelation increases from left toQight 0.5, and 1). Uncertainty is highest in locations
designated as suitable in half of the replicate maps (black). Uncertainty is lowest in locations with either suitable or unsuitable habitat in all of
the replicate landscapes (white).
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in Fig. 3with the locations of patches of suitable habitat 3.2. Predictions of the source—sink model
(black) inFig. 2

Fig. 4 summarizes the average and S.D. of spatial ~ Variation among replicate landscapes in the pro-
uncertainty among cells for maps with different proper- portion of source habitat predicted by the source—sink
ties. Average variation among our binary habitat maps model was small for all species and landscape types
was highest when half of the replicate maps were un- (Table 2. This is shown by the lack of vertical scatter
suitable (= 0), as illustrated by maps in the top row of among points (each point is the result for one land-
Fig. 3and the right side dfig. 4 Thisisto be expected scape) irFig. 5a.
because the variance of a binomial variable reaches a  Overall population growth rates, predicted by the
maximum of 0.25 when exactly half of the replicates source—sink model (sefppendix A) were also insen-
belong to one category and the other half belong to the sitive to differences among replicate landscapes. The
other value. largest standard deviationiramong 10 replicate land-

Average spatial uncertainty was also higher in un- scapes was less than 0.0Bable 3. However, near
correlated landscapes (maps in left-most column of the population growth rate threshold% 1) this small
Fig. 3 and open bars irFig. 4) than in landscapes variation among landscapes can have important conse-
with high spatial autocorrelation (right-most column quences. For some replicate landscapes, the population
of Fig. 3and black bars ifrig. 4). model predicts overall population increase>(1); in

We also looked at the reclassification rate for one
particular category. For example, the reclassification
rate for suitable habitat is the proportion of cells suit-

able in the reference map that were classified as unsuit- 100 ®
. . . . . a
able in replicate maps. Like spatial uncertainty, the av- o °
erage reclassification rate for one category was higher 2
in uncorrelated landscapes than in correlated land- < 60 :
. . . o
scapes. Unlike spatial uncertainty, the rate of reclas- E (] 8
sification for a particular category was highest when & 401 . .
the category was rare in the reference map. 8 3 | o .
= ’ ¢ [+] ¢ L]
0lo—o 8 o
. ~ . - 20 1 o
Proportion of habitat suitable 184 () | o Interior species
p=0.1 p=05 -}; 1.6 1 o  Edge-dependent species 8
k N o k e = :
0.25 T- - — £ 144 o
\ Biplt ¢ H = 4 8
2 0.20 4 :E“ 1.0 : 2 '] » %
g £ 038 .
% 0.15 1 T‘j 0.6 A
g E U'i ] ]
= 010 0.2 z g
= 0.0 -0 ———
a )05 A (\‘xgc\cﬂ‘\cg‘;o“% \\k:\‘:gd\c(i‘\chto“% \\?“:gdcﬂ\“’g\(o““:
T Spatial autocorrelation
0.00 Rare Half Common
Qo0 Ae-;x\\"' IRCAL NS éew\‘ qeo0® p=0.1) (p=035) (p=0.9)
.“D ® ‘\0 ®
Spatial autocorrelation Fig. 5. Predictions of (a) percent source habitat and (b) population
growth rate were generated by the source—sink model for an interior
Fig. 4. Average spatial uncertainty, measured as the S.Bvalfies species and an edge-dependent species on ten replicate landscapes

among replicate landscapes, averaged across map cells. Individualin each of nine landscape categories. Landscape categories included
bars show average values for reference maps differing in the propor- three proportions of suitable habitat: commprQ.9), half =0.5),

tion of suitable habitatp, and the degree of spatial autocorrelation and rare f=0.1), and three levels of spatial autocorrelation: none,
(error bars show among cell variation=1 S.D.). moderate, and strong.
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Table 2
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Standard deviation in the percent of source habitat predicted by the source—sink model for two species types and nine landscape types

Proportion suitable Species type Degree of spatial autocorrelation
None Moderate Strong
0.1 Interior 00179 00521 02309
Edge-dependent .8687 02156 01038
0.5 Interior 03954 01792 02847
Edge-dependent 8441 04587 Q1706
0.9 Interior 09463 05188 01397
Edge-dependent .6618 03615 01381

Note that we produced maps with switched suitable and unsuitable use the maps in which suitable habitat has an expected frécubycy

switchingl =0 to 1, and vice versa, in maps wip0.1.

Table 3

Standard deviation in overall population growth rate predicted by the source—sink model for two species types and nine landscape types

Proportion suitable Species type Degree of spatial autocorrelation
None Moderate Strong
0.1 Interior 00034 00117 00358
Edge-dependent .0008 00028 00085
0.5 Interior 00139 00085 00106
Edge-dependent .0033 00020 00025
0.9 Interior 00178 00093 00031
Edge-dependent .0042 00022 Q0007

Note that we produced maps with switched suitable and unsuitable use the maps in which suitable habitat has an expected frédubycy

switchingl =0 to 1, and vice versa, in maps wipl+0.1.

others, the model predicts that the population will de-
cline (A <1) to extinction Fig. 50).

Variation inNf was higher for landscape types with
a high carrying capacity, i.e., more suitable habitat

Interior and edge-dependent species showed differ- (p=0.5) and/or higher spatial autocorrelation. The S.D.
ent responses to reference landscape properties. Thén Ni was higher for populations simulated on land-
interior species derived more source habitat and fasterscapes types with higher averageand no extinctions

population growth from landscapes with more suitable

(S.D.>180inTable 4 than for those simulated on land-

habitat and strong spatial autocorrelation, whereas the scape types on which some replicates reached extinc-
edge-dependent species performed best on landscapeson (S.D. <90 inTable 4.

with equal amounts of suitable and unsuitable habi-
tat and no autocorrelatioffrig. 5. However, as noted
above, spatial uncertainty had little impact on popula-
tion growth rates.

3.3. Predictions of the PATCH model

Spatial uncertainty produced more variation in pre-
dictions of the PATCH model than in predictions of the
source—sink model. Variation among individual repli-
cates is shown ifrig. 6a and b, and the S.D. in two
predictions (se@ppendix A), final female population,
N; and population growth rate are showrniliable 4

In contrast to the results fd¥, variation in popu-
lation growth rateltig. 6b) was greatest for landscape
types with a low carrying capacity, suggested by a low
average\; (Fig. 6a). Depending on spatial details of
a particular replicate map, populations might saturate
breeding territories or decline to extinction. The S.D.
in average population growth rate was zero in land-
scape types on which no populations persisted; low
(0.005-0.02) inlandscape types that had no extinctions;
and high (0.05-0.45) in landscape types with extinc-
tions for some replicate simulation$able 4. Spatial
uncertainty caused the highest variation among pre-
dictions of population growth in landscape types with
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Table 4

Results predicted by the spatially explicit model for two species types and six landscape types

Proportion suitable Species type Degree of spatial autocorrelation

None Moderate Strong

Proportion persisting?

0.1 Non-mobile (03] 0.8 10
Mobile 0.0 10 10

0.5 Non-mobile 10 10 10
Mobile 10 10 10

S.D. in final female numbel;

0.1 Non-mobile (03] 66.7 1843
Mobile 0.0 874 2327

0.5 Non-mobile 266 3278 2674
Mobile 2629 2286 3300

S.D. in population growth rate

0.1 Non-mobile (03] 0.438 Q015
Mobile 0.0 0.094 Q017

0.5 Non-mobile 059 Q027 Q010
Mobile 0.057 Q0022 Q006

small averagé®\; (p=0.1, moderately correlated land- 4. Discussion
scapes for mobile and less-mobile species@n@.5,
uncorrelated landscapes for the less-mobile species in  The main goal of this study was to demonstrate a
Fig. 6a and b). method for spatial uncertainty analysis of population
On average, populations of the mobile species at- models, as discussed in Sectiohd and 4.2below.
tained larger final female sizes than those of the less- The case studies did not use very many replicate land-
mobile speciesKig. 6a). The mobile and less-mobile  scapes or population models, and can therefore only
species showed a similar response to spatial uncer-suggest patterns. Although preliminary, our results be-
tainty, except in one case where the difference in av- ginto understand what species attributes and landscape
erageN; placed one species closer to an extinction properties make animal population models sensitive to
threshold. For landscapes witlx 0.5 and no autocor-  spatial uncertainty. We discuss these results in Section
relation, theN; predictions for the non-mobile species 4.3 below.
were much nearer zero than those for the mobile species
(Fig. 6a); therefore population growth rates of the non- 4.1. Generation of alternative landscapes
mobile species varied mor&if). 6). Populations of
the less-mobile species reached extinction within 500  One feature that distinguishes landscapes generated
years in two replicate landscap&sd. 7a), but all popu- by this method from null landscapes is that they honor
lations of the mobile species persist&iy 7b). We do the spatial statistical properties of the original reference
not attribute this difference in the effect of spatial un- |landscape. To draw an analogy with painting, a ran-
certainty to species mobility, but rather to the proximity dom map is non-representational, modern art, whereas
of averageNs predictions to zero. If we had simulated each of our maps is an impressionist's rendering of
a lower proportion of suitable habitat, say0.05, the original landscape. Maps produced for the purpose
perhaps populations of the less-mobile species would of error analysis are meticulously generated repro-
have gone uniformly extinct and the mobile species ductions obtained by analyzing and modeling varia-
would have produced the more variable response of thetions among paintings of the same landscape by dif-
two. ferent artists. By sharing properties at a small subset
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Fig. 6. Predictions of (a) final number of femalég)and (b) pop- Fig. 7. PATCH simulations of female population size over time on

ulati_on growth rate were genera_ted by the PATCH model for ten 10 replicate landscapes with rare<0.1), locally suitable habitat
replicate landscapes in each of nine landscape categories. Landscap%nd moderate spatial autocorrelati@=0.5) for (a) a less-mobile
categories included two proportions of suitable habitat: rared(1) species and (b) a mobile species

and half p=0.5), and three levels of spatial autocorrelation: none
(C=0), moderate¢=0.5), and strong&=1).

portions of suitable and unsuitable habitat. By exten-

of locations in the conditioning sample, our method sion, for maps with more than two categories, we would
pins the gross features of the alternative landscapes toexpect the highest average uncertainty when the refer-
the original map. Unlike random maps, our maps pre- €nce map has equal proportions in each category. Sec-
serve the spatial orientation of larger patches in the ond, spatial uncertainty is higher near the boundaries of
original map because the conditioning sample tends patches in the original landscape than in the middle of
to seed these larger patches. Our approach does notits large patchesvicGwire and Fisher (200Zgompare
however, go so far as to analyze and mimic error in two maps describing the spatial uncertainty generated
the process used to create the original migér and by a method similar to ours describing differences be-
King, 2004. GIS data rarely come with the metadata tween LANDSAT-classified and ground-truth data. Al-
needed to develop an error budget, which is a signifi- though they conclude that the two are clearly different,
cant undertaking in its own right. Instead, our approach we observe that both maps share this tendency toward
estimates map-to-map variation from the geostatisti- higher uncertainty near boundaries.
cal properties of a single original map that is typically
available. 4.2. Future directions in methodology

Our results highlight two statistical properties of cat-
egorical spatial data. First, variation among landscapes We envision two directions for future research to
is higher in uncorrelated landscapes than in correlated improve the technique proposed here for spatial uncer-
landscapes, and higher in landscapes with equal pro-tainty analysis. First, our method for generating spatial
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and populations increase or decrease slowly enough

tion of reference landscapes. Our generated landscapeshat neither absorbing state is reached by the end of the

tend to be highly fragmented near the boundaries of
large patches, and they tend not to have inclusions
(small patches) within the interior of large patches.
Keitt et al. (1997)suggested that overestimation of
small patches is a real feature of error in classified im-
agery. This artificial fragmentation might be reduced by
designing a heuristic swapping algorithm to bring the
patch-size distribution of generated landscapes close to
that of the original landscapéohnson et al. (1998)g-
gested that a technique for minimizing differences be-
tween conditional frequency distributions of simulated
and actual multinomial landscapes could be developed
in future.

Another need that we perceive for uncertainty anal-
ysis of categorical data is to develop a method that
accounts for the hierarchical structure in land cover
classification. An approach that first generates higher-

level classes and then generates the sub-classes within

themwould account for the fact that two sub-classes are
less likely to be mistaken for one-another if they belong

to different classes. For example, first classify patches
as forest or grassland; then, classify areas within for-

simulation’s time horizon.

Case 1When the amount and arrangement of suitable
habitat are such that this species cannot persist, varia-
tion among alternative landscapes is unimportant, and
all landscapes lead to extinction.

Case 2When the amount and arrangement of suitable
habitat are such that habitat capacity is large, variation
among alternative landscapes has a small effect, prob-
ably because of differences in their carrying capaci-
ties. On landscapes with sufficient clustered habitat,
variation in persistence is zero, variation in popula-
tion growth rate is low, and variation in predictions of
population sizeNs, is high.

Case 3 When the amount and arrangement of suit-
able habitat are such that habitat capacity is small,
spatial uncertainty has the greatest effect on persis-
tence and population growth rate. When the habi-
tat becomes saturated at a low population size, the
population experiences an elevated risk of extin-
ction.

The concept of Minimum Amount of Suitable Habi-

est patches as deciduous or coniferous forest, and artat (MASH; Hanski et al., 199Psuggests that know-
eas within grassland patches as tallgrass or shortgrassng the amount of habitat available is sufficient for de-

prairie.

4.3. Effects of spatial uncertainty on model
predictions

We were surprised by the lack of influence that spa-
tial uncertainty in input data had on predictions of the
source—sink model. Compared with the influence of
mean spatial properties, the influence of uncertainty

was very small. One reason may be that the model uses

aggregate summaries of spatial data rather than simu-
lating space explicitly.

Spatial uncertainty produced larger variation in pre-
dictions of the PATCH model. Results for this model

termining the likelihood of persistence. In this study,
spatial autocorrelation also had a strong effect on vi-
ability predictions. Our results suggest that extinction
thresholds can be more precisely defined based on both
properties; for example, persistence is possible if spa-
tial autocorrelation X and suitable habitat ¥%. Near

this threshold, the potential effect of spatial uncertainty
on predictions of persistence and population growth
rate is greatest.

Both population viability models revealed impor-
tant effects of species’ spatial life history on popu-
lation persistence, but only small differences in how
species respond to spatial uncertainty. Spatial uncer-
tainty had negligible effects on two species with con-

suggests to us that the effects of spatial uncertainty trasting source habitat requirements in the source—sink
are mediated by the size of the basin of attraction for model. However, simulated populations of the two
model predictions. Consider three cases: (1) situations species showed very different responses to average
when the amount of suitable habitat and its spatial ar- landscape properties. In particular, viability of the in-
rangement are such that a populations of a species canterior species increased with increasing spatial auto-
not persist, (2) situations when populations saturate the correlation, whereas viability of the edge-dependent
habitat, reaching a size that is not vulnerable to extinc- species decreased with increasing spatial autocorre-
tion, and (3) situations when habitat capacity is low, lation.
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Our results with the PATCH model did not support Agency (EPA) funded Nathan Schumaker’s contribu-
our hypothesis that less-mobile species are more sensition. The manuscript has been subjected to EPA's peer
tive to spatial uncertainty than mobile species. Predic- and administrative review, and has been approved for
tions of N; for the mobile species were always greater publication. The majority of this research was per-
than or equal to those for the non-mobile species be- formed at Oak Ridge National Laboratory (ORNL)
cause non-mobile females had more trouble finding and sponsored by the U.S. Department of Defense
new breeding territories once the populations reached Strategic Environmental Research and Development
saturation than their mobile counterparts. Only one Program (SERDP) through military interagency pur-
case resulted in a difference in variation betwé&gn chase requisition no. W74RDV00090746. ORNL is
predictions for the two species. In this case, the aver- managed by UT-Battelle, LLC, for the U.S. Department
ageN; difference placed one species closer to an ex- of Energy under contract DE-AC05-000R22725. The
tinction threshold than the other species. Differences tools used in this research included GSTAT (GNU pub-
caused by species mobility might be greater in a model lic software), C-codes to sample landscapes (available
thatimposes higher movement costs than does PATCH. upon request from lead author), FRAGSTAT (publicly

These results lead us to speculate that the same pro-available from Kevin McGarigal dittp://www.umass.
cesses that shape basins of attraction for populationedu/landeco/research/fragstats/fragstats)htmd the
size control the effects of spatial uncertainty. We spec- PATCH model (publicly available from N. Schumaker
ulate that life history attributes and environments that at the U.S. EPA).
produce complex dynamics are most sensitive to spa-
tial uncertainty. Populations in habitats that promote
chaotic p(_)pqlation Qynam_ics are likely to s_how very Appendix A
high sensitivity to slight shifts in demographic param-
eters associated with the details of a particular land- A1l Source
scape. Although the case studies presented here are
merely illustrative, they suggest interesting patterns to
guide future research in this area.

—sink model

We use a simple two-box spatially implicit model to
describe the population dynamics of individuals breed-
ing in source and sink habita®glliam, 1988, with mi-
gration between the two habitat typ&aufliam, 1996.
Acknowledgements Source habitat serves as a net exporter of animals and

has a finite rate of population increase greater than one.

Carolyn Hunsaker (US Forest Service) deserves Sink habitat has a finite rate of population increase less
credit for initiating the project that funded this re- than one that would lead to local extinction in the ab-
search and for sharing a draft of “Spatial Uncertainty sence of immigration. This model is given by K@),
in Ecology.” Edzer Pebesma from the Netherlands wheren® is the number of breeders in the source habi-
Centre for Geo-ecological Research developed Gstat.tat; n® is the number of breeders in the sink habitat;

He generously made Gstat freely available, and made is the finite rate of population increase in source habitat;
helpful modifications. Raymond McCord provided a ki is the maximum number of breeders in the source
SUN/Sparcstation running OpenWindows to run the habitat. Parameters, andk; are the corresponding
PATCH model. The U.S. Environmental Protection quantities for sink habitat.

(1) )Vlngl)s ngl) =< kl
Miv1 = MAX @ _ @ ® -0
rang — 7 — k1), n o>k
3)
kzngz), ngl) <k

@
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Excess breeders in the source habitat emigrate to

the sink habitat Whemgz) > k1. The overall rate of
population increase is given by:

)Llngl) + A2n§2)

ngl) + ngz)

A= (4)

The overall population cannot grovit ¥ 1) unless
the ratio of source to sink population siz8sjs above
a threshold value,

_ rM—1
T 1- A

*

Although the spatial aspects of this model are mini-
mal, we include space implicitly as habitat area by plac-
ing constraints on suitable habitat that could function as
source habitat. We defined source habitat for two hypo-
thetical species with different “juxtapositional” habitat
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With this modification of the model in (3) and (4),
we can explore the effects of spatial uncertainty on the
areas of source and sink habitat and the resulting im-
pact on overall population growth rate. We compare
variation among model predictions for ten generated
landscapes representing each of the six reference land-
scapes and each of the two species with different source
habitat requirements.

A.2. PATCH model

The PATCH model $chumaker, 1998; Schumaker
etal., 2004is spatially explicit—it represents the habi-
tat as a georeferenced grid of cells that differ in qual-
ity, and represent the activities of individual animals
on the grid. PATCH links habitat maps with data on
species’ habitat preferences, territory size, vital rates,
and movement ability. The model uses an annual time

requirements. In other words, for each species it is not step to simulate survival, breeding, and movement of

enough to know that a particular cell is suitable. To

females, and to predict changes in population size over

serve as source habitat, it must also occur in a requiredtime.

juxtaposition with other suitable or unsuitable habitat.

PATCH produces a map of hexagonal breeding

We represent an edge-dependent species that requiretgrritories. We created a territory map with 20,958

habitat within 60 m of the edge of suitable habitat, and

hexagons, 12 pixels per side, from each replicate land-

an interior species that requires a minimum core patch scape for each of the six landscape typésb(e J.

area of at least 36009nA 20 m x 20 m cell of suitable
habitat is considered edge habitat if it is within 60 m of
unsuitable habitat. Otherwise, we consider it core (in-
terior) habitat. A cell is considered sink habitat if it is
suitable except that it occurs in the wrong juxtaposition
to other habitat. For example, a cell that hasl, but

The minimum territory size was 3200°ngeight 400-
m? pixels). We estimated the maximum territory size
as 9600 (24 pixels) by multiplying the minimum
territory size by 3.0, which is the modal ratio of max-
imum to minimum territory radius of values that we
found in a survey of published population viability

does not occur within 60-m of an edge is considered a analyses.

sink for an edge-dependent species.

Simulated animals search for suitable and unoc-

For each species, we calculate the area of sourcecupied breeding sites between years. In our simula-

and sink habitat by using FRAGSTAT$/¢Garigal
and Marks, 199b Source habitat is assigned a local
population growth rate of; =1.3; sink habitat is as-
signed a population growth rate of = 0.8. We assume
that populations completely avoid areas of unsuitable
habitat ( = 0). We reduce the number of parametersto a

tions, animals use a random walk strategy midway
between completely ignoring the quality of poten-
tial territories and always moving to the best (highest
guality) breeding territory within the search neighbor-
hood.

We contrast simulations of a mobile and a less-

manageable number by assuming that equilibrium den- mobile species. Individuals of the less-mobile species
sities in source and sink habitats are equal. This makessearch a minimum and maximum distance of 20 m (i.e.,

it possible to calculate the overall population growth adjacent hexagons only), whereas individuals of the
rate,, as a function of the growth rate in each habitat mobile species search a minimum distance of 100 m
type, and the areas of sourég, and sink habitatd: and a maximum distance of 1000 m. We also assign fe-
males of the mobile species low site fidelity to ensure

that adults search for a new breeding site each year.
We assign females of the less-mobile species high site

= AAL+ A2A2

5
A1+ Ao ®)



26

fidelity to ensure that they remain at the same breeding
site indefinitely.

The average habitat quality of a territory influences
the survival, reproduction, and movement of its occu-

H.l. Jager et al. / Ecological Modelling 185 (2005) 13-27

Gardner, R.H., Gustafson, E.J., 2004. Simulating dispersal of rein-
troduced species within heterogeneous landscapes. Ecol. Model.
171, 339-358.
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fecundity = 3 offspring/female). We chose these values
because they result in saturation of the breeding terri-
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that permit persistence. Each breeding female’s vital
rate is a product of the maximum rate and the propor-
tion of suitable habitat in her territory.
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ward for 500 year, and report two predictions: the num-
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with a non-zero final population. We present the mean

and standard error of these responses for ten replicate
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