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ABSTRACT

Applied ecological models that are used to under-

stand and manage natural systems often rely on

spatial data as input. Spatial uncertainty in these

data can propagate into model predictions. Uncer-

tainty analysis, sensitivity analysis, error analysis,

error budget analysis, spatial decision analysis, and

hypothesis testing using neutral models are all

techniques designed to explore the relationship

between variation in model inputs and variation in

model predictions. Although similar methods can

be used to answer them, these approaches address

different questions. These approaches differ in

(a) whether the focus is forward or backward

(forward to evaluate the magnitude of variation in

model predictions propagated or backward to rank

input parameters by their influence); (b) whether

the question involves model robustness to large

variations in spatial pattern or to small deviations

from a reference map; and (c) whether processes

that generate input uncertainty (for example, car-

tographic error) are of interest. In this commentary,

we propose a taxonomy of approaches, all of which

clarify the relationship between spatial uncertainty

and the predictions of ecological models. We

describe existing techniques and indicate a few

areas where research is needed.

Key words: spatial sensitivity analysis; geostatis-

tics; neutral model; spatial decision analysis; error

budget analysis; error analysis.

INTRODUCTION

Ecological models are diverse in purpose and

structure. Early models were simple theoretical

models designed to produce general predictions

unconstrained by the details of a particular time or

place. The growth of public interest in solving en-

vironmental problems has since provided a new

impetus for the development of applied ecological

models (Goodchild and Case 2001). Meanwhile,

advances in computing and the availability of re-

motely sensed environmental data have made it

possible to develop models of specific, realistic sit-

uations with spatially resolved processes. Spatially

explicit population models emerged as part of this

trend. This type of model has been used, for ex-

ample, to help understand how human alterations

of river flow can influence bird and fish popula-

tions (for example, Jager and others 1993, Wolff

1994, DeAngelis and others 2000). In these models,

the aquatic environment is represented as a grid of

cells with daily changes in water depth and/or ve-

locity. The success of individual animals in terms of

feeding, reproduction, and survival, depends on

local hydrology.

All ecology emerges from interactions among

individual organisms that co-occur in time and

space. One way to represent ecological interactions

is to use a spatially explicit model with distance

constraints on the ability to find food, mates, or

refuge. Many ecological phenomena deemed im-

possible by aspatial models, become possible when

illuminated by a spatial persective. Models that

consider spatial heterogeneity are able to produce
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realistic behaviours sush as the coexistence of

competing species, the coexistence of predators/

parasites with their prey/hosts (refuges), the per-

sistence of metapopulations (the rescue effect), and

speciation (allopatric). Cormack (1988) summed up

the importance of spatial heterogeneity to ecosys-

tems as follows: ‘‘Without variability there would

be no biology. Without space, no environment.’’

Geo-referenced spatially explicit models rely on

spatial data, generally in the form of digital maps

from geographic information systems (GIS). For

population models, these input maps usually pro-

vide information about habitat (for example, land

cover, vegetation, soil, habitat suitability index).

The influence of uncertainty in spatial data on

model predictions is therefore a concern (see, for

example, Hansen and others 1999; Bennett and

others 2000).

Because many ecological models now depend on

spatially distributed information, methods have

been developed specifically to evaluate the role of

spatial uncertainty, which has been defined as the

difference between phenomena in the world and the

description of these phenomena (Edwards and For-

tin 2001). In this paper, we present a classification

scheme for questions about the relationship between

predictions of an ecological model and variation in its

spatial inputs. The approaches explored here address

six distinct but closely related questions about this

relationship (Figure 1). This taxonomy could serve

to organize the expanded methods that are expected

to accompany the increased use of spatially explicit

models in ecology. These approaches include:

1. Uncertainty analysis. How does uncertainty in

spatial data influence uncertainty in model

predictions?

2. Sensitivity analysis. Which spatially distributed

input variables are the model most sensitive to?

3. Error analysis. How do measurement and

cartographic errors propagate through the

model?

4. Error budget analysis. What sources of error in

the processes used to obtain spatial input data

cause the largest variation in model predictions?

5. Decision analysis and risk assessment. Given the

variation known to exist among realistic alter-

native input maps, what is the optimal decision

(or, alternatively, the ecological risk) predicted

by the model?

6. Hypothesis testing using neutral models. What

influence does variation in spatial structure

have on model predictions?

An analogy with painting helped us to understand

the distinctions among these six approaches. Like

the simulation of alternative landscapes, painting is

used to describe and understand the real world, but

not always be reproducing it exactly.

Uncertainty Analysis

Uncertainty analysis seeks to quantify the variation

in model predictions, Var(Y), caused by uncertainty

in parameters, Var(Xi), where Y = f(X). The varia-

tion generated by each parameter depends on

(a) how sensitive the model is to the parameter and

(b) parameter uncertainty (Hambry 1994). If the

parameter is measured very precisely, it may not

generate much uncertainty, even though the

model is sensitive to it. In the nonspatial case,

Monte Carlo simulation (that is, multiple evalua-

tions with random inputs) (Manly 1997) of the

model is used to conduct uncertainty analysis.

Parameter vectors are drawn from a specified

multivariate distribution that includes correla-

tions among parameters (Dale and others 1988).

According to O‘Neill and others (1982), the multi-

variate distribution should describe the actual dis-

tribution of values in the ecological system

represented by the model.

Spatial uncertainty analysis is similar to that of

nonspatial input parameters except that each pa-

rameter is a georeferenced lattice, X, rather than a

single value. A stochastic model is often used to

describe spatial uncertainty in X. The variation

described includes spatial variation within a lattice

cell and temporal variation. Monte Carlo simula-

tion can still be used to propagate a collection of

alternative inputs through the ecological model,

but the distribution of parameter values is multi-

variate (all spatial locations). Stochastic simulation

Figure 1. Decision tree used to identify the appropriate

spatial Monte Carlo method among those that require

alternative spatially distributed input variables.

842 H. I. Jager and A. W. King



can be used to ‘‘draw’’ alternative landscapes

(Heuvelink 1998; Wang and others 2000). A sta-

tionarity assumption makes it possible to use the

same distribution at all locations. Spatial autocor-

relation among data is also described (for example,

Heuvelink 1998). Stochastic simulation generates

alternative landscapes based on a probabilistic

model of the input field, including its distribu-

tion and autocorrelation structure. In rare situa-

tions where the ecological model makes

independent predictions at each location, and there

is no aggregation or spatial pattern analysis of

model predictions, non-spatial methods for propa-

gating uncertainty can be applied independently at

each location (Goovaerts 2001). If distributional

requirements are met, simulation can be replaced

by a simpler analytical approach (Heuvelink 1998).

For multinomial data, probabilities for classifying

each location can be conditioned on surrounding

data either by minimizing differences between

higher-order (conditional) frequency distributions

of simulated and actual landscapes (Johnson and

others 1999) or, more commonly, by assuming a

geostatistical model. In the case of categorical data,

indicator simulation is the appropriate geostatistical

method (Isaaks 1984). Conditional simulation,

which uses a subset of data from the reference

landscape, ensures that local information will be

preserved in the landscapes generated (for exam-

ple, Kyriakidis 2001; Jager and others forthcoming

(unpublished)).

Sensitivity Analysis

Sensitivity analysis seeks to rank input variables by

their influence on predictions of a model. Sensi-

tivity is purely a property of the model; the nature

of uncertainty in the input variables is irrelevant.

In a nonspatial model, sensitivity to a parameter is

the partial derivative of model response, Y, with

respect to the input parameter, Xi. A normalized

index, dY
dXi

� Xi, is often used to compare parameters

with different units. Because sensitivity is evalu-

ated at the current parameter values, sensitivity

rankings can change from one region of parameter

space to another. Sensitivities can be calculated

analytically (Dale and others 1988; Railsback and

Jager 1988).

The main distinction between sensitivity analysis

and the other approaches is that sensitivity is a

property of the ecological model and not of its

spatial inputs. Sensitivity analysis compares the

influence of small variations within multiple spatial

inputs on model predictions. The statistical model

for sensitivity analysis simply perturbs each value

in a reference map independently by equivalent

amounts to facilitate comparison and is not con-

cerned with the actual properties of input uncer-

tainty (for example, its magnitude or correlation

structure). However, local sensitivities can be used

to generate an integrated uncertainty index by in-

tegrating sensitivities over the multivariate distri-

bution of parameters.

To be consistent with the way sensitivity analysis

is defined for nonspatial parameters, Monte Carlo

methods used to generate alternative landscapes

should superimpose a standard amount or per-

centage of variation on each reference input map.

Because input values at different locations are in-

dependent, alternative landscapes can be con-

structed simply by adding a deviate to each location

on the reference map, where the deviate is drawn

from a single univariate distribution. This process is

repeated for each type of input map (for example,

elevation and land cover), and variation in model

predictions is later partitioned among the input

maps. Alternatively, Crosetto and others (2000)

recommend performing spatial sensitivity analysis

using variance-based techniques.

Error Analysis

The objective of error analysis is to quantify errors

in model projections propagated from different

sources of input estimation error (Parysow and

others 2000). Parameter variation in error analysis

represents estimation error (O’Neill and others

1982). Spatial error analysis focuses on the contri-

butions of georegistered input data used by a spatial

model. The uncertainty among alternative land-

scapes used to conduct spatial error analysis should

reproduce errors inherent in the process by which

maps are created. For example, spatial data ob-

tained by interpolating field measurements (Wang

and others 2000) are likely to have a different error

structure than spatial data obtained by classifica-

tion of remotely sensed imagery (Ehlschlaeger and

Goodchild 1994; Soares and others 1997). There-

fore, spatial data derived by different means require

different statistical models, derived from replicate

maps produced by the appropriate cartographic

process (McGwire and Fisher 2001). Using our

analogy with painting, maps produced for the

purpose of error analysis are reproductions ob-

tained by analyzing and modeling variations

among paintings of the same landscape by different

artists.

Spatial error analysis is often carried out with

spatial data (locations and values) obtained by

remote sensing. Error exists in both the location

Spatial Uncertainty 843



and the value assigned to each cell. For categorical

data, classification (assignment of values) can be

supervised (the model is based on measured

ground-truth data) or unsupervised. Map accuracy

is summarized by a confusion matrix (Friedl and

others 2001). Element i, j of the confusion matrix

contains the number of pixels classified into cate-

gory i that were observed to be category j in inde-

pendent ground-truth data. This matrix can be

converted to an error matrix containing probabili-

ties of misclassification.

Alternative maps can be generated from a refer-

ence map and an error matrix. The category assigned

to each map cell in the reference map may be altered

in a new realization based on multinomial proba-

bilities taken from the error matrix. This approach

does not consider spatial variation in accuracy be-

cause the error matrix no longer contains spatial in-

formation (Congalton 1988; Steele and others 1998;

McGwire and Fisher 2001). Developing Monte Carlo

methods for generating landscapes with realistic

spatial variation and autocorrelation in error is an

active area of research (McGwire and Fisher 2001).

Error Budget Analysis

The ultimate goal of error budget analysis is to

reduce uncertainty in those spatial inputs that have

the largest influence by more accurate measure-

ment or higher spatial resolution in sampling.

Construction of a spatial error budget is similar to

spatial sensitivity analysis in that it has a backward

focus, highlighting important sources of error. It

differs from sensitivity analysis in that the variation

among input maps reflects variation introduced by

the cartographic process.

Parysow and others (2000) describe error budget

analysis as a method of systematically partitioning

the contributions of different sources of error via an

ANOVA-like table. Parysow and others fit a poly-

nomial regression between the variance of model

output and the standard errors of model inputs.

Gertner and others (2002) generated spatial error

budgets for erosion (soil loss) by modeling the

propagation of error from slope, up-slope contrib-

uting area, and model parameters with a variance

partitioning method. Error was quantified for each

grid cell by comparing detailed ground-truthing

measurement of parameters with available soil

maps. This budget identified two different meas-

urements that contributed most to the uncertainty

in predicted erosion. In areas with flat topography,

slope contributed most to uncertainty. In steep

areas, up-slope contributing area contributed most

to uncertainty.

In the example above, spatial variation in error

was represented. Developing an error budget for a

particular model and site requires intensive effort,

the results of which may not generalize to other

sites. However, the example provides a nice illus-

tration of a generalizable result drawn from a site-

specific analysis.

Decision Analysis and Risk Assessment

Ecologists are typically interested in predicting the

distribution of likely outcomes to ensure that

management decisions incorporate uncertainty.

Both spatial decision analysis and risk assessment

consider spatial uncertainty. Most ecological pro-

blems will require a suite of alternative landscapes

produced by stochostic simulation. However,

probability kriging may be a simpler alternative

(Goovaerts 2000) for simple GIS models that do not

involve movement of animals or materials. In risk

assessment, spatial models have been used to rep-

resent heterogeneity in the exposure of animals to

toxic chemicals (Clifford and others 1995; Pastorok

and others 1996; O‘Connor 1996). Spatial uncer-

tainty can influence estimates of ecological risk

(Rossi and others 1993), and this may be particu-

larly important in population viability analysis,

which seeks to quantify the risk of future extinc-

tion for declining populations.

Spatial optimization of ecological models, which

can account for spatial uncertainty, is gaining

popularity as a management tool. An example of

a typical optimization problem is to identify the

optimal number and configuration of land parcels

to be included in a wildlife reserve, where the

objective is to maximize the benefits to a listed

population (for example, see Hof and Bevers 1998;

Pressey and others 1997). Spatial uncertainty can

be incorporated into spatial decision analysis by

defining a stochastic objective. For example, one’s

goal might be to choose areas for contaminant re-

mediation that minimize humans risk of exposure

(Massemann and others 1991) or to configure the

smallest wildlife reserve with a less than 95%

chance of extinction over the next century.

Hypothesis Testing Using Neutral
Models

Neutral models play an important role in land-

scape ecology, where they are used to study the-

oretical effects of spatial pattern on populations

(for example, Gardner and others 1987; With and

others 1997; Wiegand and others 1999). Neutral

models are used to formulate and test hypotheses
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about spatial effects in a virtual setting that ex-

tracts them from the extreme complexity of the

natural world. This is accomplished by creating

alternative landscapes with only minimal con-

straints. In the simplest case, neutral models as-

sign landscape categories to individual grid cells at

random, constraining only the overall proportion

of each category. The underlying multinomial

model for generating alternative categorical land-

scapes is similar to that used in error analysis,

except that they do not represent deviations from

a reference map. Other neutral models have been

designed to test hypotheses involving contagion or

spatial autocorrelation—for example, the modified

random clusters method of Saura and Martinez-

Millan (2000) and the fractal generation methods

of Hargrove and others (2002) and With and King

(2001).

In general, neutral models do not attempt to

mimic error structure in a cartographic process or

preserve properties of a reference landscape. For

example, patches are free to be positioned at dif-

ferent locations on the landscape and in different

configurations relative to one another. If land-

scapes produced by neutral models were paintings,

they might resemble Picassos.

Future Directions

We envision two directions for future research

aimed at improving on current techniques. First,

the simulation methods currently used to generate

alternative landscapes for spatial uncertainty anal-

ysis do not preserve the patch-size distribution of

the reference landscape. Generated landscapes dif-

fer from the reference landscape in that they tend

to be highly fragmented near the boundaries of

large patches, and they tend not to have inclusions

(small patches) within the interior of large patches.

Keitt and others (1997) suggested that overesti-

mation of small patches is a real feature of error

in classified imagery. It may therefore be appro-

priate to retain this feature when conducting error

analysis or error budget analysis; however, for

uncertainty analysis, the uncertainty near patch

boundaries should be a feature of among-map,

rather than within-map, variation. That is, bound-

aries delineating patches within a particular map

should be drawn such that the overall patch-size

distribution is preserved, but boundaries should

differ among maps. This is important because many

ecological models are sensitive to fragmentation.

Artificial fragmentation might be reduced by

designing a heuristic swapping algorithm to bring

the patch-size distribution of landscapes using ex-

isting methods close to that of the reference land-

scape (for example, conditional simulation).

Another promising direction for simulating un-

certainty in categorical data would be to devise a

method that accounts for the hierarchical structure

in land-cover classification. An approach that first

generates higher-level classes, followed by the

subclasses within them, would reflect the fact that

two subclasses are less likely to be mistaken for one

another if they belong to different superclasses. For

example, a hierarchical approach to classifying land

cover might first assign areas as either forest or

grassland. Next, patches within areas of forest

would be classified as either deciduous or conifer-

ous forest, and patches within areas of grassland

would be classified as either tallgrass and shortgrass

prairie.

CONCLUSIONS

Analysis of spatial models and their responses to

geographic inputs will no doubt continue to be

important. As tools continue to be developed,

ecologists will be better equipped to address ques-

tions about the influence of uncertainty in spatial

input data and model robustness. The six ap-

proaches reviewed here differ, sometimes subtly, in

the questions that they address. Even when the

method for generating spatial variability is the

same, the data required to characterize that varia-

bility, as well as interpretations of the resulting

variation in model output, can be quite different.

For example, does variance in spatial data represent

natural variation, lack of knowledge about the

correct value, known measurement error, or car-

tographic error? New methods are needed to reveal

relationships between ecological model predictions

and spatial uncertainty, but careful consideration of

the relevant question(s) is a paramount concern.
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