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Cokriging to Assess Regional Stream Quality
in the Southern Blue Ridge Province
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Cokriging is used to predict stream chemistry at unsampled locations with the use of spatial and
intervariable correlation. The technique is used in this study to predict the acid neutralizing capacity
(ANC) of streams in the Southern Blue Ridge Province (SBRP). ANC measurements between pairs of
streams surveyed in this region were found to be spatiaily correiated over distances up to around 40
km. Predictions were improved by including elevation in the analysis to represent the combined
influence of elevational gradients in climate, geology, soils, hydrology, and vegetation on stream ANC.
The cokriging analysis identified specific stream reaches predicted to be most sensitive to acidification
and located areas of high uncertainty. Stream ANC levels below 50 ueq/L. were predicted for one-fifth
of the upper nodes associated with digitized headwater reaches in the SBRP. The majority of these
were located in the higher elevations of the Great Smoky Mountains National Park, in the vicinity of
Mount Mitchell, and in the Blue Ridge Mountains in southern North Carolina.

INTRODUCTION

As concern for large-scale environmental problems, such
as acid rain, global warming and climate change, ozone
depletion, nonpoint-source pollution of surface waters, and
air pollution, has grown in recent years, the need for regional
impact assessment has increased. It is anticipated that future
efforts to detect and ameliorate the effects of large-scale
environmental problems will require the development of new
monitoring and assessment methods [Science Advisory
Board, 1988]. The key features of these large-scale problems
are spatial variability and geographic extent. Consequently,
assessment techniques are needed that explicitly deal with
environmental data in a spatial context. Spatial statistical
methods are well suited to the assessment of spatially
explicit environmental data and deserve special attention in
the development of new assessment methods. This paper
demonstrates two valuable roles for spatial statistics in
regional assessment: (1) the location of specific problem
areas or resources at risk and (2) the estimation of regional
distributions for environmental attributes from spatially ex-
tensive survey sample data.

Future efforts to study or ameliorate impacts on specific
lakes and streams will require identification of individual
surface waters that are likely to be susceptible to acidifica-
tion. Since it is generally not feasible to take chemical
samples of all stream reaches within a region, methods are
needed for locating susceptible streams based on limited
survey data. Kriging can provide estimates of stream chem-
istry at desired locations based on available survey data.
These estimates can then be used to pinpoint environmental
problem areas for study or remediation.

A second role of spatial methods is to produce refined
regional population estimates from survey data. Recent
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large-scale environmental surveys have identified large re-
gions of the eastern United States that contain surface
waters characterized by low buffering capacities, making
these systems sensitive to impacts from acidic precipitation
[Omernik and Powers, 1983; Landers et al., 1988; Schindler,
1988]. In response to the Acid Precipitation Act of 1980, the
United States Environmental Protection Agency (EPA) has
conducted synoptic surveys of lakes and streams in these
potentially sensitive areas [Linthurst et al., 1986; Kaufmann
et al., 1988]. To date, analysis of survey data has success-
fully characterized the chemical status of surface waters in
many regions of the United States with a statistical approach
that requires no assumptions about resource attributes.
However, this approach removes the resources from the
spatial context in which they occur, and, in general, does not
benefit fully from the resource information gained by sam-
pling. The spatial statistical approach presented here pro-
duces refined regional population estimates that take advan-
tage of the spatial context of the population.

Spatial Autocorrelation in Stream Acid
Neutralizing Capacity

Kriging techniques make use of the fact that many natural
phenomena exhibit spatial autocorrelation. Streams that are
close together tend to share similar soils, geology, climate,
vegetation, atmospheric deposition rates, and other environ-
mental factors that influence surface water chemistry. Krig-
ing methods construct a regional model of spatial autocorre-
lation to estimate variables, such as water chemistry, at
unsampled locations based on data measurements at sam-
pled locations. Cokriging methods use not only the spatial
autocorrelation information but also spatial correlations with
other environmental variables. Cokriging can improve pre-
diction of surface water chemistry with the addition of
covarying geographic variables. An important feature of
both techniques, from both a scientific and policy point of
view, is that variance estimates are provided that quantify
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the uncertainty associated with predictions at each location.
These estimates can be used to display the spatial patterns in
uncertainty throughout a region and to identify localized
areas where additional sampling efforts should be directed.

In this study, we use the spatial statistical technique of
cokriging to predict the acid neutralizing capacity (ANC) of
streams in the Southern Blue Ridge Province (SBRP), one of
the regions studied by the EPA synoptic surveys [Messer et
al., 1986, 1988; Kaufmann et al., 1988]. The SBRP is of
particular interest because of its exposure to relatively high
levels of atmospheric deposition and the existence of low
ANC surface waters in the region [Church, 1989]. ANC
measures the ability of a stream to neutralize or buffer acidic
inputs and is therefore a good indicator of sensitivity to
acidification. We demonstrate in this paper that SBRP
stream ANC, measured as part of the National Stream
Survey (NSS), exhibits spatial autocorrelation over dis-
tances up to approximately 40 km and is therefore well
suited to the cokriging approach. Elevation is used as a
covariate in the cokriging analysis because of its correlation
with ANC and because it is also a spatially autocorrelated
attribute of streams.

This application of kriging is unconventional in that
streams do not exist everywhere in the two-dimensional
landscape, suggesting that stream distance or connectedness
between stream reaches might be a more appropriate dis-
tance measure than euclidean distance. On the other hand,
there are many influences on stream ANC that operate in the
full two-dimensional landscape. Church [1989, p. 801] em-
phasized the fact that streams should not be divorced from
their watersheds, noting that ‘‘although surface waters can
be affected by acidic deposition originating from emissions
many miles distant, the importance of the watershed as a
unit remains crucial to the understanding of current and
future aquatic effects. Indeed, for drainage lake and reser-
voir systems in the Northeast, Upper Midwest, and South-
ern Blue Ridge Province of the U.S., a vast majority of ANC
production occurs as a result of biogeochemical processes
within the surrounding watershed.”’

The spatial associations between directly linked streams in
a network may be superimposed on the field of spatial
autocorrelation caused by watershed processes and other
two-dimensional factors. The approach used here restricts
attention to euclidean distances in studying the spatial auto-
correlation among stream reaches.

Effects of Elevation on ANC in Streams

The Great Smoky Mountains and Southern Blue Ridge
Mountains occur in the SBRP. The elevational range among
sampled NSS streams in this region is 728 m (see Figure 1)
and the correlation between elevation and log, (ANC)
among sampled NSS reach nodes is —0.51 (p = 0.0001). The
next-highest correlation between ANC and any geographic
variable measured by the NSS was with stream grade, which
correlates well with stream elevation. This suggested that
including elevation as a covariate would improve ANC
predictions.

A decreasing trend in buffering capacity along an eleva-
tional gradient has been noted in other surface waters and
areas as well. Both Winger et al. [1987] and Silsbee and
Larson [1982] report a significant negative correlation be-
tween elevation and alkalinity in the SBRP. Lakes in the
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Adirondack Mountains show a strong negative correlation
(—0.63) between ANC and elevation [Hunsaker et al., 1987,
Brakke et al., 1988). Turk and Adams [1983] report a much
stronger association in the Flat Tops Wilderness Area of
Colorado, with elevation accounting for 76% of the variance
in lake alkalinity.

Elevation is a complex gradient that represents the com-
bined influence of other environmental gradients such as
geology, soils, vegetation, and climate {Whittaker, 1973].
Several of these factors contribute to the tendency for
stream and lake ANC to decrease at higher elevations.

Average annual precipitation tends to increase with eleva-
tion [Dingman et al., 1988] and ranges from about 140 cm to
250 cm in the Great Smoky Mountains National Park [Sils-
bee and Larson, 1982]. Increased precipitation, combined
with lowered temperature and evapotranspiration, leads to
an average stream discharge at high elevations that is ap-
proximately double that at low elevations [Silsbee and
Larson, 1982]. Streams at high elevations drain watersheds
that spend a larger percentage of time in the clouds, which
generally have a low pH. Higher wind velocities result in
greater interception and deposition of aerosols. Swank and
Waide [1988] report that sulfate deposition showed a mea-
surable increase at higher elevations in Coweeta, North
Carolina, with sulfate replacing bicarbonate as the dominant
anion in stream water. These orographic effects result in
increased deposition of sulfate and hydrogen ion with eleva-
tion.

In addition to increased deposition, the amount of buff-
ering of precipitation accomplished by cation exchange
interactions with soils is likely to decrease with elevation.
Steep slopes and shallow soils lead to a lower soil water
contact time (quick flow), lowering the potential for sulfate
adsorption by soils and decreasing the potential for release
of base cations through weathering and ion exchange. Swank
and Waide [1988] measured a greater fraction of precipita-
tion discharged as quick flow in high-elevation catchments.
They postulate that lowered temperatures reduce overall
biological activity, causing a decrease in the rates of sulfate
adsorption and microbial incorporation of suifate into or-
ganic sulfur at higher elevations.

The geology of a site in the SBRP sometimes determines
its elevation, with more-resistent, slow-weathering forma-
tions at higher elevations. In valley regions with limestone
geology the streams tend to run in limestone-bearing faults
or windows. Limestone weathers quickly and provides buff-
ering capacity to streams. Resistant sedimentary rocks make
up the Great Smoky Mountains, while metamorphic and
granitic rocks characterize the Blue Ridge Mountains to the
southeast [King et al., 1968]. Neither of these bedrock
complexes weather easily or provide much buffering capac-
ity to streams. In addition, a sulfur-bearing Anakeesta for-
mation occurs at high elevations in some areas of the Smoky
Mountains and is a natural source of acidity. In general, the
contribution to streams from groundwater buffered by con-
tact with bedrock decreases with elevation, leaving a larger
fraction contributed by more-acidic surface flow.

The relationship between ANC and elevation can be
modeled as a stochastic and/or a deterministic relationship.
In the cokriging approach used here, the relationship be-
tween the two variables was modeled as a statistical associ-
ation, with no deterministic component other than a constant
unknown mean. More deterministic alternatives to cokriging
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would model the local mean ANC (drift) at each stream node
as a function of elevation. The mean ANC at each location
would then be represented either as a function of surround-
ing elevations (ultimately a complex integrated watershed
model) or as a function of the elevation at that location alone
[see Stein, 1984; Ahmed and DeMarsily, 1987].

METHODS

Regional Survey Data

In the spring of 1985 a pilot study of the National Stream
Survey was conducted in the SBRP [Messer et al., 1986,
1988]. A target population was defined in the statistical
design of the survey and can be summarized as the popula-
tion of medium-sized stream reaches draining watersheds of
around 10°-10* ha. Streams to be included in the sample
were selected by placing a grid over 1:250,000-scale U.S.
Geological Survey (USGS) maps and identifying the first
target reach encountered following the downhill gradient
from each grid point [Overron, 1987]. The streams sampled
were generally characterized as low-order reaches <1 m
deep and <5 m wide during base flow conditions [Messer et
al., 1986]. Methods used in the pilot study and in the first
phase of the NSS are described by Messer et al. [1986] and
Kaufmann et al. [1988], respectively. For each of the
reaches in the NSS sample, chemistry measurements were
taken at the downstream node on three occasions. An
average of the three ANC measurements sampled in the
spring was referred to as the “‘index’’ chemistry in the NSS.
This “‘index’’” chemistry was sampled in the spring because
streams typically exhibit low ANC at that time and because
sensitive life stages of biota are typically present {Messer et
al., 1986]. We have used spring index chemistry for lower
nodes supplemented by available upstream measurements,
providing a total of 75 sample locations (see Figure 1). Since
the data used in this analysis derive from a synoptic survey
designed to record a snapshot of stream chemistry in time,
our results are also tied to the base flow conditions of the
spring of 1985 and are not intended as predictions of future
chemistry. However, base flow chemistry was selected for
the index to provide a more stable characteristic over time
and is relevant to regional assessment.

EPA Computerized Stream REACH Population

Ideally, ANC predictions would be produced for all target
reaches in the SBRP. Qur best approximation to the I:
250,000-scale target population of reaches is shown in Figure
2. The reservoirs and lakes shown on the map were ex-
cluded. These reach traces were obtained from 1:
500,000-scale USGS maps but are not guaranteed to contain
all reaches that appear on those maps. REACH files con-
taining these traces and their attributes are maintained by the
EPA and are available from the STORET retrieval system
[Olson et al., 1981]. We used the geographic information
system ARC-INFO to obtain the locations for all nodes
(intersections) from these reaches. Reach nodes falling on or
outside of the boundary were excluded. The 1:500,000-scale
REACH population consisted of 420 reaches and 416 reach
nodes interior to the SBRP region boundary.

ELEVATION DATA

Computerized elevation data were available from digitized
topographic maps at all points at which ANC predictions
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Fig. 2. REACH file reaches from 1:500,000-scale maps.

were desired. This abundance of elevation data is important,
because the second variable (elevation) contributes to pre-
diction of the main variable (ANC) only at locations where
elevation is known and ANC is not.

Elevations were obtained from a grid with 10-s intervals of
latitude and longitude (about 30 m). At each EPA reach
node, a distance-weighted average of the nearest elevations,
reduced by a factor of 0.9649, was used. This factor was
obtained by regressing the computerized elevations against
those derived from 1:24,000-scale maps for NSS sampled
streams (R> = 0.96). This correction counteracts a slight
tendency to overestimate stream elevations because the grid
point elevations are unlikely to occur exactly on the stream
where elevation is at a minimum.

Kriging Methods

To illustrate the kriging approach used here, consider
elevation as an example. If elevation comes from a random
process, then the current topology is one realization of many
possible topologies that could have developed on the Earth’s
surface. While the possible realized surfaces are different,
ordinary kriging assumes that the statistical distribution
function generating the topologies is characterized by an
unknown constant mean and a correlation between locations
that is determined by their proximity. Statistical distribu-
tions characterized by two parameters, a mean and a vari-
ance, are familiar in nonspatial statistics. Observations taken
from different locations are usually assumed to be indepen-
dent (zero covariance). In the spatial statistical approach
taken here, the covariance between locations is not assumed
to be zero but is assumed to be defined by a decreasing
function of distance. In short, we assume that the sample
points come from a multivariate normal distribution with a
variance-covariance (V-C) matrix generated by an admissi-
ble covariance function (see Armstrong and Jabin [1981)] for
a discussion of admissible functions). More complete statis-
tical treatments of kriging methods and variations in the
assumptions required can be found in the works by Matern
[1986] and Delhomme [1978).

Cokriging estimation requires the identification of an ap-
propriate spatial covariance function for each variable: one
for log,(ANC) and another for elevation. In addition, a
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cross-variogram function or cross-covariance function is
required for each pair of variabies. This cross covariance
describes the covariance between log,(ANC) at one stream
node and elevation at another node as a function of the
distance between them. Spherical distances were used in our
analysis, mainly to adjust for the difference between a degree
in latitude versus longitude. The covariance functions that
we considered require three parameters: (1) the range, or
distance over which pairs of stream are spatially correlated;
(2) the nugget, or small-scale variation; and (3) the sill, or
large-scale variation. The covariance functions for the two
variables and the cross covariance were constrained to share
a common range and model form. This constraint combined
with limits on the parameter values for the cross-covariance
model and admissible functions for the three individual
models ensures that the joint log,(ANC)-elevation model
will be admissible [Hoeksema et al., 1989].

We employed a variogram estimation procedure that de-
fines the covariance function and/or variogram for each
variable using maximum-likelihood (ML) estimation [Kitani-
dis, 1983, 1986]. The parameters obtained using a ML
procedure constitute the most-likely values of the true
parameters for the process, given the values observed in the
sample, under the assumption that the covariance function
chosen is correct and that the sample comes from a Gaussian
process. A complete description of the technique used for
ML estimation is given by Kitanidis and Lane [1984]. The
program used here to conduct ML estimation of parameters
and the cokriging analysis was developed by R. J. Hoeksema
[see Hoeksema et al., 1989).

Kriging Assumptions and Validation

Cokriging assumes that the vector of sample measure-
ments comes from a jointly stationary process [Stein, 1984].
It is not possible to ascertain whether the stationarity
assumption of cokriging is met from a single realization
[Myers, 1989]. However, several properties of a realization
are commonly used to reject the intrinsic hypothesis includ-
ing (1) anisotropy, (2) the lack of a definite sill in the
experimental variogram, and (3) a parabolic shape in the
semivariogram near the origin [Neuman and Jacobson,
1984; McBratney and Webster, 1986].

We chose to model the joint spatial relationship between
log, (ANC) and elevation as a stochastic cokriging relation-
ship, rather than a partially deterministic relationship involv-
ing elevation as an external drift for several reasons. First,
the rejection of stationarity based on one realization with 75
points would be quite arbitrary and would require equally
strong alternative assumptions including the selection of
drift functions without any physical basis and the acceptance
of drift parameters estimated from a limited sample size.
Second, anisotropy is the only feature of the above three that
might be attributed to this realization, and this appearance is
caused to some extent by the considerable sample-size
differences among direction classes due to the elongated
shape of the SBRP region in the NE-SW direction (see
Figure 3). In this case, we decided to involve elevation as a
joint-stationary field and to err on the side of conservative
cokriging variances rather than attempt the estimation of an
unknown external drift based on elevation. It is hoped that
the use of local cokriging, involving only closer neighbors in
prediction, will protect against the effects of a slowly varying
mean.
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We make the additional assumption that the random
processes involved in this cokriging model are Gaussian.
This assumption is important for several reasons: (1) it
enables us to use ML parameter estimation, (2) it allows
cokriging variances to be used in constructing confidence
bounds on the cokriged estimates, (3) it allows us to produce
regional estimates by using conditional simulation, and (4) it
permits testing the goodness of fit of a proposed Gaussian
distribution under the hypothesis of second-order stationar-
ity. In the goodness of fit test our goal is to find a combina-
tion of a data transformation and a covariance function
dependent on distance such that the transformed data vector
could derive from a multivariate normal distribution having
both a constant mean and V-C matrix obtained from the
proposed function. Our methods for testing the proposed
hypothesis are presented below, including data transforma-
tion and a test for joint normality. Rejection of the test can
result from any one of the following problems: (1) the
process is not second-order stationary, (2) the underlying
process is not Gaussian, or (3) the model and parameter
values proposed are incorrect. Cross validation is presented
as an alternative for comparing the cokriging variance esti-
mates with the observed errors.

Lognormal Kriging

The advantages that are obtained when the assumption of
joint normality is valid were outlined in the previous section.
The frequency histogram of ANC values among sampled
streams suggests that it would be difficult to justify the
assumption of normality without first applying a log trans-
formation to the stream ANC data. Practice has shown that
the nonlinear estimator obtained in this way is generally
better than the estimator obtained by kriging the untrans-
formed data [Journel and Huijbregts, 1978; Rendu, 1979].
The estimate of ANC was calculated at each kriged location
as exp [Z + 1 var (Z)), where Z is the log, (ANC) estimate
and var (Z) is the kriging variance. We determined that this
estimator was not significantly biased by comparison with
ANC measurements in cross validation (mean error =
—8.86, p = 0.7231). The choice of zero as the displacement
in the log-transformation of ANC data precludes us from
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estimating any nonpositive ANC values, but no acidic sys-
tems were encountered in the NSS sample.

Joint Normality

Joint normality is influenced both by prior transformation
of the sample vector and by the selection of covariance
function. Our procedure for testing the goodness of fit of our
data to a normal distribution was applied to the log-
transformed sample vector, z. Our null hypothesis is that z is
normally distributed, with constant mean vector p and V-C
matrix ¥ defined according to the proposed covariance
function of distance,

z~ N(n, %) 1

In order to test whether (1) holds, we first remove the
mean vector p by premultiplying matrix P, where P = I —
n~! (11’) for sample size n. According to our hypothesis,

Pz ~ N(O, PXP’) (2)

Eigenvalue decomposition of PXP’ = EME' yields an (n —
1) by n matrix E of eigenvectors and an (n — 1) square
diagonal matrix of eigenvalues, M. The E matrix can be used
to make the sample vector independent as E'Pz has V-C
matrix E'(PEP)E = E'(EME’)E = M. The final step is to
premultiply by M "2, a diagonal (n—1) square matrix with
m; " on the diagonal, for each eigenvalue m;. We assume
here that X is positive definite.

In summary, if our hypothesis holds, theny = M~ '2E'Pz
is N(O, I), and standard univariate tests of normality can be
applied. A test of the two-sided Kolmogorov-Smirnov sta-
tistic evaluates the likelihood of the observed maximum
absolute deviation between the empirical cumulative density
function (cdf) of vector y and the standard normal cdf, under
the null hypothesis of joint normality [Gibbons, 1971].

Cross Validation of the Cokriging Model

Cross validation was used to help us to choose among the
alternative covariance models with parameters selected by
the ML procedure. In cross validation, sampled points are
removed, one at a time, and estimated by kriging (or
cokriging). If the covariance model is correct, then the
kriging variance should be a good estimator of the squared
difference between each measured value in the sample and
its kriged estimate. The standardized difference for the ith
sample point is defined as y; = [(z; — 2)/o];. If all kriging
assumptions are met, then this quantity should come from a
standardized joint-normal distribution.

Several statistics are commonly formed from these indi-
vidual standardized differences y;, based on the assumption
that they are independent [Hoeksema et al., 1989; Samper
and Neuman, 1989]. In fact they are not independent and
these statistics should be treated as crude indices. The two
such statistics that we compare are the mean square error
(MSE) obtained by squaring the difference between esti-
mated and sampled values and the average kriging variance
(AKV). Agreement between the MSE and AKYV indicates
that the kriging variance is estimated well, and a low MSE
indicates that the estimated log, (ANC) is accurate. These
criteria can be used to compare different covariance models
with particular emphasis on the agreement between the
AKYV and MSE.
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Estimation and the Screening Effect

For each location where cokriged predictions are desired,
a linear system of equations is solved based on two con-
straints: (1) the estimate is unbiased and (2) the cokriging
variance associated with the estimate is minimized. Two
formulations for the cokriging system are described by
Myers [1982) and Hoeksema and Kitanidis [1984, 1985].

The cokriging estimation was conducted using the two
nearest neighboring reach nodes from each of eight sectors
surrounding the location of interest. This technique of using
a small subset of available data in estimating each point is
more stable from a numerical standpoint and also selects
those points most highly valued in the interpolation. Accord-
ing to Burgess and Webster [1980, p. 320], ‘‘. . . near points
carry more weight than distant points, points that occur in
clusters carry less weight than lone points, and points lying
between the point to be interpolated and more distant points
screen the distant points so that the latter have less weight
than they would otherwise.’”

Regional Resource Estimates—Conditional Simulation

In the NSS, one of the primary goals was to estimate
regional distributions of stream chemistry. The same types
of spatial information used in cokriging to make local pre-
dictions can be used to generate estimates of regional
distributions. In this study, we are interested in obtaining
population estimates for a finite population of stream nodes
Jocated within the SBRP region. Some quantities, such as
the average ANC of the population, can be estimated di-
rectly by averaging cokriged estimates over the region of
interest. Other types of regional estimates (those involving
threshold values) can be produced by using conditional
simulation. In this study, we are interested in comparing the
regional population estimates obtained using spatial informa-
tion with the original NSS estimates.

In the NSS, regional estimates were made of the numbers
and proportions of stream resources with ANC values below
selected reference values. Together, these estimates form a
cumulative frequency curve for ANC. In the NSS, regional
population estimates were constructed for the target popu-
lation of stream reaches by applying weights to reflect the
probability of inclusion in the survey sample. Variance
estimates for these Horowitz-Thompson estimates involve
joint inclusion probabilities and were used to produce con-
fidence intervals [Overton, 1987].

The basic sample unit in the NSS survey was the stream
reach. However, population estimates were reported for
both upper and lower node populations associated with these
reaches. When the entire population of reaches is enumer-
ated, this reach-based population definition counts individ-
ual reach nodes twice when they are shared by converging
(diverging) reaches: once for each reach that it is associated
with as a lower (upper) node. Note also that numerous reach
nodes are represented in both the upper and lower node
populations.

Spatial regional estimates of ANC were obtained by using
conditional simulation (CS) under the cokriging model se-
lected earlier. For regional estimates involving threshold
values, simply counting the proportions of reaches with
cokriged ANC predictions below a selected reference value
yields a biased estimator due to the smoothed nature of the
estimator relative to the original surface. CS can be used to
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generate realizations that represent the full variability of the
field [Journel and Huijbregts, 1978). Spatial population
estimates for ANC reference values and prediction intervals
were obtained from these simulations.

The CS were generated by factoring the full cokriging V-C
matrix associated with the cokriged estimates of each of the
416 nodes (local cokriging was not used). A collection of 500
pseudorealizations of log, (ANC) following the spatial law of
the cokriging model and conditioned on the observed ANC
and elevation values were generated by premultiplying ran-
dom standard normal deviates by the factored V-C matrix.
For each simulation the number of reach nodes falling below
each specified threshold value of ANC was counted and
expressed as a proportion of the population size. In the
counting procedure, each node was weighted by the number
of reaches associated with it as an upper (or lower) node.
The distribution median is used as the regional estimate and
other quantiles provide distribution-free prediction limits.

Comparison of NSS Target and EPA REACH Populations

In the comparison of these population estimates the map
scales of reach populations are different. The NSS reaches
represent a finer scale of resolution than the REACH file
population. The estimated number of NSS target reaches is
2031 and the number of REACH file 1:500,000-scale reaches
is 420. Only stream nodes interior to the SBRP boundary
were included in the REACH population, leaving 416 reach
nodes. Using the reach-based definition from the previous
section, we obtained populations of 382 upper and 324 lower
nodes.

RESULTS

Modeling Spatial Covariance

We selected a spherical variogram model with a range of
42 km. This combination gave the best results in cross
validation. The ML parameters imply that the correlation
between log, (ANC) and elevation at zero distance is
—0.601, compared with the correlation of —0.508 estimated
from the sample.

The following parameters were obtained by ML for log,
(ANQC): nugget = 0.0 and sill = 0.92. For elevation the ML
parameter estimates were nugget = 0.005 and sill = 0.04.
The cross-variogram parameter estimates were nugget = 0.0
and sill = —0.227. The semivariogram model chosen for log,
(ANC) is shown in Figure 3.

We tested log, (ANC) as data vector z, with X defined by
the spherical model and the ML estimation parameter
choices listed earlier. The maximum Kolmogorov-Smirnov
deviation from normal was D = 0.055. The probability of a
larger deviation under the null hypothesis with a sample size
of 75 is very high: Pr {D (75) > 0.055} = 0.976. This test
supports the assumption that (1) is reasonable for log,.
(ANC). The same test was conducted for elevation with its
covariance model. The maximum deviation from normal for
elevation was D = 0.081. The probability of a larger devia-
tion is 0.693. Small probabilities should cause concern over
the validity of the assumption expressed in (1).

Cross validation was performed for both the kriging model
for ANC without elevation and the cokriging model in which
elevation was included. The estimated and measured NSS
values of log, (ANC) are compared in Figure 4. When
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elevation was not used in the prediction, the MSE was 0.389
and the AKV was 0.402. Adding elevation reduced the MSE
by 27% to 0.286, which corresponds to an average cokriging
variance of 0.297. The model parameters obtained by ML
estimation did better in cross validation than other values
chosen based on visual inspection of the experimental semi-
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variograms. We were also unable to formulate anisotropic
models that performed better in cross validation than the
isotropic models presented here.

Cross validation also provides a measure of the improve-
ment in estimation obtained by kriging over using the re-
gional mean. We used the cross-validation data to estimate
the percent of variation in measured ANC explained by
kriging (cokriging). We defined a coefficient of determination
(R?) as 1. — SSE/SST, where we defined SSE as the sum of
squared differences between the measured ANC and kriged
(or cokriged) estimate of ANC and SST as the sum of
squared deviations from the overall mean of the NSS sam-
ple. ANC estimates were improved by 63.4% with kriging
and by 70.4% with cokriging.

Estimates of Stream ANC

The cokriged ANC predictions for nodes of the EPA
REACH population are shown in Figure 5. The ANC pre-
dictions follow the topography fairly closely (compare Fig-
ure 1). High buffering capacity is predicted by cokriging for
reach nodes in the French Broad River valley (note the band
of ANC >250 peq/L in the northeast) and for reach nodes
near the Tennessee River (ANC in the 100- to 250-ueq/L
range). Cokriging predictions for reach nodes on the north-
ern edge of the province boundary are generally lower in
elevation with higher ANC estimates, while those on higher-
elevation ridges fall below 50 peq/L in predicted ANC. The
reaches predicted to have the lowest buffering capacities
occur in the three areas of Figure 5: (1) along the main ridge
of the Great Smoky Mountains on the border between North
Carolina and Tennessee, (2) in the Blue Ridge Mountains of
southwest North Carolina, and (3) in the Black Mountains in
the eastern portion of the SBRP.

Effect of Elevation in Reducing Uncertainty

The variances associated with kriging predictions are
greatly reduced in the cokriging analysis from the kriging
variances without elevation. Figure 6 is a map of cokriging
variances with regions of low (<0.2), medium (0.2-0.4) and
high (>0.4) uncertainty. A map of cokriging variances re-
veals that the uncertainty is greatest in areas most distant
from the NSS sample data locations and in areas with
neighboring sample locations in only one direction. Accord-
ing to this map, the predictions of low ANC in the Great
Smoky Mountains are more certain than the low ANC
predictions near Mount Mitchell in the east and those farther
south. Estimates of high ANC along the northern boundary
and ANC estimates out on the northeastern tail are relatively
uncertain. These kriging variances can be used to present
only those regions for which an acceptable level of confi-
dence is associated with the predictions.

Regional Elevation Estimates

We expected that the NSS target population derived from
more detailed maps would include lower-order reaches char-
acterized by higher elevations and lower ANC than reaches
in the EPA REACH population. These expectations were
not met by our results. The EPA 1:500,000-scale REACH
population includes more high-elevation nodes than are
found in the the NSS target population (see Figure 7). The
high-elevation nodes are generally upper nodes, and about
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half are headwater reaches. The same pattern is evident
when just the headwater populations are compared and
when all reaches are included.

Regional ANC Estimates

The cumulative proportion of lower and upper nodes
predicted to have ANC levels below the reference values
on the x axis are shown in Figures 8a and 8b. The NSS
1:250,000-scale population estimates can be contrasted with
estimates obtained by CS for EPA 1:500,000-scale reaches.
To be consistent with the NSS approach, we produced
separate regional estimates for upper and lower nodes in the
REACH population.

The variability in the distribution of spatial estimates is
much smaller than for the nonspatial population estimates.
This suggests, at first glance, that statements about the
regional status of these streams can be made with greater
certainty using the spatial estimates. The comparison is
complicated by the fact that quantiles summarize the entire
distribution of CS estimates, while confidence limits are
available to surround the nonspatial Horowitz-Thompson
estimates.

In the lower-node population, 4.6% of the reaches were
predicted by CS to have ANC =50 ueq/L at their lower
nodes. This is very close to the NSS estimate of 4.7%. Fewer
than 5% of the 500 simulated lower-node populations pre-
dicted more than 6.8% with ANC below 50 ueq/L, suggest-
ing that there is unlikely to be a very large proportion of
reaches with low ANC values at their lower nodes. The CS
distribution matches the NSS distribution well until around
100 weq/L. At this point the NSS estimates a large fraction of
the population having ANC between 80 and 150 ueqg/L, and
the CS estimates a more even distribution.

In the upper-node population the CS estimated 24% with
ANC values below 50 upeg/L, compared with the NSS
estimate of 6.2%. The CS estimated a larger percentage of
upper nodes with ANC = 100 ueq/L, but seems to follow the
NSS distribution fairly closely for higher values up to 550
ueq/L.

Both cdf comparisons have similar features. In general,
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the CS cdfs predict a relatively even distribution of ANC
resulting in a smaller proportion of intermediate ANC values
and a larger percentage of nodes with extreme values of
ANC. In contrast, the NSS cdfs predict that the majority of
reaches have ANC between 50 and 200 ueq/L. The evenness
of the CS cdf may result in part from the fact that a local
cokriging model was not used in producing the regional
estimates, and development of a local CS algorithm may help
to relax the constraining influence of the underlying assump-
tions.

DiscussioN

Regional ANC Estimates

Two important differences were noted between the spatial
population estimates of ANC and the NSS estimates. First,
the estimates produced by CS suggest a larger proportion of
low ANC stream nodes for the upper-node population. It is
likely that the additional information about elevation plays
an important role in the higher CS estimate. In the upper
node population there is a substantially larger proportion of
high elevation reach nodes than is represented in the NSS
sample.

The regional estimates produced by CS appear to be much
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more precise than the NSS estimates. The uncertainty
associated with the NSS estimates quantifies the uncertainty
in extrapolating from the samples ANC values to the unsam-
pled stream reaches using sample weights. The estimates
obtained by conditional simulation with the cokriging model
reduce this uncertainty by adding new sources of informa-
tion, but at the cost of adding quite a few assumptions: (1)
These spatial estimates provide new information about the
locations of the unsampled reaches, but we have to assume
that the population is correctly described by the digitized
REACH files; (2) The spatial approach uses the ANC
measurements at nearby sample reaches but requires an
assumption of stationarity and normality for log, (ANC); (3)
New information about elevation is provided to the CS
estimator, but assumptions about the spatial law of elevation
are required; and (4) The CS variance estimates do not at
present incorporate the uncertainty due to parameter esti-
mation. While some of the reduction in uncertainty is
‘‘real,”” resulting from improved information, to some extent
the reduction is exaggerated by unquantifiable assumptions.
Further research is needed to incorporate as many of these
sources of uncertainty as possible into the estimation vari-
ance, to develop methods requiring fewer assumptions (such
as indicator cokriging), and to attempt field verification of
the cokriged estimates.

Frequency of High-Elevation Sites

The cokriged CS estimates have information available to
them about the locations of stream nodes in the population,
the elevations at those nodes, and the ANC measurements
from surrounding NSS sites. The estimated percentages of
low ANC upper nodes differ from the NSS estimates to some
extent because the NSS sample appears to underrepresent
the frequency of high elevation sites for the upper node
population. A larger percentage of upper nodes associated
with high-elevation reaches occur in the REACH file popu-
lation than in the extrapolated NSS target population.

An initial concern was that the difference in scale between
the 1:500,000 REACH and the 1:250,000 target NSS popu-
lation might cause this discrepancy in elevations. However,
an analysis of detailed 1:100,000-scale digital line graphs also
revealed a larger proportion of high-elevation upper nodes
than estimated by the NSS, suggesting that differences in
map scale are not responsible for the discrepancy. The
frequency of high-elevation sites in the 1:500,000-scale
REACH file population suggests that these high-elevation
reaches represent a more significant fraction of the NSS
target population than is indicated by the NSS population
estimates.

CONCLUSIONS

Spatial statistical methods for obtaining local and regional
estimates have been demonstrated for use in regional assess-
ment of large-scale environmental problems. The cokriged
regional classification of SBRP streams (Figure 5) shows the
spatial distribution of potentially sensitive stream resources
in much greater detail than the sample classification maps
(Figure 1). The map of cokriged variance (Figure 6) indicates
areas that would benefit most from additional sampling
efforts and can be used in conjunction with Figure 5 to assess
confidence levels in its predictions. The individual reach
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nodes identified in Figure 5 as potentially low-ANC sites
belong to the NSS target populations and may be of interest
in designing future studies. These reaches tend to be low-
order streams occurring at the higher elevations of the
SBRP.

The regional estimates that we obtained suggest that a
larger percentage of stream reaches in the SBRP may be
susceptible to acidification than previously estimated. The
use of available elevation data permits the extremes of the
ANC distribution to be estimated, despite the fact that they
are rarely encountered in a limited survey sample. However,
the estimated uncertainty of these estimates appears unreal-
istically small and points to the need for more robust
methods and field verification. Together, the local and
regional-scale estimates have provided us with the capability
to summarize the status of stream resources in the SBRP for
assessment purposes and to identify specific local subpopu-
lations that are more susceptible to acidification.
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