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Explanatory Models for Ecological Response Surfaces

HENRIETTE I. JAGER AND
W. SCOTT OVERTON

[t is often the spatial patterns in environmental and eco-
logical variables that arouse interest and demand expla-
nation. For environmental response variables, the causal
influences of interacting environmental factors produce
the patterns of interest. Ecological response variables by
definition involve living organisms and are at least one
step removed from spatial patterns in the physical envi-
ronment. The spatial organization of ecological variables,
such as species abundances, is often viewed as a collection
ofindividual species responses to variation in the physical
environment (Gleason, 1926), although competition and
other ecosystem interactions may also influence spatial
arrangement.

The response of ecological variables to spatial environ-
mental gradients can be direct, or it can be biologically
integrated through interactive responses of the ecosys-
tem. Physical factors such as soil and geologic and physio-
graphic structure provide the base physical environment
and substrate. Climatic factors such as precipitation, tem-
perature, constituents of atmospheric deposition, and
solar radiation represent important exogenous driving
variables. Complex ecosystems provide yet another di-
mension of the environment of particular ecological pro-
cesses, and also interact with the physical environment,
modifying it and ameliorating its effects. The influence of
these factors is seldom simple, and predictive models must
be tailored to the ecological problem at hand. Quite often,
simple explanatory variables suffice for complex relations.
For example, the environmental cue that notifies temper-
ate populations of spring’s arrival is widely modeled as the
“degree-day,” a cumulative measure of temperature that
ignores temperatures belowa given threshold. This simple
measure mimics the way in which many organisms physi-
ologically integrate ambient temperatures, as evidenced
by the success of the model.

Other variables operate as complex environmental gra-
dients (Whitaker, 1970) that reflect a suite of primitive
gradients that covary in a predictable way in nature. Pop-
ulations apparently respond to these complex gradients,

which act as surrogates for their causal constituents. For
example, elevation itself does not cause changes in Species
composition, but temperature, soils, and rainfall are coy.
arying environmental factors that influence species com.
position along an elevational gradient. Atmospheric
pressure and density so closely follow elevation that thejr
effects can almost be considered to be caused by elevaiion,
The issue of whether variables in a model are causal js
complicated by the number of links (indirect effects) and
the scale of interest. To illustrate, a mobile population is
likely to cue on any convenient signal that a potential
habitat falls into its elevation range (e.g., the presence of
familiar prey species or nest building materials). Such 3
proximate cue is likely to be an integrated index of eleva-
tion rather than a direct measurement of environmental
variables. Similarly, explanatory models may use variables
that integrate complex patterns of causal factors, rather
than the base causal factors themselves. Elevation is use-
ful because we are familiar with the environmental factors
associated with elevation, and because elevation is an
integrative factor that carries certain causal complexes
with a high degree of reliability.

Understanding the spatial organization of ecological
systems is a fundamental part of ecosystem study. While
discovering the causal relationships of this organization is
an important goal, our purpose of spatial description on
aregional scale is best met by use of explanatory variables
that are somewhat removed from the mechanistic causal
level. Regional-level understanding is best obtained from
explanatory variables that reflect spatial gradients at the
regional scale and from categorical variables that describe
the discrete constituents of (statistical) populations, such
as lakes. The scale on which we are concerned with spatia;
pattern is quite different from the scale of study of ecosys-
tems; our scale is more the scale that Whitaker (1970)
addressed in his treatment of gradients than in his treat-
ment of ecological processes.

In this chapter, we use a regression model to predict
lake acid neutralizing capacity (ANC) based on environ-
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mental predictor variables over a large region. These
predictions are used to produce model-based population
estimates. Two key features of our modeling approach are
that it honors the spatial context and the design of the
sample data. The spatial context ofthe datais broughtinto
the analysis of model residuals through the interpretation
of residual maps and semivariograms. The sampling de-
sign is taken into account by including stratification vari-
ables from the design in the model. This ensures that the
model applies to a real population of lakes (the target
population), rather than of whatever hypothetical popu-
lation the sample is a random sample.

OVERVIEW

Environmental predictors of spatial pattern

Faced with a spatially distributed environmental response
variable, our goal is to construct a response surface for
spatial pattern that consists of a regression model involv-
ing appropriate explanatory variables. There are several
qualities of interest to us in identifying a model. First, we
seek robust model relations that describe the regional-
scale manifestations of environmental processes. This im-
plies that we do not consider spatial processes to
contribute to the causal determination of pattern in the
response variables at the scale being analyzed here. Sec-
ond, the explanatory variables of interest are spatially
extensive (known at each location of interest). When used
in the manner proposed, these extensive data can provide
enhanced resolution of spatial patterns, as well as en-
hanced population inferences.

In addition, we account for the relevant sampling de-
sign features of the data on which the analyses are based,
preserving the informative ties with the well-defined pop-
ulations being sampled. The case study presented here
involves a survey of lakes in which the sample was drawn
from a list (sampling frame) of lakes in upstate New York
that were represented on 1:250,000 scale maps. The
Eastern Lake Survey (ELS) was a synoptic survey with a
single index sample taken during the period of minimum
within-lake variability (fall) from each lake. The target
population of lakes was defined by eliminating frame
lakes that met one or more of the following criteria: (1)
the point identified as a lake on the 1:250,000-scale map
appeared not to be a lake on more detailed maps; (2)
proximity of the lake to intense urban, industrial, or agri-
cultural iand use; or (3) lake surface area smaller than e
hectares. In the context of the sampling design, we
demonstrate the utility of frame data (data available for
all lakes in the list frame) in generating improved popu-
lation estimates, as well as in generating better descrip-
tion of spatial pattern. Our approach is consistent with
the model-based approach to population description

common to finite sampling, as reported by Royall and
Cumberland (1981), for example. The model that we de-
scribe here exploits the more extensive information in the
explanatory variables to improve inferences relative to the
response variable.

The approach described here can be used at many
scales in environmental science, but we will concentrate
on regional-level studies. This implies that we are inter-
ested in multivariate relationships that explain spatial
patterns over a relatively large region. In two nonstation-
ary kriging techniques, universal kriging and kriging with
intrinsic random functions, the pattern model is usually
local and parameter estimates for the drift are generally
not of interest. In contrast, residual kriging proceeds from
a global model of predicted drift. While kriged residuals
were not actually added to our regression estimates, the
iterative residual kriging framework was useful to us in
our spatial analysis of residuals.

This case study involves a response variable, acid neu-
tralizing capacity (ANC), for the finite population of
lakes. ANC is measured by titration and is used here in
ueq/L. This variable measures the ability of the lake to
buffer acidic inputs. Based on sample data from the ELS
(Linthurst et al., 1986), and frame data on the entire
population, we predicted lake ANC for population lakes
that were not included in the sample. The predictions
combine the large-scale spatial patterns inherent in the
suite of explanatory variables to provide a multivariate
pattern model for ANC, expressed as a spatial response
surface. This pattern can be supplemented by local devia-
tions that are obtained by kriging interpolation. In this
paper, we restrict our attention to predictions of spatial
pattern rather than on the kriging portion.

The proposed methods have important implications
for investigators conducting regional surveys of environ-
mental or ecological resources. There are emerging ana-
lytic methods that will utilize both the predicted mean
surface and the spatial model of the residuals. Facsimile
populations constructed to have exactly the location of
real population units and patterns of mean and variability
closely similar to those of the real population are proving
very useful in assessment of sampling designs. This com-
parison of sampling designs can be conducted using sim-
ulated (facsimile) populations both before and after
conduct of the sample. Those aspects of the present etfort
directed towards improving the model for residuals will
be useful in constructing realistic facsimile populations.

In the spatial analysis of residuals described here, our
regression or response surface model can be viewed, from
the perspective of geostatistics, as a model of the deter-
ministic portion of a stochastic process. This case study is
different from usual geostatistical analysis in several re-
spects. The sample is a probability sample of an explicit
stratified population of lakes, with the sampling intensity
varying among strata. This fact causes us to approach
several parts of the analysis differently than if the sample
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were unstratified. Additionally, predictions are made for
the specific locations at which population units occur,
rather than for all points in the domain. The spatial dis-
tribution of the frame lakes (the full set of “lakes” repre-
sented on the maps used in sample selection) is therefore
automatically considered, with no assumption that lake
density is spatially uniform. Finally, the use of environ-
mental predictor variables to model spatial pattern de-
parts from the common use of geostatistical models to
represent the drift in that it will not be expressed solely as
a function of location. Our use of the term “pattern”
corresponds to the term “external drift” used by Ahmed
and DeMarsily (1987). This approach to modeling pattern
is preferred because ecologists, unlike geologists, gener-
ally have access to spatial data that can help to explain
large-scale patterns of interest.

The spatial analysis of residuals used here evolved from
the iterative residual analysis procedure outlined by Neu-
man and Jacobsen (1984). Details of the methods used can
be found in Jager et al. (in preparation). Beginning with a
regression analysis that assumes uncorrelated and homo-
geneous errors, the program alternately estimates semi-
variogram model parameters from the resulting residuals,
constructs the variance—covariance (VC) matrix of the
errors, and reestimates the regression coefficients by
weighted least squares (as defined by Graybill, 1983, p.
177), until the estimates stabilize. We have modified the
earlier analyses by accounting for heterogeneity of vari-
ance of the residuals among strata prior to spatial analysis
of residuals.

Maps were produced using SURFER (Golden Soft-
ware) and point semivariograms were used in the spatial
analysis of residuals. Our interpretation of these data is
that the volumetric support of the ANC measurement is
6.2 L based on the size of the sample bottle used. We did
not consider the measurement as a lake average because
“each lake is represented by an index chemistry, rather
than, for example, mean chemistry or some other integra-
tion over time and space” (Linthurst et al., 1986, p. 3).

Residual analysis —general considerations

Regression analysis and geostatistics share the same basic
model,

Z=Xb+R (42-1)
but while regression focuses on the model and parameter
estimates b, geostatistics focuses on the correlation struc-
ture of the residuals, R. These are opposite sides of the
same coin. In regression, unknown properties of the resid-
uals are a hindrance to analysis. [n geostatistics, the pres-
ence of a deterministic spatial pattern is a hindrance to
obtaining a valid semivariogram model. The usual ordi-
nary least-squares regression procedure (OLS) assumes

—_—

that the (residual) errors are homogeneous and yp.
correlated. Both heterogeneous and correlated errors can
be taken into account by using generalized least squares
(GLS), a procedure that explicitly accounts for the vari-
ance—covariance structure of the residuals. In the pres.
ence of heterogeneous and correlated errors, estimates by
OLS will be less efficient than estimates by GLS, but stjj]
unbiased. Loss of efficiency is modest unless correlation
is high, although the efficiency lost due to heterogeneity
of errors may be more serious. Thus analysis by OLS can
be used to generate the residuals that provide the inijtja|
basis for residual analysis. Iteration and reanalysis by GL_s
is not expected to generate a greatly different set of resid.
uals, and the theoretical gain in efficiency from GLS wij|
not be fully achieved because the variance—covariance
matrix must be estimated from the observed residuals.

Analysis by either OLS or GLS can eliminate spatial
pattern and better provide for effective kriging. If the
residuals satisfy weak stationarity assumptions, then the
empirical semivariogram will describe the VCstructure of
the sampled lakes. The residuals will not fully satisfy the
kriging assumptions if a deterministic trend or spatial
pattern remains. If the error structure is confounded with
unexplained pattern, then an experimental semivario-
gram constructed from the residuals (the residual semi-
variogram) will exhibit several characteristic features
(Starks and Fang, 1982; Neuman and Jacobsen, 1984).
These include anisotropy (the correlation depends on
direction, as well as distance) and a shape that increases
parabolically or worse. While the appearance of these
features does not prove that patterns are present, the
presence of these features can be used as a diagnostic tool
to guide modeling decisions (e.g., the direction of anisot-
ropy may suggest an explanatory factor). Some guidance
for determining the range of reasonable semivariogram
parameters can also be obtained from independent esti-
mates of small-scale variability (the nugget) and maxi-
mum or large-scale variability (the sill). Alternating
least-squares and spatial analysis of residuals thus seems
a natural approach to investigating spatial pattern.

ADIRONDACK CASE STUDY

The U.S. Environmental Protection Agency conducted a
synoptic survey of lakes in the eastern U.S. during the fall
of 1984 (Linthurst et al., 1986; Blick et al., 1987). A
probability sample of lakes was drawn from the 1:250,000
scale map population. The sample was stratified by pre-
viously drawn contours that identified regions in which
surface waters would be expected to have low, medium, Of
high alkalinity on the basis of geology, soils, and other
information. Figure 42-1 shows the region of upstate NY
with which we are concerned, the sample lakes, and the
boundaries of three strata. Many chemical and some phys-
ical measurements were made on each of the lakes in-
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Figure 42-1: Map of sample lakes and stratum boundaries.

cluded in the sample, including ANC. The base properties
of the population/sample in Subregion I-A (containing
the Adirondacks) that is addressed by our analysis are
provided in Table 42-1. Strata are alkalinity classes. A is
the estimated size of the target population, as specified by
the survey, and n is the number of target lakes in the
sample.

The sample weights vary among the strata; weights can
be thought of as the number of population lakes repre-
sented by each sample lake. Although the differences in
weights in Table 42-1 are not large, the strata should still
be analyzed separately. The differences between the sam-
ple size of 208 and 155, and between the population size
0f 1684 and the estimated 1290, are due to nontarget lakes
contained in the frame population. A is the estimated size
of the target population, and all design-based estimates
apply to this population. In our exercise of predicting
ANC for the nonsample lakes, we are unable to identify
the lakes in the frame population that are nontarget; thus

our projections are for the full frame population of 1684
lakes. This is a fundamental limitation to this model-
based method; any subpopulation must be identifiable on
the frame in order to make inferences in this manner
about that subpopulation.

Data from probability samples sometimes pose ana-
lytic problems by virtue of design features that invalidate
conventional statistical analyses. In this example, there is
only one general restriction and that is associated with the
strata, and with the differential sampling rate among the
strata. It is necessary to conduct the regression analyses
by stratum, and to maintain the stratum distinctions if the
fitted models are different. If the regression relations are
equal for different strata, then those strata can be pooled
for analysis and prediction. In certain cases, regressions
weighted by the sampling weights are appropriate. Like-
wise, the sample weights should be taken into account
when kriging and an extension of the method proposed

Table 42-1: Characteristics of the sampling design for subregion [-A of the Eastern Lake Survey (Linthurst et al., 1986,

p. 36)

Stratum Frame size Sample size Weight n Y SE(M)
1 711 75 9.633 57 549.08 33.08
2 542 65 8.338 51 425.54 26.13
3 431 68 6.719 47 315.79 22.14
Total 1684 208 155 1290.11
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here can be used for kriging from a variable-probability
sample.

Regression analysis

Several environmental and topographic variables were
considered as possible predictors of ANC. These were
elevation (m), pH of precipitation, precipitation (cm per
year), and watershed slope (%). Elevation and slope were
obtained for the lake locations (both those sampled and
predicted) from the TOPOCOM digitized elevation maps
from 1:250,000 scale maps. The pH of precipitation and
precipitation amount were obtained from relatively large-
scale maps (Olsen and Slavich, 1986) converted 1o GIS
coverage. [n addition, the stratum to which each lake
belongs was included as an indicator variable. All interac-
tions between these variables were evaluated for inclusion
in the model. Other potential explanatory variables, such
as lake type, lake depth, and lake size, were not available
simply because they were measured only on the sample
lakes. However, inclusion of these variables in the regres-
sion analysis provides evidence of their potential value, in
case the frame data were to be made available.

Logarithmic transformation of ANC was made to make
the distribution more symmetric. The new variable was
defined as LANC = logjo(ANC + 150), to account also
for possible negative values of ANC. LANC was regressed
on the suite of explanatory variables using generalized
least squares (GLS). The parameters obtained by GLS are
not significantly different, in this case, from those ob-
tained by ordinary least squares (OLS). The regression
equation for ANC for lakes belonging to the two lower
ANC strata (strata nos. 1 and 2 in Table 42-1) is shown in
Equation (42-2). Equation (42-3) gives the equation for
lakes in the high ANC stratum no. 3. The regression
parameters were estimated simultaneously by using
dummy variables to indicate stratum membership for all
stratum-specific parameters and the final model explained
67% of the variation in LANC.

LANC = -9.08 - 0.0012 elevation + 2.78 pH (42-2)

These prediction equations produce a spatial pattern
for LANC by virtue of the spatial pattern of the explana-
tory variables, elevation, and pH. Part of the pattern in
ANC has been “explained” by the association with these
two spatially patterned explanatory variables. Figure 42-2
illustrates the spatial pattern apparent in the observed
data, and Figure 42-3 the smoother patterns in the fitted
regression. Figure 42-4 presents the spatial patterns ob-
served in the predicted values generated on the frame
population; visual enhancement derives from the great
amount of information present in the explanatory vari.
ables known on the frame. The known spatial patterns in
these explanatory variables are interpreted via the regres.
sion equations to generate spatial patterns in LANC (the
response surface). The surfaces in these figures were gen-
erated by SURFER.

Residual analysis — case study

Given that we have generated a response surface reflect-

" ing the pattern predicted by the explanatory variables, we

now wish to explore spatial patterns in the residuals, both
in terms of means of residuals, and in terms of their
variance/covariance structure. The spatial properties of
residuals are used here to identify a regression model that
leaves no evidence of unexplained pattern and to improve
the precision of the regression analysis. [n some cases, this
structure can also be used to improve the response surface
predictions by adding kriged residuals. In this analysis, a
semivariogram model for residuals was used (o estimate
the covariance structure of the errors and to increase the
precision of the GLS regression parameter estimates, but
no kriged residuals were added to the predictions because
the results of kriging cross-validation were poor.
Residual analysis begins with the residuals produced by
the GLS regression models, Egs. (42-2) and (42-3). Direc-
tional semivariograms for both LANC and the residuals
were examined for anisotropy and other features that
might result from unexplained spatial pattern (Figure
42-5a,b). The residual semivariograms do not differ mark-
edly and are therefore more isotropic. We interpret this as
verification that the regression model has removed much
of the gradient-like pattern in LANC. Note also that the

LANC = 6.77 - 0.0012 elevation - 0.85 pH  (42-3) relative nugget is larger in the residual semivariograms.
Table 42-2: Summary of LANC residual error for - = stratum
Stratum n Resid: ‘or Root-residual
mean 2 error mean square
1 57 0.C 0.1043
2 51 0.02u5 0.1431
3 47 0.0607 0.2464
Pooled 155 0.02938 0.1714
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Figure 42-2: Map of observed LANC values on the sample.
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Figure 42-4: Map of predicted LANC values on the frame population.

We interpret this to mean that the model has partially
explained the apparent spatial autocorrelation in LANC.

As the three strata are spatially defined, it is natural to
examine the magnitudes of residual variance for evidence
of homogeneity, by stratum, as in Table 42-2. Given evi-
dence of heterogeneity of variance among strata, it is easy
to eliminate these differences simply by dividing the resid-
uals from the various strata by their respective standard
deviations. Use of standardized residuals is preferred so
that all strata can be analyzed together, spatially and
otherwise, for further pattern. Poststratification based on
the observed pattern is possible, with the limitation that
scaling requires these classes (clusters) to be identified on
the frame (classes must be identified in terms of frame
variables).

Further increase in the nugget after scaling leaves very
little residual spatial autocorrelation (Figure 42-6). At-
tempts to fita parametric model for residual semivariance
by maximum likelihood estimation revealed no significant
difference between the nugget and the sill parameter. In
addition, the predictions made using the fitted semivario-
gram in cross-validation showed virtually no correlation
with the measured values. It is surprising that there is not
a remnant of small-scale autocorrelation reflecting high-
resolution spatial processes below the resolution of the
regionally defined explanatory variables. In our example,
such processes could affect two lakes very close together.
The issue is clouded by the simple fact that correlation
among residuals, due to the regression estimation process,

will generate spatial autocorrelation when the explana-
tory variables are spatially patterned. Thus, we would not
expect total elimination of autocorrelation in the residual
surface, even if the model were perfect, having un-
correlated errors. In this case study, we conclude that
there is a virtual absence of autocorrelation following the
pattern fit, which suggests that there is no evidence of
remaining spatial pattern in these data,

Patterns in the residuals exposed by a spatial analysis
of residuals contribute to the general understanding ol the
population. The VC matrix can be thought of as 4 parti-
tioned matrix with blocks of locations (sample units that
share the same variance on the diagonal. Recall thut dif-
ferences in variance among strata have been eliminated by
scaling, so that all remaining variation will be on sub-
populations that are not identified by the sirata. The
off-diagonal blocks define the covariances betwecn sam-
ple units from different subpopulations (in this case.
strata).

IMPLICATIONS FOR NATIONAL
MONITORING PROGRAMS

Model-based estimation —case study

Population statistics for the population of Adir. 7iuk
lakes obtained using our pattern model are given in afic
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Figure 42-5: Directional semivariograms for (a) LANC and (b)
scaled residuals.

42-3, in contrast to statistics obtained from the design-
based methods employed in the Eastern Lake Survey.
Although there is a potential inherent increase in preci-
sion from use of the model-based method, the inability to
identify nontarget lakes in the frame population prevents
us from taking advantage of this potential in generating
population statistics. The model-based results of this
table should be considered only as indicating the potential
of the method.

The methods of projection to obtain Table 42-3 are
straightforward. For model-based analyses, a predicted
value is made for each lake in the frame but not in the
sample; these are combined with the sample values, and
the full set of 1649 lake predictions is simply analyzed for
the population characteristics. The backtransformed
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Figure 42-6: Semivariograms of (a) unscaled and (b) scaled resid-
uals.

model-based estimates for ANC in Table 42-3 are gener-
ated by backtransforming the predicted and uobscrved val-
ues of LANC: ANC = 10LANC - 150. The two alternative
model-based estimates will be discussed here. Design-
based estimates are produced by expansion of the sample
values to population estimates. This is performed via
standard probability sample estimation formulae. such as
provided by Overton (Chapter 47). [n this framework,
LANC and ANC are simply treated as two variables on
the sample. In Table 42-3, NV is the estimated population
size, T, estimates the total ANC over all lakes projected
to be in the population, and Nsolae 1 18 the ostimated
number of lakes with ANC = 50 ,ueq?L. .

Several features of the estimates are notable First.
is different for the two estimation methods M hile the

i
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Table 42-3: Comparison of model- and design-based population estimates for Adirondack lakes (Region [-A)

LANC ANC (ueq/L)
Model-based
Design- Model- Design- Back- Bias- Non-
Statistic based based based transformed corrected transformed
fy 3,146 3,882 278325 199,716 227864 319,698
Mean 2.439 2.354 215.74 121.11 138.18 193.87
Std. devn. 0.286 0.246 413.34 194.29 206.98 315.55
Median 2.399 2.315 100.54 56.44 69.18 75.99
g 1290.1 1649 1290.1 164¢ 1649 649
K50 ueqr 487.6 774 487.6 774 691 664

sample provides an estimate of the size of the target
population for the design-based method, the target lakes
are not identified on the frame used in producing model-
based estimates. Comparing the estimates K of and ;050
suggests that a large proportion of the nontarget lakes
have low predicted ANC, but we have no way to confirm
this from the data. Second, the discrepancy in population
sizes (1649 vs. 1684) is accounted for by 35 lakes from the
high-ANC stratum in the far west portion of the state that
were included in the original Lake Survey frame but that
are not included in our analysis because data on the
predictor variables are lacking. Excluding sample lakes
west of 76 degrees from the design-based estimates has
little effect on the gap between the design-based and
model-based estimates. Third, for LANC, there is reason-
ably good agreement between the estimates that are less
sensitive to N, the population size (the mean, standard
deviation, and median). and poor agreement for those
estimates influenced by population size (Nsg and fy).
Agreement of fy would be greatly improved if it were
possible to remove the nontarget lakes from the model-
based estimates. Finally, agreement is poor for all esti-
mates of the parameters for ANC. The model-based
estimates (generated from the backtransformed predic-
tions of LANC) appear to be badly biased. This bias can
be reduced by adding a bias-correction term involving the
estimated prediction variances, 52, from the regression:
E[ANC] = exp{kLANC + 12k2s2} - 150, where k =
In(10). This correction does narrow the gap between the
model-based and design-based estimates, but not by
much. Alternatively, the analysis can be conducted with-
out the log transformation. Preliminary results of a re-
analysis without transforming ANC showed better
agreement with the design-based estimates, especially for
mean ANC. Resolution of the remaining differences
hinges on identification of the nontarget lakes.

This discussion of the results of Table 42-3 suggests the
need for a well-defined strategy for the use of models in
population estimation. If model-based estimation is based
on transformation, followed by back-transformation of
predictions, then the resultant substantial biases must be

dealt with in some manner. Bias correction may not be
satisfactory; it generally seems preferable not to transtorm
and to accept the loss of efficiency in return for consis-
tency and near-unbiasedness. Loss of efficiency can be
reduced by weighted regression, without incurring bias in
predictions, but simple unweighted regressions of the
natural variable may still be preferable. However, if the
transformed variable represents an alternate measure of
the population that is in some sense more satisfying from
ascientificstandpoint, then perhaps the criteria should be
consistency and near-unbiasedness for the parameters of
this alternate population, rather than for the original one.
In Table 42-3, one should ask if LANC or ANC is more
relevant.

Model-based estimation

Model-based methods for predicting survey variables on
the unsampled population units can be valuable for re-
gional surveys of environmental resources. A multivanate
regression model such as the regression model described
here can be used to predict unknown population values
fromrelationships developed from the survey sample. The
uncertainty associated with estimates of population pa-
rameters can be reduced considerably through the use of
information contained in explanatory variables and im-
parted through a model. Additional information about
the location of each resource unit has general potential of
further reducing the uncertainty through use of interpo-
lation models. The pattern in the fitted surface is thus
generated by the known patterns in the explanatory vari-
ables, so that these known patterns have been used to
strengthen spatial inferences from the sample. The situa-
tion found in this case study would seem to be highly
desirable, from the point of view of ecological response
surfaces, with virtually all apparent spatial patterns ac-
counted for by the explanatory variables.

The spatial analysis of residuals used in our model-
building procedure (evaluation of residual maps and spa-
tialautocorrelation) was useful to us as a model diagnostic
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tool. This case study demonstrates several roles played by
geostatistics in model building via the exploration of spa-
tial pattern in the residuals. These roles include (1) the
selection of predictor variables, (2) identification of re-
gions with homogeneous residuals, and (3) the capability
to increase model precision through GLS pattern estima-
ton.

Application of this model approach to developing re-
gional analysis of spatially distributed environmental data
depends on the general availability of extensive data for
explanatory variables. In effect, these extensive data must
be available for the entire frame of population units.
Digitized GIS coverages of spatially extensive environ-
mental data are very valuable for a regression-based ap-
proach, but must be in a specific form suitable to the needs
of any particular study. Identification of needs and possi-
bilities, and provision of specific explanatory variables as
part of the frame materials, would seem to be an integral
part of any comprehensive monitoring program.

The validity of model-based estimates depends on the
appropriateness of the assumptions made. In the Ad-
irondack case study we have already raised one issue,
whether data require transformation to meet model as-
sumptions, and this is probably just the tip of the iceberg.
Basing the estimates on a probability sample ensures that
an assumption-free (design-based) methodology is always
available. Then model-based methods can be used to
enhance inferences without the general validity of those
inferences depending on the model assumption (see
Overton, Chapter 47).

This case study illustrated several important points for
future environmental surveys. First, we demonstrated the
potential of model-based estimation for the description
of spatial pattern in environmental variables. Second, we
learned the importance of adequate investment in frame
materials as the inadequacies in ELS frame data pre-
vented us from producing population estimates for the
target population of lakes. Finally, the value of analyzing
residuals in a spatial context was underscored by the
insights gained during our model-building procedure.
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