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Dear Editor,
In a recent paper published in Ecological Mod-

elling, Railsback et al. (1999) proposed a method
for modeling movement rules for stream fishes
that simplifies stochastic dynamic modeling tech-
niques in an effort to design optimal movement
rules amenable for use with individual based mod-
els (IBMs). Each day, individuals in the Railsback
et al. model evaluate their expected survival to the
end of the time horizon for all locations within a
specified distance and move to the location with
the highest value. Future fitness is defined as
expected survival over a specified time horizon —
the product of daily probabilities of not starving
and daily probabilities of surviving non-starvation
mortality. The high computational demands of
dynamic programming required a number of sim-
plifications to be made, including: (1) a restricted
decision space; (2) a short time horizon; and (3)
constant environmental conditions. Presumably
these constraints could be relaxed as more compu-
tational power becomes available. We refer to this
movement model as the Dynamic Programming
(DP) model. This approach is not new and it, in

fact, predated movement models that incorporate
realistic perceptual constraints, as described in
Tregenza’s (1995) (p. 277) historical review of
movement models.

Railsback et al. are critical of fish movement
models based on departure rules that combine a
fitness currency with a learning algorithm first
described by Bernstein et al. (1988). Fish using
this departure rule leave when the value of the
present location falls below the expected value
available elsewhere. Each individual maintains an
estimate of the expected value based on its past
experience. Once a decision to depart has been
made, a new location is chosen at random. This
approach has been used in a number of spatially
explicit IBMs (Tyler and Rose 1997), including
several for stream fishes (Jager et al., 1993; Clark
and Rose, 1997; Van Winkle et al., 1997). We
refer to this model as the Learning Algorithm
(LA) model.

These models are distinguished by two main
differences. First, the most fundamental difference
between the models is the level of knowledge
assumed to be available to individual fish. The DP
model assumes that fish are omniscient, both in
their knowledge of the surrounding environment
in space and the future environment in time. In� PII of original article: S0304-3800(99)00124-6
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the LA model, each individual obtains knowledge
of the environment from exploration of locations
visited in the past. The decision variable in the DP
model is the destination, whereas the decision
variable of the LA model is the decision to depart,
followed by probabilistic choice of a destination.
Second, the DP and LA models use a different
fitness currency. The DP model in Railsback et al.
used expected survival to a future date, while the
LA models used the ratio of risk over growth or
the expected growth (product of survival and
growth). While we agree with Railsback et al. that
previous modeling approaches have limitations,
we feel that the proposed alternative has its own
problems and leaves much to be desired as a
means for modeling individual movement in a
spatially-explicit environment. These limitations
are described below.

1. Imperfect information

The DP and LA models assume different levels
of knowledge and take very different approaches
to decisions about departure and selection of a
new location by fish. The DP model evaluates the
future fitness of each simulated fish in all sur-
rounding locations. Individuals rank locations by
the fitness of the individual and choose the best
location. There is a rich body of research on
animal behavior that suggests that movement de-
cisions do not typically result in animals selecting
the best possible location (e.g. Krebs 1971). There
are two main reasons that this does not occur.
First, animals make movement decisions under
uncertainty due to perceptual constraints (i.e. im-
perfect information). Second, always choosing the
‘best’ location is a short-sighted strategy because
of the inherent conflict between gaining informa-
tion to reduce uncertainty and being in the loca-
tion with the highest short-term value.

Optimal decisions in a deterministic setting (e.g.
by omniscient fish) are very different from those
made under uncertainty (e.g. by real fish). Real
fish have limited information obtained using im-
perfect senses from past experience in previously
visited locations. For example, Marcotte and
Browman (1986) suggested that perceptual con-

straints and cognitive limitations are a source of
variance in foraging behavior in fishes. At high
densities, optic tetanus renders fishes incapable of
making foraging decisions, leading to a random
diet. They claimed that abundant prey confuse
predators, leading them to focus on one large prey
type for perceptual reasons, not energetic ones. In
a second example, Milinski (1988) noted that an
animal that is unable to perceive differences in
patch quality must choose a patch at random
which leads more animals to over-use poor
patches relative to predictions of the Ideal-Free
distribution. Experiments with drift-feeding min-
nows show precisely this behavior (Tyler and
Clapp, 1995). The uncertainty about habitat qual-
ity leads to what might be viewed as imperfectly
optimal decisions (Janetos and Cole, 1981; Lut-
tbeg and Schmitz, 2000).

Animals engage in exploratory behavior that
results in latent learning (Alcock, 1977) (p. 216).
Although exploration may not lead to an animal
residing in best location in the short term, the
information gained can improve future decisions.
In the terminology of optimization theory, move-
ment decisions are not ‘greedy’ algorithms in
which animals only make movements to better
locations. Rather, movements to locations with
lower quality may ultimately be rewarded because
they provide the animal with information about
the landscape. As Stephens and Krebs (1986)
note, incomplete information plays a central role
in foraging theory and the methods available to
animals to reduce ambiguity can be as important
as the actual value of a location.

Ollason (1980) compared feeding experiments
with birds against both an optimal foraging
model and a learning model and was unable to
distinguish between them. He summarized the
value of learning models as follows:

‘‘Perhaps the most important conclusion to be
drawn from the analysis of the learning model
is that to forage in a patchy environment in a
way that approximates closely to optimality, an
animal need not be omniscient; it does not need
to sample; it does not need to perform numeri-
cal analyses to find the maxima of functions of
many variables; all it needs to do is to remem-



Discussion 247

ber and to leave each patch if it is not feeding
as fast as it remembers doing.’’

We believe that a learning algorithm is unlikely
to always reach the same solution reached by an
optimization that has access to information from
a wider spatial area as well as that in the future,
but we maintain that this is the best heuristic
algorithm available to real organisms.

The LA model permits simulated fish to do their
own real-time optimization, in which gaining infor-
mation by exploring is part of the solution and
individuals differ in their histories and knowledge
of the surrounding habitat. No knowledge of future
environment is assumed. Although animals have
undoubtedly evolved some genetically hard-wired
behaviors that anticipate highly predictable fea-
tures of future environment (i.e. seasonality), the
average fish does not have a crystal ball to guide
its daily movements. Therefore, it is not clear to us
that a DP modeling approach is appropriate.

2. Fitness currency

Expected survival is the fitness currency adopted
by Railsback et al. This currency avoids the limita-
tions of the ‘minimize �/G ’ rule when G is near
zero, where �=risk and G=growth. The ‘maxi-
mize expected survival’ fitness currency has a more
straightforward interpretation. This currency is
state-dependent, allowing individuals with low en-
ergy reserves to make different decisions than
individuals with high energy reserves.

Expected survival, as simulated by Railsback et
al., does not include density- and frequency-depen-
dent components of fitness. Many tests of habitat
selection have shown that fish consider not only the
resource availability in a habitat but also the
demand on that resource (Milinski, 1979; Godin
and Keenleyside, 1984; Power, 1984; Tyler, and
Gilliam, 1995). In fact, the effects of competition
on animal distributions have been the subject of
habitat selection theory from the early formula-
tions of the Ideal Free and Ideal Dominance
distributions (Fretwell and Lucas, 1970). The LA
model with its departure rule approach to modeling
habitat selection allows fish to respond to changes

in local density that affect individual fitness. Any
factor (e.g. environmental, population density, or
anthropogenic change in the habitat) that affects
the measure of fitness indirectly affects the depar-
ture decision of the model fish. The LA/departure
rule approach to modeling fish habitat selection,
thereby, allows for a flexible representation of
frequency and/or density-dependent fitness.

We do not see alternative fitness currencies as a
significant difference between the two approaches
because alternative currencies can be substituted
into either. For example, Van Winkle et al. (1997)
generalized an earlier currency (predation risk/for-
aging intake) to include: (1) multiple mortality risks
and (2) energetic costs as well as foraging potential.
Railsback et al. explore reproductive potential as
a component of future fitness as well. Both LA and
DP can weigh the relative contributions of energet-
ics (starvation risk or growth) and other influences
on fitness, either through selection of the time
horizon, T, or through the choice of a fitness
currency. Railsback et al. argued that the impor-
tance of energetics (vs. survival) was unrealistically
high in the LA models.

3. Field comparisons and future improvements

Railsback et al. present no comparisons of the
predicted distributions from the two modeling
approaches to field observations of fish distribu-
tions. They do suggest a field test that would
distinguish the two models — Do fish ever move
from a better location to a worse one? Without
demonstrating improved predictive capability, we
would argue against adopting the DP approach —
or perhaps just gathering additional information
first.
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