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Abstract 
We propose a mathematical approach for 

quantifying shape complexity of 3D surfaces based on 
perceptual principles of visual saliency. Our curvature 
variation measure (CVM), as a 3D feature, combines 
surface curvature and information theory by 
leveraging bandwidth-optimized kernel density 
estimators. Using a part decomposition algorithm for 
digitized 3D objects, represented as triangle meshes, 
we apply our shape measure to transform the low level 
mesh representation into a perceptually informative 
form. Further, we analyze the effects of noise, 
sensitivity to digitization, occlusions, and 
descriptiveness to demonstrate our shape measure on 
laser-scanned real world 3D objects. 

 

1. Introduction  
Perceptual organization refers to the basic 

capability of the human visual system to derive 
relevant groupings and structures from 3D objects 
without prior knowledge of its contents [1]. The 
traditional approach to such organization in computer 
vision research relies on formulation of perceptual 
heuristics of symmetry, clustering, connectivity, 
attention and many such features that considerably 
reduce the search space for image understanding. 
However, the main focus over the last few years in 
verifying perceptual theories and extending them to 
computer vision systems has been within the domain 
of 2D images. With the development of 3D range 
sensing hardware and processing capabilities, we no 
longer have to deal with insufficient information of the 
3D world in 2D images. Our goal in this paper is to 
represent 3D objects into visual parts and use 
psychological evidence to identify among the 
segmented parts, the ones that convey more shape 
information towards the recognition of the object. 

For example, consider the segmented crank model 
in Figure 1. If we assume that we do not have an 
apriori definition of a crank and think about which 
part of the crank grabs immediate visual attention, 
most observers would point to the curved handle. 

What characteristic of the handle considered as a 3D 
surface contributed to visual saliency? Can this idea of 
perceptual complexity or perceptual attention be 
quantified as a surface feature? 

 

  
(a) (b) 

 
Figure 1: (a) Photograph of the crank. (b) 
Segmented laser-scanned 3D mesh model of the 
crank with the CVM characterizing each part. We 
see the CVM identifying the curved handle and the 
toroidal body as informative parts in the model. 

 
 With the CVM, that can be understood as the 

entropy of surface curvature, we formulate a potential 
solution to quantify this idea of perceptual attention. 
We derive the definition of the CVM from Attneave’s 
seminal work [2] that lists the informational aspects of 
visual perception. His conclusions based on the 
experimental study [3] on how human perception 
judges visual complexity along several variables such 
as curvedness, symmetry, compactness among others 
further emphasizes that variation in curvature is a rich 
source of visual information content. In using 
Attneave’s observations towards the definition of the 
CVM as surface shape descriptor, we summarize the 
contributions of this paper as follows: 

 
• Formulation of the CVM as a surface feature that 

combines surface curvature and information theory, 
•  Incorporation of automated bandwidth selection in 

curvature density estimation to avoid user selected 
parameters to compute entropy, 

• Representation of 3D objects with the CVM 
identifying perceptually significant parts with the 
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help of a perception-driven mesh segmentation 
algorithm. 

 
With that introduction, we very briefly discuss 

state-of-the-art surface features on 3D triangle mesh 
datasets in Section 2. We then proceed with the 
formulation and implementation details of the CVM in 
Section 3 and follow the theory with experimental 
results and analysis in Section 4. In Section 5, we use 
the CVM on laser-scanned real 3D objects and 
compare our approach to another graph-description 
method. Based on the experiments, we conclude by 
identifying potential applications of the CVM in 
Section 6. 

2. Related Work 
In this section, we will very briefly explain the 

psychophysical basis of our work and also establish 
the need for a surface feature based on perceptual 
principles towards describing 3D objects. 

 Psychophysics: The basis of the algorithm that 
we propose in this paper derives out of Attneave’s 
psychophysical results [3]. His experiments on 2D 
contours, revealed a regression equation relating the 
perceived complexity of a polygonal contour to its 
symmetry, angular variability, and the logarithm of the 
number of turns of the contour. The logarithmic 
dependency reveals the similarity with Shannon’s 
logarithmic relation of complexity towards description 
in information theory.  

Further, Attneave, states that his psychological 
evidence is better explained using information theory 
treating perception as an economical description 
problem. Palmer includes Attneave’s conclusions on 
2D contours and also suggests structural information 
theory as the potential direction towards implementing 
Gestalt’s ideas for 3D shape representation [4]. He 
also emphasizes that extending Attneave’s 
observations for 3D objects is a non-trivial task. 
Recently, Todd tried to extend Attneave’s experiments 
on random 3D surfaces to identify potential sources of 
perceptual attention [5]. His experiments lead to the 
conclusion that 3D objects are best characterized by 
the lines connecting local curvature extrema and the 
local variation in the curvature of the surface itself. 
His study further agrees with Huffman and Singh’s [6] 
minima rule of part decomposition and Biderman’s 
recognition by parts [7]. The use of curvature as the 
basis feature for segmentation and description is 
psychophysically valid. We are hence motivated to 
represent 3D objects by first decomposing objects into 
parts and then using the CVM as a shape measure to 
describe the relative complexity of these parts.  

3D features: The vast majority of research in 
perceptual feature selection is with 2D images. Most 

2D features do not extend directly to 3D triangle 
meshes because, with intensity images perceptual cues 
are defined on edges and boundary contours extracted 
from the image. But with 3D data, we have to consider 
the underlying surface shape for characterizing the 
visual cues. We do find methods for quantifying 
global mesh complexity [8] and mesh saliency [9] 
targeting shape indexing and level-of-detail analysis. 
But these methods are not able to describe local spatial 
characteristics required for object description. In the 
following paragraphs, we briefly discuss such 3D 
features proposed for object description and 
recognition. 

On range images that encapsulate 3D structure, 
Dorai and Jain [10] have defined two curvature-based 
3D features known as the shape index and curvedness 
for their Curvedness-Orientation-Shape Map on a 
Sphere (COSMOS). They represent ideal range images 
as maximal patches of constant shape index. They use 
their definition of a shape index that is also in a sense 
a measure of shape complexity towards a graph 
description of 3D objects. They further formulate a 
shape spectrum on these patches as an object 
description scheme. 

We also find several other features in shape 
signatures like 3D Fourier descriptors [11], local 
feature histograms [12] and spin images [13]. 
Additionally, Kortgen et al. [14] extend the 2D shape 
contexts [15] to 3D features. Khotanzad and Hong 
[16] have extended Duda and Hart [17] to include a 
subset of 3D moments as features on point clouds. 
Following a similar trend, Cybenko et al. [18] use 
second order moments, spherical kernel moment 
invariants, surface area, and other metrics as features 
for their object recognition system. On the other hand, 
histogram-based methods [19, 20] generate features 
based on the statistical properties of the object. For 
example, Besl [19] has considered the crease angle at 
each edge between two triangles in a mesh as a feature 
and Osada et al. define several shape functions to 
define their shape distributions [20]. Specifically, their 
D2 shape function which is the distance between two 
random points chosen on the surface of the object acts 
as a dominant surface descriptor on their experiments 
with 3D models. Their histogram distributions from 
shape functions are similar to our curvature densities 
with the CVM.  

Most other features in the literature are well 
summarized by Cordone et al. [21] in his recent survey 
on 3D shape similarity through feature matching. We 
identify that very few of these features cater to the 
part-based description for object recognition and 
hence direct the application of the CVM as a region 
feature specifically targeting the part-based perception 
model of 3D objects.  



3. Our Algorithm  
Our work uses triangle mesh datasets (commonly 

used output format from 3D scanners) that are simply 
a collection of vertices and triangles approximating the 
3D surface of digitized 3D objects. Although this 
representation is useful for visualization, the low level 
description is often inadequate for computer vision 
tasks. Higher level symbolic and informative 
description hence is a necessity. In aiming to move to 
such a higher level description, Stankiewicz [22] 
proposes three models of perception: feature-based, 
alignment-based and part-based and further argues that 
the part-based approach to object description as the 
intuitive and fruitful attempt to object recognition. We 
benefit from his conclusions and the psychophysical 
evidence to implement a graph description scheme 
towards the demonstration of the CVM. As mentioned 
earlier, we are inclined towards segmentation based on 
perceptual principles. We have used a mesh 
segmentation algorithm similar to [23] that makes use 
of Hoffman and Singh’s minima rule of perception to 
decompose an object into a graph network of surface 
patches. Our idea is to use these segmented surface 
patches and apply the CVM to characterize them. 

 

 
CVM = 0.022 

 
CVM = 0.43 

 
Figure 2: Which of these surfaces contains more 
shape information? (The surfaces are textured 
based on the Gaussian curvature.) We see that the 
CVM is able to numerically differentiate perceived 
shape complexity of 3D surfaces. 

 
We now present the theory and formulation for 

the CVM algorithm. As with Attneave’s [3] 
observations, the motivation for CVM is the 
observation that shapes with smoothly varying 
curvature attribute less to the informative attention-
grabbing aspect of perception and hence appear less 
significant than shapes with significant variation in 
curvature. For instance, a flat surface has uniform 
constant curvature. Since there is no variation in its 
surface curvature, we say that such surfaces possess 
little or no shape information. However, a surface that 
models the terrain of a mountain for example, will 
have significant variation in curvature. We suggest 
that such surfaces possess more shape information. 
Our argument can be better understood using Figure 2. 
In addition, we suggest that surfaces with repetitive 
curvature patterns have lower shape information than 
that surface with no patterns. Our observations agree 

with Lowe’s [1] and Attneave’s theory [2] about how 
the probability of accidental occurrence contributes to 
visual significance.  

We emphasize that these observations relate to the 
notions of Shannon entropy and his definition of 
entropy as measure of information in digital 
communication theory [24]. Shannon's established 
information framework assumes a closed alphabet set 
of symbols to compute entropy as the average length 
to describe a symbol. The symbols with low 
probability of occurrence convey more information 
and require more number of bits for description. We 
use this characteristic of Shannon’s framework as a 
measure to describe complexity of description and 
apply it to 3D surfaces. Our approach to extend the 
framework to a 3D triangle mesh can be easily 
understood using the simple block diagram as shown 
in Figure 3. 

 

 
 
Figure 3: This block diagram shows how to 
compute CVM. 
 

We base the CVM on curvature since curvature is 
invariant to choices in coordinate frames, viewing 
angles, and surface parameterizations, which are 
desirable properties for feature selection. As an 
infinitesimal local feature, curvature lacks sufficient 
generalization to serve as a 3D feature in our computer 
vision context. As a result, CVM aims to characterize 
curvature over a region (or patch) of a surface. To 
compute CVM, the first step is to estimate curvature 
on a triangle mesh. But, a triangle mesh is a singular 
surface with infinite curvature concentrated at the 
vertices and edges of the mesh and zero curvature on 
the faces of the triangles that make up the mesh. These 
singular values of curvature are not useful since our 
interest lies in the curvature values of the original 
smooth (non-singular) surface that the mesh 
approximates. 

Of the several methods to estimate curvature on 
triangle meshes [25] that we tested for the CVM, we 
chose the Gauss-Bonnet approach as a trade-off 
between computation speed and estimation accuracy. 
This method uses the umbrella neighborhood of 
triangles immediately adjacent to a vertex to estimate 
the Gaussian curvature at that vertex. This method is 
also known as the loss of angle approach since we use 
the angles subtended by the edges emanating from the 
vertex of interest. If we consider a vertex v, then we 
can define the angle αi for the corner of each triangle 
adjacent to v. From Gauss-Bonnet theorem of 
differential geometry, we can estimate the Gaussian 
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curvature of the underlying smooth surface at v as 
Equation 1, where the summation is over the umbrella 
neighborhood and A is the accumulated area of the 
triangles around v. 
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Now, we have curvature estimates of a digitized 

continuous surface. These curvature values are not a 
quantized and normalized entity on surfaces. Also, the 
curvature estimates cannot be considered as a discrete 
symbol towards computation of the entropy. 
Histograms that assume an origin and bin width will 
not give us accurate estimates of the underlying 
curvature density for any arbitrary surface. Hence, we 
suggest a data driven approach to density estimation 
using Gaussian kernels. 

We make use of kernel density estimators (KDE) 
[26] as a tool to compute the density function p of the 
curvature values over the entire mesh.  Consider 
Equation 2 where p is the estimate of the density 
function, n is the number of vertices in the mesh, h is 
the bandwidth of interest, G is the kernel function and 
κi is the curvature at vertex vi. We visualize KDE as a 
series of ‘bumps’ placed at each of the n estimates of 
curvature in the density space. The kernel function G 
determines the shape of these bumps while the 
bandwidth h determines their extent. With large data 
sets (n is large), the choice for G does not have a 
strong influence on the estimate. We recommend the 
Gaussian kernel although meshes provide large sample 
points to make the minimization of the mean-
integrated squared error (MISE) for bandwidth 
estimation easier. 
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The more significant parameter for accurate and 
stable estimation is not the kernel but the bandwidth h. 
Data driven bandwidth optimization approaches [27] 
such as the distribution scale methods, cross validation, 
L-stage, plug-in and advanced bootstrap methods 
theoretically aim to minimize the MISE between the 
actual density and the computed density. For our 
algorithm, we use the plug-in method (Equation 4) for 
optimal bandwidth selection as this method 
sufficiently reduces the computational overhead 
compared with commonly used cross validation 
methods by making good approximations to minimize 

the MISE. Using a Gaussian kernel further gives us a 
closed form approximation for the data-driven 
bandwidth h on our curvature estimates as shown 
below. 

  ( )
( )

5

1
5

1

2
2

ˆ06.1ˆ
35

243 −
≈












= n

nG

GR
hopt σσ

µ
             (4) 

where ( ) ( ) ( ) ( )∫ ∫== dttGtGdttGGR  , 2
2

2 µ  and σ̂  

is the absolute deviation of the curvature data κi. With 
the Gaussian kernel, the approximation in Equation 4 
can be used as a quick method of choosing the 
bandwidth parameter. 

 
The choice of h in the density estimation avoids 

the need for any user selected parameters in our 
algorithm in addition to providing scale invariance. On 
scale invariance, suppose, we were considering 
spherical objects of different radii, the value of h 
automatically selected would adjust itself proportional 
to the radius, there by quantifying the curvature 
variation among spheres of different radii to be similar 
and tending towards the delta function. 

The final step in the CVM algorithm is the 
computation of entropy. Our choice of entropy as the 
measure of complexity towards description arises out 
of the fact that non-accidental occurrences, which in 
our case is unexpected variation in curvature, 
contributes to more structure information. As 
discussed earlier, we use Shannon’s definition of 
entropy on the curvature density to quantify that shape 
information. However, a direct application of Shannon 
entropy leads to variability relative to different mesh 
resolutions. In other words, if we directly use Shannon 
entropy, we are unable to compare two meshes that 
have different vertex counts. As a result, we normalize 
entropy to account for resolution.  

 

)(log)( κκ∑−= ppCVM n                       (5) 

where p is the probability density of curvature 
estimated using the KDE.  
 

The normalization occurs through the base (n) of 
the log function that allows comparison of similar 
surfaces at different resolutions in addition to the 
convenience of the [0, 1] feature space. We have 
indirectly penalized the measure of complexity based 
on the number of samples that attributed to the 
complexity. Also, the CVM falls into the “interval” 
scale of measurements, where the difference is more 
significant instead of the ratio. 



4. Experiments and Analysis 
 
This section outlines the experimental analysis of 

CVM as a surface feature. We begin by demonstrating 
the descriptive capability of the CVM on synthetic 
hyperbolic patches. In Figure 4, we show 9 surface 
patches characterized by the CVM. We see that the 
CVM is able to arrange each of these patches in 
agreement with the human intuition. On the same set 
of hyperbolic surface patches in Figure 5, we compare 
the descriptiveness of the variance of curvature, range, 
mean of shape index [10] and the variance of the D1 
and D2 shape functions [20]. 

 

 
 
Figure 4: CVM follows human intuition in 
describing some synthetic surfaces. 
 
 

 
 
Figure 5: Comparison of 3D features on hyperbolic 
patches arranged in ascending order of human 
perceptual complexity. 
 

We observe from Figure 5 that the CVM increases 
with perceived complexity while the variance of 
curvature suffers from curvature not being normalized. 
On the other hand, the shape index performs better 
than the variance of curvature but does not seem to 
agree with the human idea of perceptual complexity.  

Our shape measure tends to perform better in a 
perceptual sense on these surfaces compared to the D1 
and D2 shape functions also. We show later that the 
CVM along with perceptual mesh segmentation can 
characterize an object as a minimal set of perceptual 
parts while the shape index requires more number of 
patches to describe the same object. We move on to 
analyze the CVM for noise, occlusions and 
digitization. 

 
Effect of noise: We conducted two different 

experiments to analyze the effect of noise. One of 
them based on a known noise model to find what 
strength of noise significantly perturbs our measure, 
while the other was to analyze the effect of scanner 
noise in comparison with the results from the synthetic 
data. We conclude from the results in Figure 6, that 
the CVM is well behaved within acceptable levels of 
both random noise and scanner noise. 

 

 

 

 
CVM on laser scanned surfaces: 
Plane : 0.001 Cylinder : 0.13 
Hemisphere: 0.06 

(a) (b) 
 
Figure 6: Effect of noise. (a) CVM appears to be 
sensitive to noise when the strength of the noise 
corrupting a planar surface increases as a 
percentage of the longest dimension. (b) CVM 
values on laser scanned 3D hyperbolic patches are 
still close to the values from the synthetic data in 
Figure 4. 

 
Effect of digitization: In Figure 7, we present the 

variability of the CVM due to effects of surface 
digitization. The experiment was to find how the 
number of vertices and the irregularity in meshing 
affect the CVM. CVM appears to be quite robust to 
digitization as expected from its formulation. We 
make this claim from the experiments on a sphere at 
multiple vertex counts and also a multi-resolution 
irregularly triangulated saddle-like surface. With the 
sphere in Figure 7a, we see that as the number of 
vertices increases, the CVM also approaches the 
theoretical value. However, we do observe that at low 
resolution, the curvature estimates are unreliable and 
corrupt the CVM. The same phenomenon happens 
with increasing levels of noise as well, because 
curvature approximation methods on triangle meshes 
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are usually very sensitive to noise. We are encouraged 
by the stability of CVM to noise and digitization that 
we now analyze the effect of occlusions. 

 

 
(a) (b) 

 
Figure 7: Sensitivity to digitization. (a) Effect of 
resolution on CVM. CVM converges to a 
theoretical value as the number of vertices is 
increased in the mesh. (b) CVM also is not sensitive 
to irregular triangulation as long as shape is 
preserved on the saddle-like surface. 

 
Effect of occlusions: Having understood the effect 

of noise of the IVP SC386 range scanner in our 
previous experiment, we consider a real world object 
modeled and integrated from multi-view range images 
in Figure 8. We use the multi-view range images to 
understand the behavior of CVM with occlusions. As 
one should expect from curvature-based features, the 
CVM can only be a good descriptor as long as the 
occluded component of an object has no significant 
new information towards identifying the object. This 
limitation checks the extensibility of the CVM to 
scene analysis. 
 

 
 
 
Figure 8: Effect of occlusions. The CVM 
characterizes segmented surfaces from range 
images of the water neck object. We indicate in 
percentage the actual overlap of the range image 
with the object. CVM reacts on the base of the 
water neck more than the cylindrical and spherical 
section as we lose information due to occlusions. 

5. Object Description using the CVM 
A key assumption in the above development of 

our CVM is that the triangle meshes model a smooth 
surface. Hence, we note that the CVM requires smooth 

patches as a result of mesh segmentation for a 
descriptive characterization of a 3D object. We show 
the CVM describing various parts of four objects (a 
cup, a disc brake, a crank and a water neck) in Figure 
9. The higher magnitude of the shape measure 
corresponds to the most informative part of the object. 

 

 

 

 
 

(a) (b) 

 

 

 

(c) (d) 

 
 

(e) (f) 

 
 

(g) (h) 

 
Figure 9: Object description using our method. (a) 
and (b) A cup: CVM identifies the handle as the 
informative part. (c) and (d) A disc brake: CVM 
values hint identical structures. (e) and (f) Crank: 
The handle is recognized as the visually complex 
shape. (g) and (h) Water neck: CVM says the base 
of the object is the one that gives maximum shape 
information. 
 

We use these four examples also to demonstrate 
how our approach has reduced the search space 
compared to a different approach of representing an 
object as patches described using shape index [10] for 
the attributed graph matching step before recognition. 
We extended their framework that was demonstrated 
on range images to triangle meshes, by first 
segmenting along crease edges using their measure of 
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curvedness and further decomposing the object into 
regions of constant shape index. The regions of 
constant shape index basically correspond to different 
hyperbolic shape primitives that best fits the 
underlying surface. We summarize the comparison in 
Figure 10. Even on segmented parts, we observed that 
the shape index characterized larger patches as a 
combination of smaller patches better, while CVM 
was able to deal with sufficiently larger patches. 
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Figure 10: Comparing perceptual organization 
with constant shape index organization of 3D 
objects as hyperbolic patches. 

5. Conclusions and Future Work 
We have demonstrated our CVM as a surface 

feature on triangle mesh datasets that appears to agree 
with the human intuition of visual attention. By first 
segmenting the object into perceptual parts and using 
our definition of the CVM to characterize each one of 
these parts, we are able to transform a mesh-based 
representation of a 3D object to a more symbolic, 
descriptive and informative form. The graph network 
preserves the structural relationship of parts of the 3D 
object and the CVM describes the components in a 
relative sense of visual salience quantifying perceived 
complexity.  

We would like to note that the CVM has assumed 
no prior information about the context of shape 
significance. Hence, CVM will not be able to 
characterize contextual saliency. For example, if a 
small hemispherical defect on the crank was more 
significant, in recognizing the defect, our approach to 
perceptual organization will only be able to identify 
the defect in its structural form (in the graph) but not 
by the value of the CVM. 

Although CVM improves the description of patches 
larger in size than the constant-shape maximal patches 
of Dorai and Jain [10], we note that extremely large 
patches can lead to an over generalized density 

function. This drawback surfaces with some real world 
objects that do not easily segment out into perceptual 
parts. Also, we note that the CVM being a scale 
invariant feature requires simple scale preserving 
attributes such as bounding box dimensions, surface 
area etc. of the segmented parts for an efficient 
representation of the object. Our preliminary results 
using a graph matching algorithm [28] on a small 
database of objects encourages our future directions in 
transforming the proposed object description 
framework into a recognition framework. 
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