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ABSTRACT 

 
In this paper, we derive a data mining framework to analyze 
3D features on human faces. The framework leverages 
kernel density estimators, genetic algorithm and an 
information complexity criterion to identify discriminant 
feature-clusters of lower dimensionality. We apply this 
framework on human face anthropometry data of 32 
features collected from each of the 300 3D face mesh 
models. The feature-subsets that we infer as the output 
establishes domain knowledge for the challenging problem 
of 3D face recognition with dense 3D gallery models and 
sparse or low resolution probes.  
 

Index Terms— 3D face recognition, feature learning, 
dimensionality reduction, informative-discrimant face 
features. 
 

1. INTRODUCTION 
 
Most of the success reported with 3D face recognition has 
been using alignment based methods [1]. A detailed study 
of these methods [2] reveals that alignment-based methods 
require dense models (few thousand points) of the face 
acquired for the probe and the gallery. But, in real world 
situations, we often cannot expect co-operation for 
acquiring dense 3D probe models.  The question then that 
arises in applications where sparse 3D points and feature 
probes are extracted from surveillance videos [3] as shown 
in Figure 1 or by other forensic clinical means, is what 
geometric features in a human face should be extracted and 
matched with the dense gallery data for reliable face 
identification.  
    In such a scenario, curvature-based methods or moment-
based methods are not suitable because of the sparse nature 
of the probe point cloud and the fact that curvature is 
extremely sensitive to noise and resolution. The alternative 
pattern recognition approach to 3D face recognition using 
geometric feature measurements would have been to use 
ideas like PCA [9] or LDA [8] on face features and search 
for the nearest match in a transformed multi-dimensional 
feature space. Though PCA and LDA are very efficient 
methods to perform recognition, the methods require that all 

features considered initially in the learning phase be present 
in the probe also. However, we might not be able to 
compute all the features from a sparsely/partially 
reconstructed probe. In such cases, PCA and LDA will not 
be able to tell us which of these features is actually 
contributing to discriminative separation in the component 
space for recognition.    
    Hence, we turn our attention to variable selection 
methods [10] to provide an understanding of the facial 
feature data. We realize that face features are an inherent 
multi-class dataset, where people from different ethnic 
backgrounds exhibit variation within the same feature and 
current variable selection methods are not able to 
accommodate within-feature multi-modal behavior. Hence, 
we design a feature selection framework for this purpose, 
explain the implementation details and draw significant 
statistical inference on 3D anthropometry data of human 
faces.  With our results and conclusions, the two 
contributions we claim with this paper are as follows: 

 The design of a generic variable sub-setting method 
leveraging kernel density estimators (KDE), genetic 
search algorithm, and an information theoretic fitness 
criterion as a three way hybrid dimensionality reduction 
tool. 

 The application of the framework to learn structurally 
diverse, discriminant and informative 3D facial features 
extracted from a database of 300 faces consisting of 
people from different gender and ethnic backgrounds to 
aid face recognition with partial data. 

 
Dense gallery                                                Sparse probe 

(a) (b) (c) 
Figure 1: Exploratory investigation to learn what facial features in 
a dense model can be matched with what is available in a sparse 
probe. (a) A dense 3D model of a human face used in the gallery. 
(b) 2D features extracted from a surveillance video frame. (c) 
Features tracked in several frames like (b) to generate a sparse 3D 
probe face [3]. 
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    We have organized the paper as follows. In Section 2, we 
present related work on the face feature extraction and the 
analysis conducted in the literature. We describe the new 
variable selection approach in Section 3 before presenting 
experimental results in Section 4 and drawing conclusions 
in Section 5.  

2. RELATED WORK 
 
Our goal is to learn a minimal set of facial features, to assist 
recognition in applications where completeness of the probe 
data is not always guaranteed and only certain facial 
measurements are available. Hence, we have to consider 
features that can be extracted from both sparse and dense 
reconstructions of the human face. We consider easily 
extractable distance and angle features inspired by 
anthropometric and cognitive studies [4, 5]. We also 
considered the landmarks and features with 2D images from 
the computer vision community [6] and from the 3D 
graphics/gaming community [7]. The observations in a 
recent effort proving anthropometric 3D landmarks and 
feature proportions [8] performing better than arbitrarily 
chosen facial features helped us build a comprehensive list 
of 32 features tabulated in Table 1. The list intentionally 
includes as many expression invariant features as possible 
into our study. 
 
Table 1: The features we extract automatically from 
anthropometric points. 

 
Global features: 
1.Surface area 
2.Volume 
3.Radius of inscribing sphere 
4.Radius of circumscribing 
sphere 
Geodesic distance features: 
5.Height of forehead  
6.Width of forehead  
7.Length of nose  
8.Distance between lip & nose tip  
9.Distance between chin to lip  
10.Distance between temple and 
nearest eye tip  
11.Chin to Neck  
12.Distance Jaw chin Jaw 
(Perimeter) 
13.Horizontal profile (Perimeter) 
14.Vertical profile (Perimeter) 
15.Length of eyebrow 
(Perimeter) 
 

Euclidean distance features: 
16.Length of eye  
17.Width of eye  
18.Width of nose  
19.Depth of nose  
20.Length of ear 
21.Width of ear  
22.Nose tip and eye ball  
23.Length of lips  
24.Width of lips  
25.Distance between nose tip 
and jaw 
26.Depth of eye  
27.Distance between eye bone 
and right cheek  
28.Distance between cheek bone 
and jaw  
29.Distance between eyes 
Angle features: 
30.Angle at eye brow (Angle) 
31.Angle of nose along length 
(Angle) 
32.Angle of nose along width 
(Angle) 

 
Our goal is to present an extension to [6] moving from 2D 
pixel unit measurements to 3D metric units also including 
geodesic features. Our work differs from the 3D curvature-
driven feature region analysis [11] in a human face for 
better recognition performance in the context that our 
method is unsupervised and is a top down approach of 
learning what are the discriminative features in a human 

face, listing their significance towards recognition rather 
than looking at what features are best suited for image to 
image matching.  In the following section, we detail the 
variable selection framework that will help us learn clusters 
of useful features. 

 
3. FEATURE LEARNING FRAMEWORK 

 
From a pattern recognition perspective, domain 

knowledge is very important in the choice of features used 
for classification and recognition. With human faces, the 
literature on feature-based recognition is so vast one has to 
deal with a very high dimensional space. While some of 
these features might be redundant or even irrelevant, we 
realize that the problem is even more complicated when we 
use these features for recognition when presented with 
limited data. Hence, our goal is to learn and establish the 
domain knowledge of optimal feature combinations of 
lower dimensionality to help identify a face. 

Let us start our learning process with the n samples of p 
features in data matrix D. For the face recognition 
motivation, this translates to using n human face models in 
our database and measuring p features xi = {f1, f2, f3…,fp} 
from the 3D face. Our objective is to choose k of the p 
features ( pk ) that is minimal, informative and 
discriminant. We begin by building statistical models of 
competing subsets of variables {f1, f2, f3…, fk} using kernel 
density estimators in Equation 1.  

 
 
 

 
(1) 

where K refers to a Gaussian kernel, H the bandwidth 
matrix, that is selected by likelihood cross validation of 
several competing bandwidth matrices Hj shown in 
equations below. L refers to the likelihood of the parameters 
given the data and ˆ is the covariance matrix. 
 

 
 (2) 

 
(3) 

 
(4) 

 
(5) 

 
We use KDE for building our statistical model in order 

to preserve the separability of the features and at the same 
time avoid the drawbacks in the state-of-the-art methods 
that assume a functional form for the distribution [10]. Such 
an assumption of model structure particularly with human 
face feature data does not utilize the inherent classification 
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information present within the dataset. KDE’s on the other 
hand are data driven and encapsulate multi-modal feature 
variation. The choice of the optimal bandwidth also takes 
care of inter-feature correlation. 

After constructing the KDE of each subset of feature 
variables, our next task is to choose the most informative of 
those subset(s). For large values of p, this becomes a 
combinatorial search problem. Hence, we encode each 
variable-subset as a chromosome and use the genetic 
algorithm (GA) as a systematic procedure to span the 
subset-space. A typical chromosome considering only f1 and 
f2 as informative features as a (n by 2) dataset would be 
encoded as shown in Figure 2. With the mutation aspect of 
the genetic algorithm introducing unexplored subsets and 
the crossover procedure producing healthy subsets from 
what was learnt in the previous iterations of the algorithm, 
we fasten the learning process and avoid exorbitant 
combinatorial evaluations. We would like to direct the 
reader to [12] for implementation details of the genetic 
algorithm in a similar scenario.  

 
f1 f2 f3 .………………………………. fp 
1 1 0 0 0 0 0 0 0 0 

 
Figure 2: Encoding feature subsets as chromosomes to leverage 
genetic algorithm as a search tool over the subset space. 
 
The most important aspect of the genetic algorithm is the 
fitness criterion that evaluates the goodness of the KDE 
model for all possible clusters of k features. This being a 
model selection problem, we use the recently proposed 
extension to Akaike’s information criterion called 
information complexity (ICOMP) [13] as our fitness 
function. ICOMP is computed using Equation 6. ICOMP 
brings together the likelihood of a subset model as the 
goodness of fit term at the same time penalizing for the 
feature parsimony using the Fisher information matrix.  
      This formulation of information complexity evaluates 
the information gain in entropic sense with the inclusion of 
a new feature into a cluster evaluating if the increase in 
dimensionality of the feature subset is a valuable addition of 
significant information. The parameter we will use for 
penalizing the dimensionality is the optimized bandwidth 
matrix Hopt that encapsulates within feature variation as well 
as inter-feature correlation. 

 
 (6) 

where F -1 is the inverse Fisher information matrix. 
 
 

 
(7) 

with s being the rank of F -1, |.| refers to the determinant and 
tr refers to the trace of the matrix. F -1 is computed as 
shown in Equation 8. 

 
 

 
(8) 

with D+
p being the Moore-Penrose inverse of vectorized 

Hopt,  represents the Kronecker product. The details 
behind the derivation of this formulation is available in 
[13]. 
     The minimum value of ICOMP reveals the feature 
variable-subset that is optimal in dimensionality and 
information content. After every iteration of GA, we retain 
20% of the least ICOMP value chromosomes as the healthy 
population for generating future generations towards the 
convergence.  This variable-clustering or feature selection 
framework is generic for any dataset and quantitatively 
outperforms traditional methods at the cost of extra storage 
and computations in building the KDE for each cluster. In 
the following section, we apply this generic framework to 
learning 3D face feature clusters for recognition. 
 

4. EXPERIMENTAL RESULTS 
 

For experiments in the learning phase, we use 3D triangle 
mesh models of human faces acquired using structured light 
scanners both in our lab using the Genex 3D Face Cam and 
also the XM2VTSDB database from the University of 
Surrey. 300 models were used in the learning phase, with 
56% males and 44% females. 20 % of the database 
belonged to Asian-Indian ethnicity, 19% were Asian-
Chinese, 18% had African origin while the rest were 
Caucasian. This diversity in the database was purposefully 
introduced into the study with the hope that some features 
listed in Table 1 will easily differentiate people of different 
ethnicities and gender and that we will be able to find them 
using our feature clustering algorithm. To the best of our 
knowledge, our effort is the first to consider such diversity 
in the database for 3D face recognition. The anthropometric 
points were manually selected in the 3D model but the 
feature measurements were automatically computed by 
marching through the 3D mesh for all faces in the database 
to create data matrix D for our learning phase (Figure 3).  
  

(a) (b) 
Figure 3: Datasets used in the experiment. (a) Anthropometric 
points selected manually in a 3D face. The error in point 
localization was negligible compared to the size of the actual 
features. (b) Automatically computed geodesic and Euclidean 
features (Only some features are shown). 
 
    We conducted two experiments with the face data and our 
feature learning scheme. The first one was to learn feature 
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clusters (combinations) that are minimal and informative by 
executing the GA to convergence. The GA pruned 200,000 
feature clusters and the top 3 clusters with the lowest 
ICOMP values in the converged population were: (FC-1) 
width of nose, depth of nose, depth at the eye, angle at nose 
along its length (FC-2) depth at the eye, lip to chin distance, 
nose to lip distance, jaw to jaw distance (FC-3) vertical 
profile, length of eyebrow, length of nose. With these 
feature clusters we have essentially learnt what set of 
features to try and measure in situations where not all 
measurements of a sparse probe face are possible. 
      The second experiment that we conducted was by 
reinitializing the population for the GA after a fixed number 
of iterations and observing the convergence over several 
trials. We saved the optimal result after every 1000 
iterations and ranked features based on their frequency of 
occurrence in the converged set over 100 such trials. We 
observed that the vertical profile, jaw to jaw distance, depth 
of nose, depth at the eye and chin to neck distance features 
repeated with a high frequency greater than 60% while other 
features repeated less than 30% of the time. 
     With the knowledge of minimal and informative 
features, our next experiment was to evaluate the 
recognition performance with these features.  Our probes 
were a low resolution sparse point cloud of the face 
generated by decimating the dense 3D model to a mesh with 
only 100 3D vertices. This is the typical resolution of 
deformed generic meshes used in face modeling using video 
sequences. We used the Euclidean distance between 
features as our recognition metric to generate the results in 
Figure 4. 

 
Figure 4: CMC curve of recognition using the structurally diverse 
feature clusters learnt using our formulation. 
 

5. CONCLUSIONS AND FUTURE WORK 
 
3D face recognition has faced criticism for its inability to 
handle expressions and for the co-operation required for 
success in real-world crime situations. Our study has helped 
us cluster facial features based on their discriminatory 
characteristics after studying a large-diverse database of 
human faces. Our conclusions explain the success of several 
heuristics experimented in the past for face recognition 
using only horizontal and vertical profiles and caricature 
inspired 3D face recognition. 

     Our future efforts are towards constructing an n-point 
anthropometric 3D face-graph of expression invariant 
geometric features, with anthropometric point features as 
nodes and informative-discriminative geometric features as 
weighted attributes in the graph. We expect the graph 
matching to provide us a reliable expression-invariant 3D 
face recognition method extending the previous effort with 
2D face images [14] to 3D. 
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