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Abstract

In this paper, we present our experience in building a mobile imaging system that incorporates multi-modality sensors for road surface

mapping and inspection applications. Our proposed system leverages 3D laser-range sensors, video cameras, global positioning systems

(GPS) and inertial measurement units (IMU) towards the generation of photo-realistic, geometrically accurate, geo-referenced 3D

models of road surfaces. Based on our summary of the state-of-the-art systems for a road distress survey, we identify several challenges in

the real-time deployment, integration and visualization of the multi-sensor data. Then, we present our data acquisition and processing

algorithms as a novel two-stage automation procedure that can meet the accuracy requirements with real-time performance. We provide

algorithms for 3D surface reconstruction to process the raw data and deliver detail preserving 3D models that possess accurate depth

information for characterization and visualization of cracks as a significant improvement over contemporary commercial video-based

vision systems.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Every year a substantial amount of maintenance costs
occur for collecting and evaluating road distress data. The
inspection procedure that involves personnel walking or
driving slowly over asphalt and concrete pavements and
subsequently observing surface defects and degradation, is
not only cumbersome and time consuming, but is also
susceptible to human subjectivity, error, and inefficiency.
With the safety of the personnel and the passengers that
use the roadways in mind, this functional and important
process of inspection can be significantly improved using a
formalized imaging system. Several companies have hence
worked towards the production of automatic commercial
inspection systems to meet the specific requirements in
e front matter r 2007 Elsevier Ltd. All rights reserved.
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assessing distress on the road surfaces using video cameras
and image processing algorithms. With limited success
using the 2D image-based systems, and with the advent of
3D laser scanners, the next logical improvement appears to
be the use of accurate 3D maps for road distress analysis.
Towards that end, we propose a mobile laser scanning

approach to acquire 3D data and implement surface
reconstruction techniques to create 3D geometric models.
The output 3D models from our two-stage acquisition and
processing methodology brings together 3D laser scanning
from the field of optics and surface reconstruction
techniques from computer vision and graphics research
areas into the engineering for road distress inspection.
Though our experiments with a simple prototype in this
paper are targeted towards road surface mapping, our
approach should impact inspection work for airport
runways and highways with minor modifications like
deploying high-speed laser scanners. The detailed geo-
referenced road surface models from our system can also
be used to enrich available 3D databases embedded in
geographical information systems (GIS). In describing such
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a system and processing pipeline, we list the following two
contributions of this paper:
�
 Multi-sensor integration for road surface mapping: We
propose an integrated multi-sensor approach for effi-
ciently and automatically capturing 3D road surface
data and demonstrate the methods involved using a
prototype data acquisition system.

�
 Multi-stage processing system: We list a set of processing

algorithms, which combine methods from computer
vision and computer graphics for creating coarse models
as a precursor to constructing detailed piecewise smooth
surfaces from scattered point cloud data. The coarse
model is obtained by first gridding and interpolating the
data, while the detailed model is the output after
smoothing and denoising using algorithms that preserve
sharp features and geometric details.

We have organized this paper to emphasize the above
contributions in the construction of a multi-modal
integrated imaging system that is capable of real-time data
collection and processing. In Section 2, we summarize
existing commercial systems targeting road surface inspec-
tion. The literature survey emphasizes the design methods
implemented thus far and also serves as a reference to
understand the difficulty in building systems for real-time
deployment. We introduce our prototype system and
explain the idea behind using multi-modal sensors in
Section 3. After explaining data acquisition, we discuss the
integration and processing algorithms on the multi-
modality data. The integration involves the representation
and reconstruction of range data into a spatially mean-
ingful visualizable form using the information from
position and orientation sensors. We show the 3D models
generated using our system driving a van along a test area
containing different types of cracks in Section 4 and
conclude with recommendations for possible improve-
ments and reproducibility of our system in Section 5.

2. Related work

The key to successful road surface evaluation lies in
identifying different types of distress and linking them to
the cause. In particular, the interest in standard practice is
on cracks and debris as dominant distress data [1].
Targeting such a goal of being able to detect road distress,
the most popular method for automatically acquiring road
data is through digital imaging using vision cameras. Some
examples of commercial imaging systems include Pathview
[2], ARAN [3], and Digital Imaging System [4]. As a
significant next step using digital cameras, video logging is
also adopted as a common technique in storing and
processing continuous image data. VIASAT [5], GeoVAN
[6], and L.C.P.C [7] are some recent commercial systems
that are based on video logging. The common feature
between these commercial systems is that one or more
cameras are mounted along with archival equipment for
recording 2D images of the road surface. Another
configuration requires the placement of two cameras
separated by a baseline distance to acquire stereo images.
From the two stereo images and with the calibration
information of the cameras, 3D information is estimated
using epipolar geometry. However, the accuracy from 3D
reconstruction has not been sufficient for distress analysis.
In addition to multiple cameras, some of these systems like
GPS Vision [8] use position sensors such as the GPS for
global location information. The integration of GPS
information with the video to create GIS-like databases
of road surfaces claims to improve road network identifi-
cation and pavement inspection for better maintenance and
data management. Part of the success for these imaging-
based systems can be attributed to the ease of using the
acquired images and processing them to analyze distress
information, such as crack patterns, width, length, counts,
areas, and in some cases even depth [9].
One major issue with pure video-based systems is their

inability to discriminate dark areas not caused by pave-
ment distress such as tire marks, oil spills, shadows, and
recent fillings [10]. Moreover, the 3D geometric informa-
tion, in particular the depth, is difficult to derive from 2D
images at the required scale of accuracy. Shadows and poor
illumination are also major problems for daytime opera-
tion though they can be overcome using additional lighting
systems or by acquiring data in the night after sunset [11].
The introduction of laser scanning techniques is only a

recent trend in support of the image-based techniques.
The advantage of using laser scanners is that the 3D
information of the road surface acquired at high speed
can aid in detecting cracks that were not detected by
traditional imaging approaches. The maps produced by
DistressVIEW 3D [12] representing the left and right ruts
in a 2D color image is an example of 3D sensors that
support the image data.
We briefly explain some 3D methods used for road

surface reconstruction before presenting our system in
Section 3. Javidi et al. [13] have proposed a phase shifting
digital interferometry-based technique as an improvement
for ARAN [3] towards measuring 3D depth. The basic
principle behind using interferometry is to project multiple
laser beams to a CCD camera and then observe the
diffraction patterns to reconstruct 3D coordinates using
holography. Though their system is able to derive crack
depth and integrate with 2D images, the system is too
sensitive to the vibrations of a moving van. Laurent et al.
introduced a multi-scanner synchronized system for
measuring dense 3D coordinates [14]. This system is
efficient when mounted on a mobile vehicle driving at high
speed and is able to output a binary image with 255 (bright)
denoting non-distress areas and zero (dark) denoting
distress areas in near real time. Bursanescu [15] introduced
a similar system consisting of six sensors for high-speed
and high-resolution scanning. Their system outputs binary
crack maps along with longitudinal road parameters.
Abuhadrous [16] also scans road surfaces together with
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various spatial objects like traffic signs, trees and vegeta-
tion in the field of view. The processing methods in his
system extract range points belonging to road edges and
centers, and then model the road surfaces using feature
triangulation. Abuhadrous’s system produces road models
that can indicate curves in the roads and hilliness of the
terrain, but it cannot recover geometric details of surface
distress.

Tao has summarized road data-capturing methods using
both 2D and 3D techniques in his comprehensive survey.
We direct the reader to his list of commercial road data
acquisition systems in the United States for further
information [17]. From his survey and our own study of
several published methods, we identify the shortcoming of
these systems to deliver visualizable detailed geometry
combined with topology information of road surfaces.
Moreover, some 3D laser-based systems require blocking
traffic when acquiring data because of the slow acquisition
and processing speed with their equipment and processing
methods. Our system is capable of high-speed acquisition
and our choice of processing methods that we will explain
in the following section substantially reduces the time
between acquisition and analysis in overcoming several
shortcomings with the state of the art.

3. The mobile laser scanning and surface reconstruction

approach

In this section, we explain the implementation details of
our proposed approach along the two contributions of the
multi-sensor integration and post processing system
summarized in the introduction in Section 1. We will begin
with multi-sensor integration for the mobile mapping
system (MMS), which is essentially a van equipped with
laser scanners, video cameras, GPS, orientation sensors,
and computer processing equipment. The basic idea behind
using multi-modality sensors is to collect different kinds of
information from the physical environment for better
accuracy and resolution. Our acquisition software inter-
faces with the hardware to time stamp and simultaneously
record multi-sensor data to a computer, which is also a part
of the mapping system. Our software is able to obtain
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Fig. 1. Block diagram of the proposed processing pipeline starting from the con
multi-sensory data in an efficient archival mode for long
durations of time (typically, 20–30min). In the second
stage of processing, a set of algorithms are applied to the
acquired data to reconstruct 3D road surfaces. The
algorithms that we explain later in this section are selected
to deal with measurement noise, outliers, missing data,
along with sharp crack features. Our approach is illustrated
in Fig. 1, which depicts the main processing steps involved
starting from building the system to acquire real data
leading up to the detailed 3D surface reconstruction.

3.1. Data acquisition system

Our data acquisition system includes an instrumented
van with rigidly mounted sensors. The sensors in our
prototype include a SICK LMS 200 laser scanner, a Leica
GPS System 500, a Xsens MT9 inertial measurement unit,
and a Sony DCR-TRV730 Digital Camcorder video
camera. The data acquired with the SICK scanner
represents 3D range values containing the crack informa-
tion while position and orientation information from the
GPS and IMU is used for spatial visualization. The images
from the video camera can be used for texturing the 3D
models as another processing step.
The differential GPS system that we use delivers data at

10Hz with 2 cm positional accuracy. With road surfaces
being our interest, the laser scanning system is configured
to be downward looking along with other equipment
mounted on a rigid flat metal plate. The rigid arrangement
of sensors helps in establishing the relationship between the
local coordinate frames of each sensor. Data integration
then becomes the process of aligning multi-sensory data
into a common global reference frame using different
transformation functions. We choose the GPS coordinate
frame as global 3D position reference and IMU Euler angle
measurements for 3D orientations about that reference to
compensate for the roll, pitch, and yaw changes due to
vehicle motion. Fig. 2 shows the instrumented van with
sensors mounted. The top inset in the figure shows the
IMU and the GPS system while the bottom inset shows the
SICK laser scanner hanging out of the same rigid metal
frame.
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struction of the acquisition system up to 3D reconstructed surface models.
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Fig. 2. The proposed prototype mobile mapping system consists of a vehicle, a range scanner, a GPS, an IMU, and a video camera.

Fig. 3. Profile segmentation. (a) Find the peak N and then search for N2 which is the threshold value; (b) Range points filtered by the threshold value (i.e.

6.3 cm) estimated from (a).
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3.2. Postprocessing

We utilize a set of postprocessing algorithms to create
geometrical 3D models of road surfaces with a relatively
higher accuracy when compared to competing methods.
This stage intends to introduce recent 3D techniques to the
pipeline of large-scale modeling and to cope with imperfec-
tions inherent in the outdoor scanning process. A simple
example of an imperfection associated with the equipment
is the random measurement noise. Even if we ignore the
effects of dynamic motion and dynamic environments, the
GPS stationary measurements within 5min could generate
root-mean square (RMS) errors of 2.0, 2.3, and 3.5 cm
along directions of in Cartesian earth coordinates [18]. The
3D scanner also is noisy to the extent that in scanning a flat
indoor concrete surface, the measurement RMS error of
8000 profiles can be 0.6 cm [18].

3.2.1. Profile segmentation

Our range scanner samples line profiles 8.0m on either
side of the motion direction. Hence each profile has points
pertaining to road surfaces and points pertaining to objects
beyond the road such as trees, cars, or curbs within the
scanning range. We segment the profiles to ignore points
belonging to surfaces from those objects that are not our
interest in mapping. By construction of the scanning
apparatus, most of the range points should belong to road
surface and have similar depth (z) values. Therefore, the
z-value histogram of each profile should have a peak
discriminating non-surface and surface points as seen in
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Fig. 3(a). We execute the following three-step algorithm
[19] for each profile to select only the points that are
samples of the road surface:
(1)
 Determine a threshold value:
(i) Select the bin with the highest frequency value and

take as N; (ii) Search the bin N1 with at least 40% of
number of data points of bin N; (iii) Search the bin
N2 with at least 40% of number of data points of
bin N1 and take N2 as the threshold value.
(2)
 Filter those points with local z values larger than the
threshold value;
(3)
 Further filter scattered points reflected from objects on
surfaces and points with small normal angles between
scanning plane and laser. The filtering conditions can
be described as (i) second derivatives are larger
compared with neighboring points and as (ii) angles
between scanning surface and scanner beam are smaller
than a predefined value.
This procedure essentially filters out unnecessary data
obtained from the laser scanners where the data are not our
interest. This step is an important pre-processing step
before we can execute surface reconstruction algorithms
from 3D scattered point cloud data. Fig. 3(b) shows a
segmented profile using a threshold value obtained from its
histogram shown in Fig. 3(a).

3.2.2. Profile registration

With the van along with the sensors and software
programs archiving data continuously, we accumulate
range profiles along with position and orientation informa-
tion. We align these profiles to a point cloud for
maintaining the topology of the road surface and also to
compensate for the vibrations in motion. The profile
registration is a spatial transformation incorporating
translation and rotation between successive profiles. The
transformation matrix for dynamic motion on roads
involves six degrees of freedom (DoF), three for the GPS
position and three for the IMU orientations. If an
assumption about the planarity and smoothness of the
road surfaces can be made then only considering three DoF
is sufficient [20].

Theoretically, the profile registration procedure begins
with the definition of a global coordinate system (X,Y,Z).
We choose the GPS frame as the global reference frame,
with two axes along the earth surface and the third one
indicating the height about the earth surface. Then the
registration transformation is applied to each profile for
transforming the measurements from the range sensor local
coordinates to the global coordinates. The transformation
is formulated as shown below [21]. We note that the
position sensors cannot provide the same degree of
accuracy as the range measurements, which can become a
problem when the accuracy from the GPS system falls
below acceptable levels. In the latter case, additional
information can be derived from the video sequence for
localization [22].

ðX ;Y ;ZÞT ¼ ThgT lgð0; y; zÞ
T ,

Thg ¼ Tgps Rimu,

where (0, y, z)T is the coordinates measured by scanner, and
Tlg is the translation from scanner to GPS, which is
manually measured from the rigid configuration. Tgps and
Rimu are GPS and IMU measurement matrices, respec-
tively. They are combined to generate the pose matrix Thg.
Usually the scans are gathered sequentially to describe a
surface in a temporal order, but when the van turns a large
heading angle, we can occasionally obtain overlapping
points digitizing the same road surface and thus generating
redundancy. Hence, each range measurement r is processed
through the filter that we describe below. This filtering
procedure draws inspiration from [23],

RFðrÞ ¼
keep; r cos y � dcrit

remove; otherwise

(
, (3)

where dcrit ¼ Ds/sin(Dy), Ds is the arc length between
successive points and Dy is equal to the angular scanning
resolution (e.g. 0.51).

3.2.3. 3D surface reconstruction

The result after registering range points is non-uniformly
and irregularly distributed. Furthermore, with water
puddles or glass objects on the road surface at the time
of scanning, range data may be missing in these areas. Our
solution for visualizing scattered point clouds of road
surface data is to first grid the surface using interpolation
methods and then fill holes in areas missing range
measurements. We perform cubic spline interpolation
within the scattered points in a single profile. Considering
the large amount of raw data that we need to process, it is
not practical with our resources to perform 2D or 3D grid
methods in real time. After interpolation, a median filter
(3� 3) is applied to remove sensor impulse noise. The
interpolated points are then triangulated and rendered. We
note that this gridding and interpolation is on individual
profiles and not on the entire surface. We call this process
of generating a 3D point cloud as coarse surface
reconstruction. By observing the coarse models, and
looking at the variation of 3D depth measurements, cracks
in smaller regions can be identified. These are points of
interest in our application and they are selected for further
processing.
We use another set of algorithms to reconstruct a

detailed surface from selected points of interest. This
processing stage is designed to handle problems such as
noise and measurement outliers while at the same time to
preserve sharp features that may correspond to road
distress. Also, this stage considers the underlying surface
instead of the profiles as in the previous stage of
interpolation. We have chosen a parametric triangular
interpolation scheme [24] for detail reconstruction of road
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surfaces. The motivation for choosing triangular interpola-
tion arises from the capability of the interpolation method
to represent arbitrary topological types and at the same
time maintaining the continuity and smoothness across
connected patches. Since the parametric scattered data
interpolation scheme mainly focuses on truthful recovery
of topology from possibly incomplete data sets, we have to
be cautious in not violating the assumptions of relaxed
continuity [25].

The motivation for the next processing step aims at
removing impulse noise and outliers introduced during the
grid assignment and interpolation process [26]. We use a
median filter for Gaussian distributed noise in the recon-
structed point cloud [27]. A median filter is a smoothing
operation and we hence need to be careful in smoothing
small discontinuities in the coarse surface that might be
important for detecting road distress. A detail-preserving
median filter is hence applied to especially target these issues.
In the next paragraphs we explain the gridding and
Clough–Tochler interpolation procedure on the coarsely
reconstructed model that delivers 3D geometric models of
high detail using a detail-preserving smoothing algorithm.

Parametric triangular interpolation: The Clough–Tocher
method [28] is a standard technique for parametric
triangular interpolation that Foley and Opitz [29] have
improved by adding cross-boundary conditions. Mann [30]
combines the Clough–Tocher method with the enhance-
ments, suggested by Foley and Opitz, to yield cubic
precision while maintaining continuity. Our scheme is
based on Mann’s work with the improvement of estimating
boundary control points using vertices and their normals.
Our purpose is to reconstruct accurate surface information
from the scattered coarse point cloud data. We are inspired
by the work of Saaban [31] to construct local quadratic
polynomials to compute surface normals, and further to
use a popular 2D Delaunay triangulation method for
surface reconstruction. We explain this interpolation
scheme in the following paragraphs.

Consider a cubic triangular Bézier patch P of the form

Pðu; v;wÞ ¼ p300u3 þ 3p210u
2vþ 3p120uv2 þ p030v3

þ 3p021v
2wþ 3p012vw2 þ p003w3 þ 3p102uw2

þ 3p201u
2wþ 6p111uvw, ð4Þ

where u, v and w are barycentric coordinates of a point
inside the triangular patch. The values pijk, i, j,k ¼ {0,1,2,3}
are z-values of ten Bézier control points defined on the
triangular patch. Note that p300, p030, and p003 are actually
three vertices of the triangle and pijk, i6¼j6¼k, i, j,k ¼ {0,1,2}
are six key control points from which the remaining controls
points can be derived. A more accurate method is used to
estimate key control point values using both vertices and
normals, rather than using information at the vertex alone.

Considering V1(x1, y1), V2(x2, y2) and V3(x3, y3) as the
three vertices in the barycentric coordinate space defined
by axes (1, 0, 0), (0, 1, 0) and (0, 0, 1), we can define a
quadratic polynomial function F(x, y) ¼ a1x

2+a2xy+
a3y
2+a4x+a5y+a6 to approximate z-value for each

vertex. The partial derivatives of F, evaluated at a vertex
in the underlying grid (e.g. V1 Fx(x1, y1), and Fy(x1, y1), can
be computed with the equations shown below

Fxðx1; y1Þ ¼ 2a1x1 þ a2y1 þ a4, (5)

Fyðx1; y1Þ ¼ a2x1 þ 2a3y1 þ a5. (6)

The neighboring triangle vertices and the ordinary least
squares procedure is used to solve for parameters a1, a2, a3,
a4, a5, a6. Then, using the definition of e12 ¼ (�1, 1, 0)
representing the directional edge connecting V1 and V2, the
directional derivative along e12 at V1 is computed as shown
below

De12Pð1; 0; 0Þ ¼
qx

qv
�

qx

qu

� �
Fxðx1; y1Þ þ

qy

qv
�

qy

qu

� �
Fyðx1; y1Þ

¼ ðx2 � x1ÞFxðx1; y1Þ þ ðy2 � y1ÞFyðx1; y1Þ.

ð7Þ

The right hand of (7) can be computed from (5) and (6).
Considering (4), we can also obtain,

De12Pð1; 0; 0Þ ¼
qPð1; 0; 0Þ

qv
�

qPð1; 0; 0Þ

qu
¼ �3ðp300 � p210Þ.

(8)

The (8) can be reformulated as (9) to compute the
coefficient p210

p210 ¼
1

3
De12Pð1; 0; 0Þ þ p300. (9)

The other pijk, i6¼j 6¼k, i, j, k ¼ {0,1,2} values are com-
puted in a similar fashion. (See Mann [30] for a more
detailed explanation of the computation procedure.)

Adaptive regularized smoothing: So far, using the
Clough–Tocher interpolation we have interpolated the
scattered coarsely reconstructed data into a dense grid P.
During the interpolation, our experience indicates that
noise is also amplified. To reduce the impact of noise,
outliers, and discontinuities, we employ a regularized
smoothing algorithm that effectively reduces the Gaussian
and impulse noise while preserving discontinuities and
edges [32]. The formulation of this algorithm is based on
the following regularization function

F
^

¼ arg min
F
jjF � Pjj2 þ lC

XNl

i¼1

jjI iCiF jj
2

 

þlM jjF � PM jj
2

!
ð10Þ

where Ci refers to local Laplacian filters, PM is the median
filtered result of P, and lC, lM are regularization
parameters. In some sense, Eq. (10) can be thought of as
a formulation of an ‘‘energy function’’ incorporating a
median filter constraint for removing noise and high-pass
filter constraints for suppressing local high frequency
components. To find a solution for Eq. (10), we equate
the gradient of F

^

to zero, and converge to an iterative
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solution. At the lth(l ¼ 0,y,Ls) iteration, the detail-
preserving smoothed results can be expressed as

Fl ¼

bG; l ¼ 0

Fl�1 þ b Pþ lMPM � lC

PN
i¼1

I iC
T
i Ci

� �
� Fl�1;LsXl40

� �8><
>:

(11)

where b is a convergence parameter that controls the
number of iterations Ls. The convergence criterion that we
set is based on the term jjFl � Fl�1jj=N iterating below a
predefined threshold. In our implementation, we convolve
Ci with the previous estimate of Fl�1 at each iteration. For
slightly better results, we also define five morphological
filters, other than Laplacian filters, to detect high-
frequency components along vertical, horizontal, 451 and
1351 directions in a robust fashion. These filters are listed
below

C1 ¼
1

12

0 0 �1 0 0

0 0 �1 0 0

0 �1 6 �1 0

0 0 �1 0 0

0 0 �1 0 0

2
666666664

3
777777775
; C2 ¼ CT

1 ,

C3 ¼
1

16

�1 0 0 0 0

0 �1 �1 0 0

0 �1 8 �1 0

0 0 �1 �1 0

0 0 0 0 �1

2
666666664

3
777777775
,

C4 ¼
1

16

0 0 0 0 �1

0 0 �1 �1 0

0 �1 8 �1 0

0 �1 �1 0 0

�1 0 0 0 0

2
666666664

3
777777775
,

Fig. 4. Road surface of interest with a sm
C5 ¼
1

56

�1 �1 �1 �1 �1

�1 �1 �2 �1 �1

�1 �2 28 �2 �1

�1 �1 �2 �1 �1

�1 �1 �1 �1 �1

2
666666664

3
777777775
. ð12Þ
4. Experimental results

We have conducted several large-scale outdoor experi-
ments to evaluate the stability and capability of the
proposed approach. In Fig. 4, we show a scene of interest
along with a small inset indicating the road surface distress.
The scene is a public road within our campus with minimal
traffic intervention. The area of interest contains fine
geometric details in the form of small cracks extending to
large alligator cracks up to the size of 10 cm in length and
width. Our main focus is to accurately and precisely
reconstruct and represent details. We note from our
experience that inspection of small-sized cracks whose
depth and width are in the order of a few millimeters are
difficult to capture using our prototype. We believe using
multiple or high-speed laser sensors could be a potential
solution to generate denser point clouds and higher
resolution models. However, we would like to emphasize
that the surface reconstruction methods, illustrated in this
paper are still effective irrespective of the type and number
of sensors deployed in the data acquisition system.
Of the several experiments conducted we have chosen

one particular case to express the experience gained in the
effort. Fig. 5 shows the trajectory driven for this particular
experiment. The measurement van ran a course of 419m at
speeds of 5–10mph. For visual ease and understanding, we
have used a georeferenced satellite image and integrated
the 3D motion trajectory coordinates from GPS measure-
ments into the figure. During the data acquisition process,
a total of 1291 GPS points, 8840 scanner scans, and 2543
images have been collected. The distance between two
successive range scans along the profiling directions varies
all section of distress shown enlarged.
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with the van velocity from half a centimeter to a few
centimeters, typically 3–6 cm at the slow driving speeds for
this experiment. The large data has been analyzed and
divided into 16 smaller surface patches of interest for
further processing. Choosing smaller patches saves com-
putational time and effort since even these smaller patches
require 12 megabytes of memory.

From the 419-m stretch, we have selected a small patch
containing distress information to present the capability of
the proposed post processing algorithms in Fig. 6. This
surface patch covers a 90-m long road stretch with a width
of 8m. The points indicative of the road surface alone have
been segmented from original registered point cloud using
the profile segmentation method previously described.
Surface points are physically centered along the scanning
Fig. 6. Reconstructed point cloud with highlighted points indicating road sur

railroads seen in the original raw data.

Fig. 7. Two-stage detail surface reconstruction. (a) original model; (b) interp

regularized smoothing result.

Fig. 5. Trajectory of our scanning system at the scene of interest within

our campus visualized on a geo-referenced satellite image.
axis with a lower z-value (i.e. the threshold value is set as
6.3 cm from the ground level). Fig. 6 shows a close view of
the segmented result in point cloud format with gray points
belonging to different objects. After the profile segmenta-
tion, we execute the coarse surface reconstruction scheme
from which the areas with distress information can be
identified.
A smaller patch that contains distress information is

selected from the long stretch in Fig. 6 and is used for
detailed reconstruction. The patch covers a 10-m long and
3.6-m wide road surface as shown in Fig. 7, which also
shows the results of the two-stage detail-preserving
reconstruction. In this example, 26,310 points are included
in the original coarse model and 50,074 triangles are
generated using 2D Delaunay triangulation. We observe
that the mesh points are irregularly distributed and not
sampled uniformly. Fig. 7(a) shows the original model and
Fig. 7(b) shows the improved triangular interpolation,
which preserves topological and geometric details. The
interpolated result has 275,340 points and 548,872 trian-
gles. The underlying 2D grid projection has a structured
quadrilateral topology in which each rectangular cell has a
size of 1 cm� 3 cm. However, as expected the result has
imperfections from Gaussian and impulse noise amplified
by interpolation as distress features. We remove such
artifacts using the regularized smoothing algorithm as the
second stage of surface reconstruction. The regularization
parameters used in our implementation are lC ¼ 50,
face points segmented and separated from the other objects such as cars,

olated model; (c) conventional median filtered result (9� 9); (d) adaptive
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lM ¼ 30, b ¼ 1/lM and emin ¼ 0.01, respectively. The
algorithm converges after five iterations. To emphasize
the effect of using a regularized smoothing method, we
compare the result with a result obtained with a conven-
tional median filter in Fig. 7(c). We observe that the result
from the regularized algorithm which is shown in Fig. 7(d)
is able to effectively remove noise while preserving the
geometric details of interest.

Now we summarize the whole approach starting from
the data acquisition to detailed surface reconstruction in
Fig. 8. We show the bird’s eye view of the scanned area as a
registered point cloud. Since the original range data has
over 3 million points, we have sub-sampled with spacing
between successive scans being 12–24 cm. From the large
point cloud data, we have selected sixteen smaller patches
with each patch covering a road corridor that is nearly 200-
m long and 4-m wide. A small patch indicated as ‘A’ is
selected for further processing. Only the road surface is
segmented from the point cloud ‘A’ ignoring objects in the
environment that are not our interest. The patch marked
a

b

c

d

Fig. 8. The proposed approach for
‘B’ is the segmentation result shown right below patch ‘A’.
This segmented patch is further divided into smaller
patches and a small segment marked ‘C’ is selected and
then interpolated using cubic splines and denoised using
median filter. The transverse resolution after interpolation
and denoising is 1 cm and the distance between successive
profile scans is 3–6 cm. We start seeing the alligator cracks
on this coarse surface model ‘C’. Those interest points
belonging to cracks are marked and then reconstructed in
detail. The result has an underlying grid with cell size as
small as 1� 3 cm. From the final detailed model marked
‘D’ the geometry and shape of cracks are easily observed.
Road distress information such as mean depth and width
of cracks can now be easily computed from those detailed
3D models.

5. Conclusions and future work

In summary, we have demonstrated a mobile mapping
system acquiring depth, GPS, and IMU data that are
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automatically fused to generate 3D models of road
surfaces. After processing the acquired data using the
algorithms explained in this paper, 3D surface geometric
models were created and visualized. The entire procedure
requires minimal human intervention in tuning some
implementation parameters and selecting areas of interest
based on previous experience. The output 3D models show
fine geometric details of cracks that are only a few
centimeters wide along with the depth information. These
models together with higher resolution 2D texture infor-
mation can be integrated for archiving and analyzing road
distress. The surface reconstruction algorithms have also
proved to be effective in processing scattered and noisy
sampled 3D range data. The reconstructed noise compen-
sated geometry and topology preserving sharp features
indicating alligator cracks along with the depth informa-
tion as a measure of severity is a significant improvement
over the commercial systems. Our future efforts will target
the development of an efficient strategy to store and
visualize large-scale road surfaces employing, for example,
a multi-resolution representation at different levels of
detail.
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