Online Airtightness Savings Calculator for Commercial Buildings in the US, Canada and China

Som Shrestha, PhD André Desjarlais Diana Hun, PhD Oak Ridge National Laboratory (ORNL)

Lisa Ng, PhD Steven Emmerich National Institute of Standards and Technology (NIST)

Laverne Dalgleish Air Barrier Association of America

December 5, 2016

ORNL is managed by UT-Battelle for the US Department of Energy

National Laboratory

Background

US Primary Energy Consumption

Commercial buildings use ~19% of the primary energy

Source: Windows and Building Envelope R&D: Roadmap for Emerging Technologies, U.S. DOE Building Technologies Office, Feb. 2014

Commercial Building Envelope Primary Energy Use

Source: Windows and Building Envelope R&D: Roadmap for Emerging Technologies, U.S. DOE Building Technologies Office, Feb. 2014

Windows and Building Envelope R&D ET Roadmap

Envelope Technology	Sector		
Highest priority R&D areas			
Highly insulating windows	C & R		
Insulation	C & R		
Air barriers	C & R		
High priority R&D areas			
Dynamic windows and films	C & R		
Visible light redirection	С		
Highly insulating roofs	C & R		
D. Desidential	C: Commonial		

R: Residential C: Commercial

- Credible, easy-to-use, and free online calculator
- Potential benefits from improved airtightness
 - Calculator \rightarrow energy and cost savings
 - Other
 - Real estate value
 - Sales
 - Productivity
 - Comfort
- Building owners need compelling reason to invest

Challenges

• Air leakage rates depend on multiple variables

- Envelope airtightness
- HVAC system operation
- Occupancy
- Weather
- Stack effect
- Typical assumptions
 - Constant leakage rate
 - Leakage rates from simplified algorithms

Under- or over- estimated energy use

Approach

DOE Commercial Prototype Buildings

- Representative of 80% of new commercial building floor area
- Used specs based on ASHRAE 90.1 2013
 - Envelope
 - HVAC system
 - Internal loads
 - Schedules

Simulation Tools

- Two powerful tools fuel an easy-to-use calculator
- EnergyPlus
 - DOE's flagship whole building energy simulation program
- CONTAM
 - Multizone airflow and contaminant transport analysis software
 - Hourly air leakage rates
 - Weather
 - Envelope airtightness
 - HVAC operation

Approach Hourly Air Leakage Rate Estimates

Infiltration Modeling in EnergyPlus

- ZoneInfiltration:DesignFlowRate
 - DOE commercial prototype building models
- ZoneInfiltration:EffectiveLeakageArea
 - DOE residential prototype building models
- ZoneInfiltration:FlowCoefficient
- AirflowNetwork
 - Future effort

Typically do not take into account

- Temperature difference
- Stack effect
- Wind direction

ZoneInfiltration:DesignFlowRate DOE Commercial Prototype Buildings

Air leakage rate =

$$(I_{design})(F_{schedule})[A + B|T_{zone} - T_{odb}] + C(WindSpeed) + D(WindSpeed^2)]$$

 \downarrow
Default values $A = 0$
 $B = 0 \rightarrow$ Does not take into account effects of temperature difference

ZoneInfiltration:DesignFlowRate DOE Commercial Prototype Buildings

Air leakage rate =

 $(I_{design})(F_{schedule})[A + B|T_{zone} - T_{odb}] + C(WindSpeed) + D(WindSpeed^2)]$

*I*_{design} in most DOE prototype buildings building

- Air leakage rate when HVAC is off = 1 L/s·m² at 75 Pa
- Air leakage rate when HVAC is on = $0.25 \text{ L/s} \cdot \text{m}^2$ at 75 Pa

CONTAM

- Continuous development at NIST since 1988
- Multizone software
 - Network or nodal model
 - Pressures and airflows
 - Simultaneous balance of airflow
 - HVAC, wind, stack effect

CONTAM Whole Building Air Exchange Rates

Whole building air exchange rate = $\frac{\sum \dot{m}}{\rho_{air}V_{building}}$

 $\dot{m} = mass$ flow rate of outside air entering each zone $ho_{air} = density$ of entering air $V_{building} = total$ volume of building

Approach Behind the User-Friendly Interface

Calculations Flow

User Specified

- Pre-determined city
- Pre-determined building type
- Building envelope airtightness
- Energy rates
- Building footprint area

Pre-Run Simulations of DOE Commercial Prototype Buildings

Max HVAC/ventilation airflow rates Hourly air leakage rates

EnergyPlus

- DOE prototype building
- Pre-determined city
- Envelope airtightness
- Weather

CONTAM

- DOE prototype building
- Pre-determined city
- Envelope airtightness
- Weather

EnergyPlus

- DOE prototype building
- Pre-determined city

• Weather

Pre-Run Results

Energy use and cost as a function of envelope airtightness

Potential Energy Use and Cost

Standalone Retail Building Prototype

- Floor area = 2300 m²
- Window-to-wall ratio = 25%
- ASHRAE 90.1 2013
 - Envelope insulation
 - HVAC efficiency
- Thermostat setpoint = 23.9°C cooling 21.1°C heating
- Thermostat setback = 29.4°C cooling 15.6°C heating

Assumed Envelope Airtightness 6-Sided Envelope

Case	Air Leakage Rate at 75 Pa (L/s⋅m²)	Source	
Baseline	5.4	Emmerich et al (2005)	
1	2.0	IECC (2015)	
2	1.25	USACE (2012)	
3	0.25	DOE (2014)	

Evaluated Cities

City	DOE Climate Zone	Prototype Building Model Used in Calculator	Electricity Price	Natural Gas Price
Shanghai, China	3A (warm, humid)	Memphis, TN	\$0.0933/kWhª	\$8.86/1000 ft ^{3 b}
Chicago, IL	5A (cold, humid)	Chicago, IL	C\$0.14/kWh ^c (≈\$0.10/kWh)	C\$0.1605m ^{3 d} (≈\$3.4/1000 ft ³)
Winnipeg, Canada	7 (very cold)	Duluth, MN	¥0.781/kWh ^e (≈\$0.12/kWh)	¥3.65/m ^{3 f} (≈\$15.9/1000 ft³)

^a <u>http://www.eia.gov/electricity/sales_revenue_price/</u>

^b <u>http://www.eia.gov/dnav/ng/ng_sum_lsum_a_EPG0_PCS_DMcf_a.htm</u>

^c https://www.ovoenergy.com/guides/energy-guides/average-electricity-prices-kwh.html

^d <u>http://www.economicdevelopmentwinnipeg.com/uploads/document_file/natural_gas_rates.pdf?t=1433529826</u>

^e http://news.asean168.com/a/20150413/5318.html

f http://gas.gold600.com/

Preliminary Shanghai Results

Preliminary Chicago Results

Preliminary Winnipeg Results

Comparison of Winnipeg Results

Calculator Update – Phase 1

Locations

- City selection
 - Major metropolitan areas
 - Climate zone
- Cities
 - US = 52
 - Canada = 5
 - China = 5

ONTARIO QUÉBEC DAKOTA MONTANA INGTON MINNE SOUTH NOVA SCOTIA OREGON TIDAHO WYOMING IOWA NEBRASKA ILLINOI New York NEVADA United States UTAH COLORADO KANS San Francisco MISSOURI VIRGINIA CALIFORNIA Las Vegas OKLAHOMA ROLINA TEN Los A aeles ARKANSAS AR ONA NEW MEXICO MISSISSIPP San Diego CAROMNA ALABAMA GEORGIA o LOUISIA Houston Gulf of Mexico

Proposed US Cities

DOE Commercial Prototype Buildings

Building	Total Floor Area (ft ²)	Number of Floors	Construction Volume Weights	
Standalone Retail	24,695	1	15.3%	
Mid-Rise Apartment	33,700	4	7.3%	
Medium Office	53,600	3	6.0%	
High-Rise Apartment	84,360	10	9.0%	
Hospital	241,410	5	3.4%	
Large Hotel	122,132	7 (w/ basement)	5.0%	
Small Hotel	43,200	4	1.7%	
Large Office	498,600	13 (w/ basement)	3.3%	
Small Office	5,500	1	5.6%	
Outpatient Healthcare	40,950	3	4.4%	
Restaurant Fast Food	2,500	1	0.6%	
Restaurant Sit Down	5,502	1	0.7%	
Stripmall	22,500	1	5.7%	
Primary School	73,960	1	5.7%	
Secondary School	210,900	2	10.4%	
Warehouse	49,495	1	16.7%	

Air Leakage and Energy Rates

- User selects from default values or enters rates
- Air leakage rates for 6-sided envelope
 - Minimum allowed rate = $0.25 \text{ L/s} \cdot \text{m}^2 \otimes 75 \text{ Pa}$
- Electricity and natural gas prices
 - US: Energy Information Administration
 - Canada: National Energy Code of Canada for Buildings 2011
 - China: various sources

Summary of Inputs

Location:	Canada	Manito	bba	•	Winnipeg	\$
Building Type:	Standalone Retail	\$	Floor Area (ft ²):	24692		
		Leakage Ra	tes (L/s.m ² at 75	Pa)		
Base case:	5.4	Re	trofitted building:	2.0		
		En	ergy Costs			
Electricity (C\$/kWh):	0.14	Nat	tural Gas (C\$/m ³):	0.16		
		C	Calculate >>			

Calculator Output

Predicted Savings

14750 kWh Electricity and 19220 m³ Natural Gas

C\$2048 Electricity and C\$3085 Natural Gas

References

- DOE Commercial Prototype Building Models
 <u>https://www.energycodes.gov/commercial-prototype-building-models</u>
- Dols, W.S. and Polidoro, B. 2015. CONTAM User Guide and Program Documentation. Gaithersburg, MD: National Institute of Standards and Technology. Technical Note 1887.
- Emmerich, S.J., McDowell, T.P., and W. Anis. 2005. Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use. Gaithersburg, MD: National Institute of Standards and Technology. NISTIR 7238.
- IECC. 2015. International Energy Conservation Code.
- Ng, L.C., Musser A., Emmerich S.J., and A.K. Persily. 2012. Airflow and Indoor Air Quality Models of DOE Reference Commercial Buildings. Gaithersburg, MD: National Institute of Standards and Technology. Technical Note 1734.
- Polidoro, B., L. C. Ng and W. S. Dols (2016). "CONTAM Results Export Tool." NIST Technical Note 1912.
- Shrestha, S., D. Hun, L. Ng, A. Desjarlais, S. Emmerich, and L. Dalgleish. 2016. Online Airtightness Calculator for the US, Canada and China. Submitted to Thermal Performance of the Exterior Envelopes of Whole Buildings XIII International Conference.

Discussion

Diana Hun, PhD hunde@ornl.gov

Visit our website: www.ornl.gov/buildings

Follow us on Twitter: @ORNLbuildings