Impact of Large Building Airtightness Requirements

Buildings XIII Conference

December 6th, 2016

Lorne Ricketts | MASc, P.Eng.

Outline

- → Intro to Requirements
- → Measured Performance
- → Industry Impact
- \rightarrow What it Is, and What it Isn't
 - \rightarrow Airtightness vs Air Leakage

Why We Care

\rightarrow Infiltration and Exfiltration Affect:

- \rightarrow Building Energy Consumption Heat Loss and Gains (\$)
- \rightarrow Indoor Air Quality Pollutants
- \rightarrow Building Durability Condensation
- \rightarrow Occupant Comfort $\ -$ Thermal & Acoustics

Many Air Barrier Systems Available

Loose Sheet Applied Sealed Gypsum Sheathing Liquid Applied Mass Walls Membrane - Taped Joints - Sealant Filler at Joints Sealants/Membranes (concrete) & Strapping BUT, T'S THE DETAILS THAT MATTER

Self-Adhered vapor permeable membrane

Self-Adhered vapor impermeable membrane

Sprayfoam

Curtainwall, window-wall & glazing systems 4

Standards & Qualifications

- → Washington State & Seattle, ABAA Target, GSA, IBC/IECC Option < 2.0 L/(s·m²) [0.40 cfm/ft²] @ 75 Pa
- → US Army Corps of Engineers & IGCC < 1.26 L/(s·m²) [0.25 cfm/ft²] at 75 Pa
- \rightarrow Passive House

- 0.6 ACH50 (~0.60 L/(s·m²) [0.12 cfm/ft²] at 75 Pa)
- → LEED, 6-sided apartment test (~1.25 L/(s·m²) [0.25 cfm/ft²] at 50 Pa)
- → UK (AATMA) Large Buildings ~0.70 to 1.75 L/(s·m²) at 75 Pa [~0.14 to 0.34 cfm/ft² at 75 Pa]

Measured Performance

- → Airtightness testing data was compiled in a database from the following sources:
 - \rightarrow Published literature
 - \rightarrow Industry members
 - \rightarrow Unpublished data provided by the project team

Building Types

Building Locations

4.0 Sample of 179 Buildings Airtightness [L/(s·m²) @ 75 Pa] Airtightness [cfm/ft² @ 75 Pa] 3.0 2.0 1.0 0.0

Airtightness vs Year of Construction

Construction of Building [year]

Airtightness vs Height of Building

Impact of Requirements

Impact of Requirements

Performance of Air Barrier Systems

54 Buildings, Oct 2015 RDH Seattle Data

Impact of Testing

The Life of a Building

The Life of a Building

Upstream Effects

Material Selection

Assembly Design

Quality Control

Changes in Air Barrier System Selection

→ Seeing shifts from Mechanically Attached to Self-Adhesive & Liquid Applied membranes

New AB/WRB Materials

→ Many new self-adhered and liquid applied vapour permeable sheathing membranes available on the market

Changes in Quality Control

- → Noticeable improvements as soon as somebody cares specific people designated to look at air barrier
- \rightarrow Coordination between all team members essential

Impact of Requirements

Does airtightness requirement increase cost? 39% 61% 0% No, or not significantly Yes, significant

RDH Yes, moderate

Opinions of the Current Airtightness Target (< 0.40 cfm/ft² at 75 Pa) [< 2.0 L/s·m² at 75 Pa]

Impact of Requirements

The Life of a Building

Material Selection

Assembly Design

Quality Control

The Life of a Building

Downstream Effects

Energy Consumption Indoor Air Quality Acoustics Durability

What it Is, and What it Isn't

→ Airtightness vs Air Leakage

Airtightness vs Air Leakage

→ In-service air leakage is the combination of airtightness and pressure differences created by the driving forces of airflow

Determining Air Leakage from Airtightness

→ Difficult to extrapolate from airtightness test results to air leakage rates

Only One Piece Of the Puzzle

Summary

- → Airtightness performance and testing requirements have been successfully implemented in jurisdictions such as Washington State, the USACE, and the GSA.
 - → Target of 2.0 L/(s·m²) (0.40 cfm/ft²) at 75 Pa is common and demonstrated to be **consistently achievable**
- → Overall perceptions of whole building airtightness testing seem positive
- → Airtightness is part of the puzzle for understanding building airflows & energy efficiency, but further research required to tie directly to indoor air quality and energy savings

Discussion + Questions

FOR FURTHER INFORMATION PLEASE VISIT

- → www.rdh.com
- > www.buildingsciencelabs.com

or contact me at → Iricketts@rdh.com

