Practical Applications and Case Study of Temperature Smart Ventilation Controls

Michael Lubliner

WSU University Energy Program

Buildings XIII Conference, Clearwater Beach Florida December 6, 2016, 1:30 p.m.

Energy Program

WASHINGTON STATE UNIVERSITY

Learning Objectives

- Describe the concept of temperature-based ventilation control
- Discuss the magnitude of costs and savings of temperature-based ventilation control

Acknowledgments

- Florida Solar Energy Center (FSEC)
- Lawrence Berkeley National Lab (LBNL)
- Panasonic USA
- The Energy Conservatory (TEC)
- Google/Nest Labs

Motivation

Energy Efficiency

Smart Ventilation Control Indoor Air Quality

Theory

- Large ΔT
 - Strong stack effect
 - High natural infiltration
 - Substantial energy to condition incoming air
 Highest utility rates

Funding

"Smart Ventilation Technology Solutions that deliver adequate outside air for general pollution dilution and odor control, while optimizing the delivery to minimize energy associated costs."

Smart Ventilation Control (SVC)

Temperature Smart Ventilation Control (TSVC)

Real Time of Use Smart Ventilation Control (RTSVC)

Intermittent Exhaust Smart Ventilation Control (IESVC or RIVEC)

Combo!

Occupancy Smart Ventilation Control (OSVC)

Authority

ASHRAE 62.2-2013 Section 4.6

- "Same or lower annual exposure"
 - 62.2-2016 Appendix C (Variable Ventilation)
 - Limits peak (short-term) exposure to 5x annual average
 - Provides equations
- Real-time ventilation controller
 - Reduce ventilation rates when doing so benefits the occupants

Poor outdoor air quality

Elevated energy prices

TSVC Execution

Two-house case study

Champaign, IL	Location	Olympia, WA
Cold (zone 5)	Climate	Marine (zone 4)
1 story, 900 ft ²	Size	2 stories, 1,640 ft ²
Forced air furnace	HVAC	Ductless HP
No	Weatherized?	Deep (20 → 5)
9	ACH ₅₀	5
30	62.2-2013 rate (CFM)	40
80	TSVC rate (CFM)	90
55	TSVC shutoff (°F)	57

Modeling

REGCAP & EGUSA simulation tools:

- Mass-balance ventilation, heat transfer, HVAC equipment, moisture
- EGUSA hourly annual simulation
- Tightness matters
 - − Too tight (<1.5 ACH₅₀) \rightarrow unacceptable short-term levels
 - − Too loose (>10 ACH₅₀) \rightarrow fan has minimal impact on total ventilation
 - Biggest savings with 5-7 ACH₅₀

Champaign, IL	Location	Olympia, WA
\$7.30/year	Projected savings	\$23.00/year
11 years	Payback period (*)	4 years
9	ACH ₅₀	5

(*) Assumes installed cost of \$80 as part of a web-connected "smart" thermostat, useful life?

/ww.cosasqmepasan.com http://www.gracefox.com

Logistics

- Weekly flip-flop tests
 - 1 week 62.2 continuous rates
 - Low flow
 - 1 week TSVC
 - High flow, on ~ >56°F
- No manual override
 - No local demand ventilation for showers
- Temp sensor location
 - IL: attic vent
 - WA: shielded outdoor location

Monitoring

- Recorded
 - Indoor temp/RH, CO₂ levels
 - Outdoor temp (WA only)
 - HVAC operation
 - Ductless HP electricity consumption (WA)
 - Furnace air handler state (IL)

Results –

Carbon Dioxide in Main Living Area

Champaign, IL	Location	Olympia, WA
1600	Peak CO ₂	2200
868	Ave. CO ₂ (Cont.)	666
966	Ave. CO ₂ (TSVC)	748
+ 11%	% Difference	+ 12%

Year 1 results: concentration are in PPM, CO₂ higher at lower outside temperatures.

Two-sample T-test: suggests average CO₂ higher in TSVC mode at 95% confidence interval, where: WA case p=0.0025 , IL case p=0.0038

Results-

Relative Humidity Data Analysis

- Employed a Moisture Balance Technique (Francisco and Rose, 2008) used by IEA in Annex 41 for ISO 13788 (IEA, 2004).
- Technique compares the vapor pressure indoors "temperature-independent" to the vapor pressure outdoors over a range of outdoor temperatures.
- Linear regression of data between 68°F (20°C) and 32°F (0°C) and forcing the regression though zero PA at 68°F.
- The value at 32°F (0°C) intercept is the vapor pressure excess value used to characterize the home moisture balance.

Results-

Relative Humidity Data Analysis

• WA Case Study

- Vapor pressure excess was 616 Pa for SVC and 472 for continuous ventilation.
- Differences not statistically significant at 95%, direction of change as expected.
- IL Case Study
 - Vapor pressure excess was 234 Pa for SVC and 586 Pa for continuous ventilation
 - Differences are statistically significant at 95%, counter to expectations; attributable to 44°F to 54°F (7°C to 12°C) range, possibly occupant effects or short term outdoor conditions.

Moisture Balance vs. Outside Temperature

WA Case Study

IL Case Study

Note: Vertical lines at 55°F for TSVC cutoff and 32°F Intercept

Results – Need Larger Sample Size IL: HVAC Runtime

Results – Need Larger Sample Size WA: HVAC Energy Use

Future Work

- Temperature Smart Ventilation Control (TSVC):
 - Minimum flow rate vs. locked out
 - Condensation control to override "lock-out"
 - Lock-out at high wind speeds (Weather Smart)
 - Combine with occupancy and other SVC (RIVIC Residential Integrated Ventilation Controller) (LBNL)

Future Work (continued)

- Occupancy Smart Ventilation Control:
 - IAQ pollutant generation maybe lower in unoccupied homes depending on pollutants.
 - Is the home really unoccupied?
 - CO₂ & VOC sensor technology emerging
 - "Smart" connected thermostats that control ventilation
 - Smart phone location
 - Kitchen or bath fan operation
 - Security system "away" mode

Conclusions

- Two-site study not intended as statistically valid research project
 - Proof of concept on TSVC
- Difficulty obtaining convenient & accurate on-site temperature
 - Internet-based data?
 - Local microclimates?
- Equivalent ventilation not necessarily achieved
 Higher CO₂ levels at lower temperatures with TSVC
- Small but "cost effective" energy savings if TSVC is installed for under \$80 (maybe as part of a "Smart Connected Thermostat")

Discussion

- Are TSVC &/or OSVC promising control technology?
- SVC Application in hot/humid climates?
- Maintenance & operation issues & opportunities?
- Can SVC better inform occupants to operate and maintain per 62.2?

Michael Lubliner Iublinerm@energy.wsu.edu

Washington State University Energy Program

Go Cougs!