

VEGETATIVE ROOF PERFORMANCE DURING SUMMER - CRITICAL ANALYSIS OF THE IRRIGATION EFFECT

<u>Sara de Freitas</u> Hartwig Künzel, Daniel Zirkelbach Nuno Ramos, Vasco Freitas

> Laboratory of Building Physics - LFC Fraunhofer-Institut für Bauphysik - IBP

CONSTRUCT

LFC

Outline

1. INTRODUCTION

- 2. VEGETATIVE ROOFS
- 3. EXPERIMENTAL VEGETATIVE ROOF MONITORING
- 4. PERFORMANCE IN SUMMER CONDITIONS
- 5. VEGETATIVE ROOF MODELING
- 6. CONCLUSIONS

 \bigcirc \mathbb{O} LFC

FEUP FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO

INTRODUCTION

Urban and Rural world population

Fraunhofer

U. PORTO

CONSTRUCT

 \bigcirc

LFC

FEUP FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO 1950-2030

World Urbanization Prospects, UN

Buildings XIII Conference - 4

World urbanization prospects for 2050

2050

70% world population

Fraunhofer

Buildings XIII Conference - 5

Changes in the urban environment

Fraunhofer

U. PORTO

CONSTRUCT

LFC

FEUP FACULDAD

Urban heat island - up to 6°C difference

Fraunhofer

PORTO.

CONSTRUCT

LFC

EUP FACULDADE DE UNIVERSIDADE

Evapotranspirative cooling and roof shadding

Fraunhofer

U. PORTO

LFC

Buildings XIII Conference - 9

FEUP FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO

2.

VEGETATIVE ROOFS

🔊 Fraunhofer

U. PORTO FEUP FACULADE DE ENCENHARIA

Commercial Building - Porto [Porto 24]

Trindade Subway Station - Porto

Services Building - Copenhagen

Market - Porto

U. PORTO

-EUP FACULDADE DE ENGENHAR UNIVERSIDADE DO PORTO

Vegetative Roof Assembly

VEGETATION

SUBSTRATE

FILTER LAYER DRAINAGE LAYER

INSULATION

WATERPROOFING MEMBRANE STRUCTURE

VEGETATION SUDSTRATE FILTER LAYER DRAINAGE LAYER WATERPROOFING MEMBRANE INSULATION VAPOUR BARRIER STRUCTURE

Vegetative Roof Classification

	Extensive	Intensive
Substrate thickness	up to 200 mm	from 200 mm
Weight	60 - 150 kg/m ²	180 - 500 kg/m²
Plants diversity	limited mosses sedums succulents herbs grasses	high perennials lawn shrubs trees
Construction structure	usually structure reinforcement not required	usually reinforced structure is required
Irrigation	usually not required	usually required
Maintenance	low	high
Accessibility	usually inaccessible	usually accessible

U. PORTO JEUN FRUNDAGEN FEUD FACULDADE DE ENCENHARIA

FEUP FACULDADE UNIVERSIDA

Vegetative Roof

walkable plants

Fraunhofer

J. PORTO

LFC

Buildings XIII Conference - 15

LFC

Uncertainty ...

Environment conditions constraints

Fraunhofer

J. PORT

CONSTRUCT

LFC

EUP

World map of Köppen-Geiger climate classification

Buildings XIII Conference - 17

U. PORTO JEUN FRUNDATEN FEUP FACULDADE DE ENCENHARIA

Additional water supply

...plant survival and performance enhancement

CONSTRUCT

Water limitation regulations

Maintenance costs

Study on irrigation specifications

LFC

Questions

What is the effect of irrigation on roof performance during summer?

Are there numerical simulations tools available to study irrigation scenarios?

LFC

Fraunhofer

EXPERIMENTAL VEGETATIVE ROOF MONITORING

3.

Climate

Atlantic/Mediterranean climate

Fraunhofer

U. PORTO

LFC

Porto Climate

CONSTRUCT

LFC

Setup Location

D LFC

🔊 Fraunhofer

General overview

Roofs composition

J. PORTO

LFC

PERFORMANCE IN SUMMER CONDITIONS

Fraunhofer

U. PORTO

CONSTRUCT

LFC

FEUP FACULDA

6.3 l/m²

Buildings XIII Conference - 33

Impact of irrigation on heat fluxes

Fraunhofer

FEUP FACULDADE DE ENGENHARI UNIVERSIDADE DO PORTO

. PORTO

CONSTRUCT

LFC

......

2.5 l/m²

Impact of irrigation on heat fluxes - different amounts

solar radiation

magnitude and evolution of the fluxes

J. PORTO

Fraunhofer

Buildings XIII Conference - 35

Impact of irrigation on surface/near surface temperatures

🔊 Fraunhofer

J. PORT(

Impact of irrigation on surface/near surface temperatures

🔊 Fraunhofer

J. PORTO

Impact of irrigation detailed analysis

Fraunhofer

PORTO.

LFC

variable

U. PORTO JE Fraunhofer FEUP FACULDADE DE ROCENHARIA

LFC

Water Content - absence of water supply

🚺 Fraunhofer

. PORT

CONSTRUCT

LFC

variable

Water Content - which amount?

Fraunhofer

J. PORT

LFC

variable

Traditional vs Vegetative Roof summer days

J. PORTO

Traditional vs Vegetative Roof summer days

Fraunhofer

J. PORTO

LFC

Traditional vs Vegetative Roof night irrigation event

Fraunhofer

J. PORTO

LFC

VEGETATIVE ROOF MODELING

5.

Vegetative roof simplified energy balance

Vegetative Roof Models

Fraunhofer

PORT

CONSTRUCT

LFC

EUP FACULDADE

EUP FACULDADE DE ENCENHARIA FEUP FACULDADE DE ENCENHARIA

				ארמוב		Model		gical Model			Juppol		Substrate						Vegerarion			Drainage	Layer	Waterproofing	membrane	cation	
Authors	1D	2D	uilding	City		Conplea			Heat	Transf.	Mass	Transf.	Heat	Transf.	Mass	Transf.	Heat	Transf.	Mass	Transf.	Heat	Transf.	Mass	Transf.	Heat	Transf.	Air stratifi
			B		Yes	No	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	
Künzel 1995	x		x			x	x			х		x		х	x		x		x			x	x			x	
Del Barrio 1988	x		x			x	x			x				х		х		x		х							
Lazzarin et al. 2005	x		x		x		x		x				x		x		x		x		x		x		x		
Kumar and Kaushik 2005	x		x		x		x			x				x		x		x		x							
Alexandri and Jones 2007	x			x		x	x			x		x		x		x		x		x							Х
Sailor 2008	x		x		x		x						x		x			x		х							
Palla et al. 2008	x		x			x		х						х		x											
Feng et al. 2010	x		x			x							x				x		x								
He and Jim 2010	x			x		x												x									Х
Sailor and Hagos 2011						х							x		x												
Ouldboukhitine et al. 2011	x		x			x		x						x		x		x		x							
Jaffal et al 2012	x		x		x								x		x		х		х								
Tabares-Velasco and Srebric 2012	x		x		x		x						x		x			x		x							
Djedjig et al. 2012	x		x		x			х						х		х		x		х							
Munck et al. 2013		x		x	x			х	x				x		x		x		x		x		x				
Sun et al. 2013	x		x		x			х		х		x		х		х		x		х							
Olivieri et al. 2013	x		x			x							x				х										

Major modeling limitations

Fraunhofer

PORTO

LFC

Gipskartonplatte

Weichholt

Querschnitt [cm]

EUP FROUDADE DE ENCENHARIA FEUP FROUDADE DE ENCENHARIA

		ווטוגוושווות		סרמוב		Model		gical Model		Cupport	onphon r		Substrate						Vegetation			Drainage	Layer		Waterproofing	membrane	-ation
Authors	1D	2D	uilding	City		Coupled			Heat	Transf.	Mass	Transf.	Heat	Transf.	Mass	Transf.	Heat	Transf.	Mass	Transf.	Heat	Transf.	Mass	Transf.	Heat	Transf.	Air stratifi
			B		Yes	No	S	С	S	С	S	с	S	с	S	С	S	С	S	С	S	с	S	С	S	С	
Künzel 1995	x		x			x	x			x		x		x	x		x		x			x	x			x	
Del Barrio 1988	x		x			x	x			x				х		x		x		х							
Lazzarin et al. 2005	x		x		x		Х		x				x		x		x		x		x		x		x		
Kumar and Kaushik 2005	x		x		x		x			x				x		x		x		x							
Alexandri and Jones 2007	x			x		x	x			x		x		x		x		x		x							Х
Sailor 2008	x		x		x		x						x		x			x		х							
Palla et al. 2008	x		x			x		х						х		x											
Feng et al. 2010	x		x			x							x				x		x								
He and Jim 2010	x			x		x																					Х
Sailor and Hagos 2011						x																				7	
Ouldboukhitine et al. 2011	x		x			x		x				6	<mark>ap</mark> l	pr	<mark>0</mark> X	cin	na	ti	on	e	rre	or	s (du	e		
Jaffal et al 2012	x		x		x							to	W	at	:el	<mark>۲ ر</mark>	0	nto	en	t d	dis	str	ib	ut	io.	n	
Tabares-Velasco and Srebric 2012	x		x		x		x																				
Djedjig et al. 2012	x		x		x			х																			
Munck et al. 2013		x		x	x			x	x				x		x		x		x		x		x				
Sun et al. 2013	x		x		x			x		x		x		x		x		x		x							
Olivieri et al. 2013	x		x			x							x				x										

U. PORTO JEUN FAUNHOFER FEUP FACULDADE DE ENCENHARIA

	$\overline{\Delta}$	Λ		
	X	$\overline{}$		
÷	X	Х		
JN.	51	R	DC	. 1

				סרמוב		Model		gical Model			n Inddnc			Cubatrato	אוואטעוט				vegetation			Drainage	Layer	Waterproofing	membrane	ration	
Authors	1D	2D	uilding	City	ران ر	Coupled	L'udrolog		Heat	Transf.	Mass	Transf.	Heat	Transf.	Mass	Transf.	Heat	Transf.	Mass	Transf.	Heat	Transf.	Mass	Transf.	Heat	Transf.	Air stratifi
			B		Yes	No	S	С	S	С	S	с	S	с	s	с	S	С	S	с	S	с	S	с	S	С	
Künzel 1995	x		x			x	x			х		x		x	x		x		x			x	x			x	
Del Barrio 1988	x		x			x	x			х				x		x		x		x							
Lazzarin et al. 2005	x		x		x		Х		x				x		x		x		x		x		x		x		
Kumar and Kaushik 2005	x		x		x		x			x				x		x		x		x							
Alexandri and Jones 2007	x			x		x	x			x		x		x		x		x		x							Х
Sailor 2008	x		x		x		x						x		x			x		x							
Palla et al. 2008	x		x			x		x						x		x											
Feng et al. 2010	x		x			x								Les				- - - - -		_	_						
He and Jim 2010	x			x		x						7		KI	10	W	le	ag	e	ΟΙ	C	JII	ιp	le	X		
Sailor and Hagos 2011						x											p	ara	an	ne.	te	rs					
Ouldboukhitine et al. 2011	x		x			x		x							ď	iff	ίc	ul	t t	0	qu	lar	٦ť	ify	/		
Jaffal et al 2012	x		x		x																÷.,			-			
Tabares-Velasco and Srebric 2012	x		x		x		x						x		x			x		x							
Djedjig et al. 2012	х		x		x			x						x		x		x		x							
Munck et al. 2013		x		x	x			x	x				х		x		x		х		x		х				
Sun et al. 2013	x		x		x			x		х		х		x		x		x		x							
Olivieri et al. 2013	x		x			x							x				x										

U. PORTO FEUP FACULADE DE ENCENHAR

CONSTRUCT

Modeling approach

Measurements vs Simulations

Measured vs simulated - surface temperatures

Fraunhofer

FEUP FACULDADE DE ENCENHARI

J. PORTO

CONSTRUCT

LFC

Buildings XIII Conference - 54

Measured vs simulated - surface temperatures

Fraunhofer

FEUP FACULDADE DE ENGENHAR

J. PORTO

CONSTRUCT

LFC

FEUP FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO

CONCLUSIONS

6.

CONCLUSIONS

Vegetative roofs are designed to depend primarily on precipitation, but we need to consider <u>vegetation species</u> and <u>climatic</u> <u>conditions</u>

Fraunhofer

Maximization of water efficiency is imperative: to reduce water waste, costs and enhance roof performance during summer

Fraunhofer

CONCLUSIONS

Simulation tool validated to test different irrigation scenarios

irrigation scenarios

Irrigation impacts positively on heat fluxes and surface temperatures

U. PORTO FEUD FACULADE DE PORTO

 \bigcirc

LFC

