IOWA STATE UNIVERSITY

Center for Building Energy Research

Method to Evaluate and Develop Next Generation Vacuum Insulation Panels for Implementation in the Retrofit of Existing Building Envelopes

Kyle Vansice

Ulrike Passe Dipl.-Ing. ASHRAE Associate

Overview

- New core materials for Vacuum Insulated Panels (VIPs):
- How would they impact whole building energy performance?
- Whole building energy impact on building retrofits
- Methodology:
 - Parametric modeling of DOE reference buildings with and without retrofit
 - Improvement in energy performance by climate zone
 - Improvement in energy performance by panel size and thickness
- Results:
 - Issues with impact on energy performance over time

IOWA STATE UNIVERSITY

Vacuum Insulated Panels

insulation thickness required to achieve 0.16 w/m2k

http://www.builddifferent.co.uk/wpcontent/uploads/2012/10/insulation1.jpg

IOWA STATE UNIVERSITY

Center for Building Energy Research

CORE MATERIAL FOR VIPs

Fumed Silica Glass Bubbles Diatom

Electron micrograph, thanks to Prof. Mufit Akinc, Material Science and Engineering

IOWA STATE UNIVERSITY

College of Engineering

MATERIAL PROPERTIES

Material Type	Diatomaceous	Fumed Silica	Glass Bubbles	Glass Fiber
Thermal conductivity (W/m.K) @ 1 atm	0.0269	0.0175	0.0145	0.0106
Thermal conductivity (W/m.K) @ vacuum	0.0029	0.0042	0.0027	0.0041
Emissivity	0.930	0.930	0.930	0.930
Density (g/cm ³)	0.400	0.037	0.150	0.255
Specific heat (J/m ³ K)	$0.5 x 10^{6}$	$0.1 x 10^{6}$	0.06×10^{6}	0.1x10 ⁶
Moisture diffusivity (cm ² /s)	0.160	0.213	0.095	0.184

Material properties of the various core materials used (Chang, 2016)

5

IOWA STATE UNIVERSITY

DOE REFERENCE BUILDINGS

ASHRAE Climate Zone	Reference City	U-Value (BTU / ft²hr°F)	R-Value (ft ² hr [•] F / BTU)
1A	Miami	0.550	1.818
2A	Houston	0.172	5.822
2B	Phoenix	0.240	4.169
ЗА	Atlanta	0.146	6.846
3B	Los Angeles	0.220	4.549
3C	San Francisco	0.130	7.699
4A	Baltimore	0.088	11.251
4B	Albuquerque	0.099	10.003
4C	Seattle	0.092	10.885
5A	Chicago	0.082	12.193
5B	Boulder	0.082	12.193
6A	Minneapolis	0.065	15.398
6B	Helena	0.072	13.892
7A	Duluth	0.058	17.270
8A	Fairbanks	0.045	22.195

pre-1980 residential exterior wall assemblies listed by ASHRAE climate zone (Standard 90.1-2007)

IOWA STATE UNIVERSITY

Center for Building Energy Research

DOE REFERENCE BUILDINGS

ASHRAE Climate Zone	Reference City	U-Value (BTU / ft ² hr ^o F)	R-Value (ft ² hr ^o F / BTU)
1A	Miami	0.550	1.818
2A	Houston	0.172	5.822
2B	Phoenix	0.240	4.169
ЗА	Atlanta	0.146	6.846
3B	Los Angeles	0.220	4.549
3C	San Francisco	0.130	7.699
4A	Baltimore	0.088	11.251
4B	Albuquerque	0.099	10.003
4C	Seattle	0.092	10.885
5A	Chicago	0.082	12.193
5B	Boulder	0.082	12.193
6A	Minneapolis	0.065	15.398
6B	Helena	0.072	13.892
7A	Duluth	0.058	17.270
8A	Fairbanks	0.045	22.195

pre-1980 residential exterior wall assemblies listed by ASHRAE climate zone (Standard 90.1-2007)

IOWA STATE UNIVERSITY

Center for Building Energy Research

PRESSURE VERSUS TIME

Thermal resistance of various core material types as tested across pressures ranging from 26 Pa to one- atmosphere

IOWA STATE UNIVERSITY

Center for Building Energy Research

PRESSURE VERSUS TIME

Thermal resistance of various core material types as tested across pressures ranging from 26 Pa to one- atmosphere

IOWA STATE UNIVERSITY

Center for Building Energy Research

Parametric Model

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

Revised Results

IOWA STATE UNIVERSITY

RETROFIT ENERGY PERFORMANCE

Results of EnergyPlus simulation showing thermal energy consumption by ASHRAE climate zone

IOWA STATE UNIVERSITY

Center for Building Energy Research

RETROFIT ENERGY PERFORMANCE

Results of EnergyPlus simulation showing thermal energy consumption by ASHRAE climate zone

IOWA STATE UNIVERSITY

Center for Building Energy Research

THERMAL ENERGY CONSUMPTION

Climate Zone	Thermal Energy (mJ/m2) (before retrofit)	Thermal Energy (mJ/m2) (after retrofit)	Net Reduction
1A	45.4	44.2	2.6%
2A	45.7	41.4	9.4%
2B	43.2	40.2	6.9%
3A	44.6	42.3	5.2%
3B	42.4	40.7	4.0%
3C	46.6	43.6	6.4%
4A	53.7	49.3	8.2%
4B	52.4	49.1	6.3%
4C	53.1	49.2	7.3%
5A	80.4	51.2	36.3%
5B	80.4	51.2	36.3%
6A	101.4	65.3	35.6%
6B	94.6	61.9	34.6%
7A	127.8	78.4	38.7%
8A	145.9	93.1	36.2%

Results of EnergyPlus simulation showing thermal energy consumption by ASHRAE climate zone comparison between pre-1980 and retrofit case

15

IOWA STATE UNIVERSITY

PANEL SIZE VS ENERGY USAGE

Change in performance across core materials and panel size

16

IOWA STATE UNIVERSITY

PANEL SIZE VS ENERGY USAGE

Change in performance across core materials and panel size

17

IOWA STATE UNIVERSITY

PANEL THICKNESS VS ENERGY USE

Effects of panel thickness on whole building thermal energy consumption when compared with the baseline condition

18

IOWA STATE UNIVERSITY

PANEL THICKNESS VS ENERGY USE

Effects of panel thickness on whole building thermal energy consumption when compared with the baseline condition

19

IOWA STATE UNIVERSITY

PRESSURE VS THERMAL

Increase in thermal conductivity within a pressure range corresponding with expected values over 50 years

IOWA STATE UNIVERSITY

Center for Building Energy Research

Time vs Pressure

Increase in pressure over time based upon the model proposed by (J. Fricke 2007)

IOWA STATE UNIVERSITY

Center for Building Energy Research

THERMAL RESISTANCE vs TIME

Resulting decrease in thermal resistance over a period of 50 years due to pressure increase

IOWA STATE UNIVERSITY

Center for Building Energy Research

ACKNOWLEDGEMENTS

The authors are very grateful to the Iowa Energy Center for funding this work as part of an opportunity grant with Dr. Mufit Akinc, Professor of Materials Science and Engineering at Iowa State University as principal investigator.

The authors also thank Boyce Chang as well as Ganesh Balasubramanian and Mufit Akinc for sharing their knowledge about the core materials and for assistance in obtaining the data.

CONTACT and Questions: ULRIKE PASSE, DIPL.-ING. ARCHITEKT Associate Professor of Architecture Director Center for Building Energy Research upasse@iastate.edu

IOWA STATE UNIVERSITY