NCCNC

Field Evaluation of Thermal and Moisture Response of Highly Insulated Wood-frame Walls

Presented by: Michael A. Lacasse, Ph.D., P. Eng. Building Envelope & Materials, Construction, Ottawa, Canada

On behalf of: Hamed H. Saber, PhD, Wahid Maref, PhD, G. Ganapathy, BEng (ME), Silvio Plescia, PEng & Anil Parekh, MASc

Session 9: Walls – Hygrothermal Performance & Durability, Wednesday, 6 December, 2016 BUILDINGS XIII International Conference: Thermal Performance of the Exterior Envelopes of Whole Buildings; Clearwater, FL, USA

National Research Conseil national Council Canada de recherches Canada

Overview

BUILDINGS XIII International Conference Session 9: Walls – Hygrothermal Performance & Durability

- Overview
- Project background & motivation
- Project approach
- Performance assessment
- Defining performance attributes
- Wall configurations
- Test protocol & monitoring period
- Results from field study
- Summary

Project background

BUILDINGS XIII International Conference Session 9

- Background on and motivation for project
- Homebuilders* have interest in providing homes that meet or exceed ENERGY STAR[®] requirements and are "durable"
 - ENERGY STAR[®] Program : Intended to promote & advances energy efficiency in Canada supported by US Environmental Protection Agency
 - ENERGY STAR[®] qualified new home 20% more energy efficient than home built to code (on average)

Project background

Key questions of interest to industry and industry stakeholders**

- Demonstrate compliance to NBC code (*NBC § 9.36 / Min. R_{eff}-value for walls)
- Do highly-insulated wall assemblies nominally perform 'adequately'?
 - When compared to a NBC-compliant reference wall
 - Adequate performance as relates to thermal and hygrothermal performance when subjected to Canadian climate extremes

Climate Zone	HDD	e.g. Location	R _{eff}	*NBC compliant Wall assembly 2 X 6-in. @ 16-in. o.c.
Z4	< 3000	Vancouver, Victoria	15.8	R19 (GF batt insulation)
Z5	3000-3999	Toronto	17.5	R22 (GF batt insulation)
Z6	4000-4999	Ottawa, St. John's	17.5	R22 (GF batt insulation)
Z7A	5000-5999	Edmonton	17.5	R22 (GF batt insulation)
Z7B	6000-6999	Whitehorse	21.9	R22 (batt) + R5 (rigid)
Z8	>8000	Yellowknife	21.9	R22 (batt) + R5 (rigid)

**Agencies / Associations supporting adoption of ENERGY STAR[®] homes: e.g. CMHC / NRCan / CHBA - Canadian Home builders association

Project background

Key questions of interest to Industry

- Compliance with NBCC
 - i.e. equal or better "performance" for "moisture control" as compared to NBCC specified "Reference wall"
- Moisture control ⇒ control of effects of water entry and condensation
- Lack of moisture control ⇒ "Moisture control problems"?

"Moisture control problems"?

- Risk to water uptake and subsequent formation of mold or rot by moisture sensitive components in wall assembly
 - "MEWS cladding study"*

Project objective & approach

- Investigate risk of condensation in wall assemblies having different levels of thermal resistance (R-value)
- Monitor thermal and hygrothermal response of a set of 3 wall assemblies to local climate conditions over ~ 9 month period
- Wall exposed to natural and local climate effects in NRC's Field Exposure of Walls (Test) Facility (FEWF)

Project objective & approach

Buildings **XII** (2013) – **VIP** insulation / retrofit Buildings **XI** (2010) – Insulated concrete forms

- Wall exposed to local climate effects
 - Each year monitor 3 wall assemblies over exposure period
 - Exposure period: January to September (cold, mild & warm months)

Results from field study

- Phase 1 / Yr 1 1st set 3 walls having exterior insulation (R4 – R5)
- Phase 2 / Yr 2 2nd set of 3 walls various insulation types

Performance assessment

Performance of wall assemblies based on performance attributes of selected areas of interest within wall

- Performance attributes considered : mold risk index*
- Selected areas: e.g., sheathing panel in contact with WRB membrane

Adequate performance for "alternative" code solution:

- Wall assemblies exhibit performance as good or better than Reference code-compliant wall assembly
- Should performance of wall assemblies be found inadequate in comparison to Reference wall – not a suitable solution

Performance attribute: mold index

- Indicator of risk to formation of mold or rot fungi
 - Based on T, RH conditions and time
- Does not predict likelihood of occurrence
 - Would additionally depend on several other factors
- Mold fungi cause no damage to wood other than discoloration – but considered a precursor to decay
- Decay fungi actually weaken wood structure
- Decay only occurs above fiber saturation point (i.e. >27-30% moisture content of wood or >97% RH)
- Most wood-decay fungi exist at temperatures from 10 to 40 °C

Anagnost*, S. E. (2011), <u>Wood Decay, Fungi, Stain and Mold</u>, New England Kiln Drying Association Meeting, Oneonta, NY; *Chair and Associate Professor, SUNY, Syracuse, New York

Most recent model by *Viitanen et al

Mould Index criterion

Table 1. Mold Index for Experiments and Modeling (New Determinations for Index Levels 3 and 4 are Presented in Bold)

Index	Description of Growth Rate		
0	No growth		
1	Small amounts of mold on surface (microscope), initial stages of local growth		
2	Several local mold growth colonies on surface (microscope)		
3	Visual findings of mold on surface, < 10% coverage, or < 50% coverage of mold (microscope)		
4	Visual findings of mold on surface, 10%–50% coverage, or > 50% coverage of mold (microscope)		
5	Plenty of growth on surface, > 50% coverage (visual)		
6	Heavy and tight growth, coverage about 100%		

*Viitanen et al. (2010), "Moisture and Bio-deterioration Risk of Building Materials and Structures"; Journal of BUILDING PHYSICS, Vol. 33(3), pp. 201-224

NCCNCC

Wall configurations with structural sheathing

- 1. Gypsum board
- 2. Vapour Barrier (WVP = 60 ng/(Pa.s.m²))
- 3. Top plate
- 4. Bottom plate
- 5. Fiber insulation (R-24)
- 6. OSB

Outdoor

- 7. WRB (WVP = 1400 ng/(Pa.s.m²)
- 8. Exterior Insulation:
 - (a) EPS of 1 in thick (R4/in.)
 - (b) XPS of 2 in thick (R5/in.)

(c) MF of 3 in thick (R4/in.)

9. Air

10. Vinyl siding installed on 19 mm strapping (WVP = 40-70 perms, S.V. Glass, Building Science Corporation, 2010)

NRC.CNRC

Wall configurations – Nominal R-values

Parameter	Wall 1	Wall 2	Wall 3				
2x6 Wood-Framing Cavity Insulation	Batt Insulation of R-24						
Exterior Insulation	Exterior Insulation Details						
Туре	EPS	XPS	Mineral Fibre				
Thickness (in)	1	2	3				
Dry Density (kg/m ³)	18	26	122				
Dry Thermal Conductivity (W/(m•K))	0.0369	0.0290	0.0347				
Total R-value (ft ² •hr• ^o F/BTU)	3.91	9.95	12.47				
R-value ((ft ² •hr•°F/BTU)/in)	3.91	4.97	4.16				

Approx. Nominal Total R-Value of Insulation283436

Phase 1 (WA set: 1, 2, 3)

Phase 2 (WA set: 4, 5, 6)

Test protocol over monitoring period

Phase 1 (2013/14)

Period	Interior conditions				Exterior conditions	
	Temperature (°C)	RH (%)	Pressure (Pa)	Deficiency (3mm slit)	Deficiency (3mm slit)	Temperature/ RH
A (175 days)	21	35	0	Closed	Open	Ambient local
B (20 days)	21	50	10	Open	Open	Ambient local
C (40 days)	21	Variable / natural	0	Open	Open	Ambient local
D (100 days)	21	Variable / natural	0	Closed	Open	Ambient local

Phase 2 (2014/15)

Period	Interior conditions				Exterior conditions		
	Temperature (°C)	RH (%)	Pressure (Pa)	Deficiency (3mm slit)	Deficiency (3mm slit)	Temperature/ RH	
A (40 days)	21	35	0	Closed	Open	Ambient local	
B (9 days)	21	Variable / natural	Variable	Open	Open	Ambient local	
C (47 days)	21	Variable / natural	0	Open	Open	Ambient local	
D (167 days)	21	Variable / natural	0	Closed	Open	Ambient local	

Air leakage measurements / 0.1 L/s–m² @ 75 Pa

Project	Wall	ξ (L/min) = a ΔΡ ⁿ		
Phase		2	n	
	W1	73.5	0.320	
Phase 1	W2	75.9	0.316	ξ
	W3	53.4	0.300	-
	W4	0.685	0.989	n
Phase 2	W5	0.654	0.766	
	W6	0.593	0.953	
*ΔP in Pa				

$$\xi = a \left(\Delta P_{tot}\right)^n$$
$$n (avg) = 0.69 \approx 0.7$$

Overview

BUILDINGS XIII International Conference Session 9: Walls – Hygrothermal Performance & Durability

- Overview
- Project background & motivation
- Project approach
- Performance assessment
- Defining performance attributes
- Wall configurations
- Test protocol & monitoring period
- Results from field study
- Summary

H – Response of wall assembly W1 (EPS)

Monitoring period 2013/14

Temperature [T+]; Relative humidity [RH+] @ interior OSB surface; Dew point [T+]

H – Hygrothermal

Results – Phase 1

Phase 1: No condensation evident for any walls; Mold index < 1.1

Response of moisture detection strip to presence of moisture in wall

H – Response of W5

Phase 2: Mold index for all walls < 1.8

BUILDINGS XIII International Conference Session 9: Walls – Hygrothermal Performance & Durability

All walls meet or exceed code (NBC §9.36) requirements irrespective of C-Zone

Proposed Walls for Phase III (FY 2015/2016)

2015- 2016 walls	Wall-2015-1 <u>R24 + R5</u> 1 inch XPS	Wall 2015-2 <u>Passivhaus R43</u>	Wall 2015-3 OSB as vapour barrier
	 Wall components Vinyl siding 1.5 in wide x 7/16" thick furring strip installed vertically 1 inch XPS rigid foam insulation (exterior insulation) Sheathing membrane 11 mm OSB wood-sheathing 2x6 nominal stud cavity with R24 glass fiber insulation batts 6 mil poly air/vapour barrier ½ inch painted drywall Notes: XPS a low permeance product compared to (>60ng) EPS Does not meet inboard-outboard ratio; change requirement in NBC (§ 9.27) & see what happens	Wall components Exterior wythe • Vinyl siding • 1.5 in wide x 7/16" thick furring strip installed vertically • Wood-based diffusion board • 2 x 10 studs • Wood fibre insulation • 11 mm OSB wood-sheathing (interior air and vapour barrier) Service wall interior • 2x4 studs • mineral wool or wood fibre insulation • gypsum board	 Replace poly vapour barrier with interior OSB taped for one of the walls to demonstrate the effectiveness of a smart vapour barrier. Wall-2015-1 with poly vapour barrier replaced with OSB plywood. BC solution - wood sheathing from between studs and XPS to interior; cost the same.

NRC.CNRC

Thank you !

Acknowledgements — CMHC – Canada Mortgage and Housing Corporation NRCan – Natural Resources Canada Canadian Home Builders Association Owens Corning, Plasti-Fab, Roxul

NRC-Construction –

Khaled Abdulghani Sladana Budalo-Perc Gnanamurugan Ganapathy Wahid Maref Phalguni Mukhopadhyaya *Travis Moore Michael Nicholls Hamed Saber David Van Reenen*

