

VTT mold model – Equations, parameters, performance criteria

Buildings XIII Workshop Tuomo Ojanen & Hannu Viitanen

Contents

- Background and motivation
- Visual findings and mold index
- Model equations
- Mold growth conditions
- Classification of materials Sensitivity to mold growth
- Decline of mold index
- Effect of parameter selection on simulated mold growth
- Examples
- Discussion and conclusions

Background and motivation for mold model

- Mold growth is one of the first signs of too high moisture content in (building) materials
 - It may affect the indoor air quality and the appearance of surfaces
 - Increasing moisture may lead to structural damages

Mold Index

- Mold growth potential can be predicted by solving a numerical value, MOLD INDEX
- Values between [0, 6] depending on the growth coverage
- The model was originally based on mold growth studies on wooden material surface
- Same model can be used for other building materials scaling coefficients for equations

Critical factors

- Humidity
- Temperature
- Time
- Substrate

Mold Model principles – Visual findings interpreted as mold index values

Index levels between 0 and 6

Index	Description of the growth rate	
0	No growth	和在社会
1	Small amounts of mould on surface (microscope), initial stages of local growth	以下股
2	Several local mould growth colonies on surface (microscope)	
3	Visual findings of mould on surface, < 10 % coverage, or, < 50 % coverage of mould (microscope)	
4	Visual findings of mould on surface, 10 - 50 % coverage, or, >50 % coverage of mould (microscope)	
5	Plenty of growth on surface, > 50 % coverage (visual)	
6	Heavy and tight growth, coverage about 100 %	

Mold growth parameters used in the model

- Substrate
 - Typical building materials
- Growth conditions
 - Limit levels of RH and temperature
- Growth intensity
 - Depends on material, conditions and growth level
- Maximum growth (Mold index) level
 - Depends on material and conditions
- Decline of visible growth level during unfavorable conditions
 - Seasonal long-period conditions outside the growth area
 - Level of growth and growth intensity after decline periods

General mold growth equations – Reference material pine

$$\frac{dM}{dt} = \frac{1}{7 \cdot \exp(-0.68\ln T - 13.9\ln RH + 0.14W - 0.33SQ + 66.02)} k_1 k_2$$

$$k_{1} = \begin{cases} \frac{t_{M=1,pine}}{t_{M=1}}, \text{ when } M < 1\\ 2 \cdot \frac{(t_{M=3,pine} - t_{M=1,pine})}{(t_{M=3} - t_{M=1})}, \text{ when } M \ge 1 \end{cases}$$

$$k_{2} = \max\left[1 - \exp\left[2.3 \cdot (M + M_{\max})\right], 0\right]$$
$$M_{\max} = A + B \cdot \frac{RH_{crit} - RH}{RH_{crit} - 100} - C \cdot \left(\frac{RH_{crit} - RH}{RH_{crit} - 100}\right)^{2}$$

Scaling factors k_1 and k_2 for different materials

Coefficient k₁ is used to scale the growth intensity

Coefficient k₂ to limit the growth to maximum possible index level

Parameters for northern timber - W

W for timber: Pine W = 0, spruce W = 1

Faster growth for pine

Timber and surface quality parameters only with spruce and pine, when known

Parameters for northern timber – Surface quality

$$\frac{dM}{dt} = \frac{1}{7 \cdot \exp(-0.68\ln T - 13.9\ln RH + 0.14W - 0.38SQ + 66.02)} k_1 k_2$$

SQ for surface quality: Planed, sawn SQ = 0, Kiln dried SQ = 1

Faster growth when dried under high temp.

Timber and surface quality parameters only with spruce and pine, when known

Use of different materials

- Scaling of mold growth intensity using scaling factor k₁
- Scaling of maximum mold growth level using scaling factor k₂
- Lowest critical relative humidity level allowing mold growth RH_{crit}

Effect of k₁ coefficient

- Growth intensity changes after the first signs of mold (MI = 1)
- Change depends on material
- Example: Sensitive and very sensitive materials under +20 °C and 95 % RH

Mold growth intensities on material surfaces

Mold growth intensity classes

Mold growth intensity classes for different materials – use of k₁ coefficient

Very sensitive = pine sapwood (reference material) Experimental findings for growth intensity of different materials Scaling coefficients k_1 for material sensitivity classes

Mold growth sensitivity classes

Peuhkuri, R; Viitanen, H; Ojanen, T. Modelling of mould growth in building envelopes Proceedings of the IEA ECBCS Annex 41 Closing seminar, Copenhagen, June 19, 2008

Maximum Mold Index level - coefficient k₂

$$k_2 = \max[1 - \exp[2.3 \cdot (M - M_{\max})], 0]$$

Maximum long period mold index level under stationary conditions

Maximum long period mold index level under stationary conditions

levels of growth → Classification according material types

Maximum

Effect of k2 on growth close to maximum

- The growth is damped close to maximum growth index
- M_{max} =f(T, RH%)

Maximum Mold Index level - coefficient k₂

'Scaling' coefficients k₂ are derived from experimental findings

Maximum Mold Index level - coefficient k₂

$$k_2 = \max[1 - \exp[2.3 \cdot (M - M_{\max})], 0]$$

$$M_{\text{max}} = A + B \cdot \frac{RH_{crit} - RH}{RH_{crit} - 100} - C \cdot \left(\frac{RH_{crit} - RH}{RH_{crit} - 100}\right)^2$$

	k ₂		RH _{min}			
Sensitivity class	Α	В	С	%		
very sensitive, vs	1	7	2	80	Pine, reference	
sensitive, s	0.3	6	1	80		
medium resistant, mr	0	5	1.5	85	Values for new sensitivity classes	
resistant, r	0	3	1	85		

Maximum Mold Index levels at different RH % conditions

Evaluation of the model with mold sensitivity classes: Experiment vs. numerical predictions 1

Pine and spruce under 97 % RH and +5 °C

Evaluation of the model with mold sensitivity classes: Experiment vs. numerical predictions 2

C) Concrete, RH 97%, +22 C (1)

Effect of dynamic conditions on mold growth

- Dynamically changing conditions delay the growth
- Decline of visible growth level after (long) periods with unfavorable conditions

Growth delay due to dynamic conditions

- Hourly / daily cycles can slow down the growth
- Both material capacity and mold growth dynamics have effect on this
- Predicted mold growth on pine sapwood under dynamic cyclic conditions RH 97 % / 75 % and +20 C

Decline of Mold Index

Detected: Decrease of mold index after unfavorable growth conditions

- Too cold, too low humidity
- Does it really affect the level of restarting growth
- What is the growth intensity after decline periods
- Model for wood gives high decrease

Decline of Mold Index – Seasonal effects on growth level

- Experiments under laboratory conditions
- Winter period with freezing temperatures at critical surface

Lähdesmäki, K, Salminen, K, Vinha,J, Viitanen, H, Ojanen, T & Peuhkuri, R. Mould growth on building materials in laboratory and field experiments. 9th Nordic Symposium on Building Physics, NSB 2011, Tampere, Finland, 2011.

Relative mold decline coefficients

Description

- Significant decline, pine, short periods 1,0
- 0,5 **Relevant decline**
- 0,25 Relatively low decline
- 0,10 Almost no decline

dМ dMmat dt đt Pine mat

Example – Four year simulation period data – 1

- WUFI 6 Solved temperature and RH data for critical boundary
- Test the mold model and effect of parameters on Mold index

Example – Four year simulation period data - 2

- Solved mold index levels using different sensitivity classes for growth
- Decline coefficient 0,25 includes safety

Example – Effect of decline index

- Medium resistant material variation of decline index
- All (except C = 1) have risk at indoor surfaces
- None has risk at exterior surfaces
- Risk level about the same when decline index has some safety

Modeling mold growth on different materials

- Model equations for wood
- Coefficients for different material groups
- Classification according to mold sensitivity classes
- Critical RH-levels for starting growth
- Maximum mold levels
- Decline coefficients for materials

Model evaluation with laboratory experiments

 The (RH/T) conditions and the mold index levels were monitored at the critical interface of two materials

Stage	1	2	3	4
Season	Summer/autumn	Winter	Spring	High exposure
Time, months	7	4	6	12
RH %	80 100	92 100	60 95	94 100
Temperature °C	27 18	-5 +3	2 10	20 24

Parameters set according to material classification – Case 2

Parameters set according to material classification – Case 3

Parameters set according to material classification – Case 4

Analysis principles

- Critical parts of the structure, critical boundaries
- Typically use the more sensitive material of the boundary as critical
 - Except when there are inhibitors limiting the growth (fresh concrete, some fire resistance materials, etc.)
- Different criteria for different parts of structure
 - Inside surfaces and material layers that can be in contact with indoor air – typical criteria MI = 1 (max)
 - Exterior or closed internal parts of the structure criteria MI = 3

Summary

- Classification of materials according to mold growth sensitivity
- Coefficients scale the VTT Mold model for different materials
- Path from experiments to mold index parameters
- Mold Risk prediction for different materials
- Sensitivity analysis possible

TECHNOLOGY FOR BUSINESS

Thank you for your attention!

tor