Computation of Effective Diffusion Coefficient in a Polycrystal

B. Radhakrishnan & N.S. Kulkarni

Oak Ridge National Laboratory

Y. Sohn

University of Central Florida

J. Hunter

Virginia Tech

March 13, 2012, TMS 2012

Research project “Diffusion Database for ICME” funded by DOE EERE
Motivation

- Diffusion database is key to modeling kinetics of thermally activated processes
 - *Phase transformations, grain growth, recrystallization*

- Diffusion coefficients depend on the microstructure
 - *Grain size, grain boundary misorientation distribution*

- Microstructure may not be stable at the processing temperature
 - *Varying diffusion coefficients*

- Success of Integrated Computational Materials Engineering (ICME) depends on reliable microstructure-processing models
 - *Lack of diffusion data for key lightweight materials*
Project Plan

- Experimental measurement of diffusion coefficients rely on
 - Measuring a concentration profile of a diffusing species when subjected to a diffusion anneal
 - Using analytical approaches to relate concentration gradient to an effective diffusion coefficient

- Several uncertainties exist in measurements
 - Varying contributions from bulk and high diffusivity interfaces
 - Concurrent microstructural evolution

- Effective diffusivity models at the mesoscale help to de-convolute the various contributions
Mapping algorithms used to develop realistic input microstructures

- EBSP data for annealed 6022 mapped to 3D grain structure
- Algorithm simultaneously minimizes error in texture and boundary misorientation distribution (BMD)
- Mapping code transferred to Miss. State
MD Simulations of grain boundary diffusion in Mg bicrystal

- 1010 tilt boundaries considered because of their prevalence
- The Sandia code LAMMPS code was for the simulations
- Bi-crystals generated by rotating single crystals to the required orientations and assembling them
- Initial energy minimization carried out using a low simulation anneal
- Bi-crystal then expanded uniformly in all directions using thermal expansion coefficient at the diffusion temperature and equilibrated at the highest temperature investigated (750K)
MD Methodology

• The motion of free-surface atoms constrained to a plane parallel to the grain boundary
• Mean square displacement of atoms measured in a 2 -3 nm wide region centered on the grain boundary
• Grain boundary diffusion coefficient calculated from the slope of the mean square displacement versus time
• Activation energy for grain boundary diffusion calculated from an Arrhenius plot of the diffusion coefficient versus 1/T
MD simulation of grain boundary diffusivity in Mg

- At low temperatures (600K) boundaries showed facet formation and the MSD measurements are not reliable;
- Computed activation energies for the two tilt boundaries were roughly the same;
- Simulated diffusion coefficients at 750 K three orders of magnitude higher than for single crystal magnesium at 741K (Shewman and Rhines, Trans. AIME, 1954).
Mesoscale simulation approach

- Input to the model is a realistic 3-d microstructure that matches experimental conditions
 - *Either simulated or mapped from 2-d characterization data*

- Random walkers are introduced and operate at the mesoscale

- Large 3D microstructures with periodic boundary conditions

- The properties of the random walkers obtained from lower length scale models
 - *Apparent activation energy for bulk, grain boundary or triple line diffusion*
 - *Flip attempt frequency is proportional to the activation energy*
 - *For each walker the local neighborhood defines the location type*
 - *Function of concentration*

- Diffusivity measured from simulation of mean square displacement (MSD) of walkers

- To introduce large number of non-interacting walkers large microstructure is required (need for parallel computing)
Example 1: Single Crystal

- Apparent bulk activation energy of 7000 (dimensionless)
- Temperature (dimensionless) varied from 600-1000
- Results averaged over roughly 1500 walkers in a 80 x 80 x 80 single crystal
- Smooth variation of MSD with time and recovery of bulk activation energy
Example 2: Bicrystal

- MSD curves are non-linear
- Effective diffusion coefficients obtained from long-time slope of MSD-time curves
- Simulations show the transition from GB dominated diffusion at low T to bulk dominate diffusion at high T
Bicrystal - continued

- At low T, GB jumps significantly higher than bulk jumps
 - Linear MSD vs T
- At high T, GB contribution appreciable, increases with time
 - Non-linear MSD vs T
- In real metals, GB diffusion is dominant when $D_{gb}\delta >> D_l d$
- In mesoscale simulations δ/d is large; should perform simulations with varying d and extrapolate to small ratio
Example 3: Polycrystal

- MSD vs time curves are not smooth, need bigger microstructure and more walkers
- Effective diffusivity increases with decreasing grain size
- Effective diffusivity increases with temperature at a given grain size
Future Work

- Calibrate the mesoscale model for tracer diffusion in polycrystalline magnesium
 - Validate using SIMS measurements

- Extend the model for chemical diffusion in two component Mg alloy (Mg-Al)
 - Perform MD simulations to obtain GB diffusivity
 - Effect of solute segregation

- Investigate the effect of simultaneous evolution of microstructure during diffusivity measurements