The Fusion Nuclear Science Facility (FNSF), what is it and what challenges does it present?

C. E. Kessel, PPPL

VLT Highlights, August 27, 2014
The Context for the FNSF within Fusion Development

The Fusion Nuclear Science Facility (FNSF) is part of the US fusion development view, and is the first strongly fusion nuclear confinement facility.

Flow in terms of plasma/nuclear/technical parameters reached

The FNSF is an intermediate step to accommodate the extreme fusion nuclear environment and the complex integration of components and their environment, as well as the nuclear science and plasma physics.

The FNSF will operate with
 - a very long pulse fusion neutron producing plasma and very high duty cycles,
 - with completely integrated components first wall, blanket, shield, vacuum vessel, divertor, etc.,
 - in the fully integrated environment (simultaneous) of fusion neutrons, volumetric and surface heating, hydrogen in materials, strong magnetic fields, pressure/stresses, high temperatures, vacuum interface with plasma, flowing breeder with material interactions, and PMI, all with significant gradients.
Present and near term confinement devices, short pulse → to long pulse

Increasing integration

Optimization/exploration

Integrated exp/t theory, predictive computational development for physics and engineering

Fusion neutron material test facility, fission testing
Liquid metal flow/corrosion/thermal/hydrogen facility(s)
Tritium (hydrogen) extraction/permeation/handling facility(s)
Magnet conductor/insulator/coil testing facility(s)
Linear plasma/HHF/plasma loading simulator PFC facility(s)
Heating/current drive, diagnostic, plasma fueling/exhaust test facilities

Non plasma confinement facilities

Pre-FNSF R&D

Parallel FNSF R&D

ITER
Non-DT, TBM
DT, TBM

FNSF
DD
DT

DEMO

Facilities and Time-Scales
A number of proposals have been made for an FNSF (or similar) type device

The FNSF can have a small mission scope, a large mission scope, or anywhere in between.

Long term relevance is important when you only have 2 devices to a power plant.
The FNSF is VERY different from ITER in a number of ways

- The neutron exposure of materials is ~ 30x higher
- The materials are all different, except for tungsten
- The structures surrounding the plasma will operate at ≥ 3x higher temperatures
- Tritium is bred in the FNSF, not purchased like ITER
- The plasma is “on” making neutrons for 7x longer per year, and plasma pulses are 1000x longer
- Maintenance of the fusion core is few-large-pieces, not by blanket module....and there are others

<table>
<thead>
<tr>
<th></th>
<th>ITER</th>
<th>FNSF</th>
<th>Power Plant, 1000 MWₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron exposure life of plant MW-yr/m², dpa</td>
<td>0.3, 3.0</td>
<td>8.5, 85</td>
<td>60-98, 600-980</td>
</tr>
<tr>
<td>Materials</td>
<td>316SS, CuCrZr, Be, W, H₂O, SS304, SS430</td>
<td>RAFM, PbLi, He, SiC-c, Borated-RAFM, W, bainitic steel</td>
<td>RAFM, PbLi, He, SiC-c, Borated-RAFM, W, bainitic steel</td>
</tr>
<tr>
<td>Operating temperature, °C</td>
<td>100-150</td>
<td>400-600</td>
<td>600-700</td>
</tr>
<tr>
<td>Tritium breeding ratio</td>
<td>~ 0.003</td>
<td>~ 1.0</td>
<td>1.05</td>
</tr>
<tr>
<td>Plasma on-time in a year, %</td>
<td>5</td>
<td>~ 10-35</td>
<td>85</td>
</tr>
<tr>
<td>Plasma pulse duration, s</td>
<td>500-3000</td>
<td>~10⁶ (2 weeks)</td>
<td>2.7x10⁷ (10.5 months)</td>
</tr>
</tbody>
</table>
VERY long plasma durations are needed to show fusion power generation is credible

FNSF needs long neutron producing plasma durations to provide the neutron exposure of all fusion core components (first wall, blanket, divertor, shield, launchers,out to the VV and on to magnets), and core processes like tritium migration, corrosion, ...which each have specific time-scales

The major PFC/PMI long pulse issues of erosion/re-deposition/migration, dust production, and tritium retention will be of great importance here

As we see it now, the FNSF will advance the plasma duration and plasma pulse duty cycle as its primary way of increasing the neutron exposure (fluence = flux x time)

<table>
<thead>
<tr>
<th></th>
<th>He/H</th>
<th>DD</th>
<th>DT</th>
<th>DT</th>
<th>DT</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase time, yr</td>
<td>1-2</td>
<td>2-3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Plasma on-time, %</td>
<td>10-25</td>
<td>10-50</td>
<td>10-15</td>
<td>25</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Plasma duty cycle</td>
<td>0.33-0.95</td>
<td>0.33</td>
<td>0.67</td>
<td>0.91</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Plasma pulse/dwell, days</td>
<td>1/2-10/0.5</td>
<td>1/2</td>
<td>2/1</td>
<td>5/0.5</td>
<td>10/0.5</td>
<td></td>
</tr>
<tr>
<td>Peak fluence, MW-yr/m²</td>
<td></td>
<td></td>
<td>0.45-0.68 (4.5-6.8)</td>
<td>1.88 (18.8)</td>
<td>2.63 (26.3)</td>
<td>3.68 (36.8)</td>
</tr>
</tbody>
</table>

A FNSF program schedule
The demands on plasma pulse length and duty cycle are tremendous

Present facilities and long pulse devices provide the basis for potential scenarios for the FNSF (core/SOL/divertor/PFC)

The longer pulse devices allow us to see the beginnings of long pulse PMI phenomena

ITER provides the only self-consistent burning plasma at long pulse

Can use the FNSF to push to higher β and higher Q OR do we do this in DEMO

ITER provides the only self-consistent burning plasma at long pulse

Can use the FNSF to push to higher β and higher Q OR do we do this in DEMO
FNSF Mission and Metrics - Tables

Missions Identified: (shown as ITER – FNSF – DEMO – Power Plant)

- Fusion neutron exposure (fluence and dpa)
- Materials (structural, functional, coolants, breeders, shield...)
- Operating temperature/other environmental variables
- Tritium breeding
- Tritium behavior, control, inventories, accounting
- Long plasma durations at require performance
- Plasma enabling technologies
- Power plant relevant subsystems at high efficiency
- Availability, maintenance, inspectability, reliability advances toward DEMO and power plants

Each mission contains a table with quantifiable metrics (except for the last one)... still developing these

Expect to use ARIES-ACT2 as power plant example
FNSF Program - Table

We have a tentative phased program on the FNSF establishing:

- **Time frames**
- **Neutron exposure, dpa**
- **Plasma ops/maintenance**
- **Plasma on-time/duty cycle**
- **Plasma pulse extension in DD phase**
- **Added another phase #7 as either increased exposure or as a way to absorb unanticipated events**

<table>
<thead>
<tr>
<th>Phase</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase time, yr</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Cumulative operation time, yr</td>
<td>1.5</td>
<td>3.5</td>
<td>6.5</td>
<td>11.5</td>
<td>16.5</td>
<td>23.5</td>
<td>30.5</td>
</tr>
<tr>
<td>(N_{W,\text{peak}}), MW/m²</td>
<td>~0.009</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Plasma on-time per year (days)</td>
<td>10-25%</td>
<td>10-50%</td>
<td>10-15%</td>
<td>25%</td>
<td>35%</td>
<td>35%</td>
<td>35%</td>
</tr>
<tr>
<td>Plasma on-time (days)</td>
<td>(37-91)</td>
<td>(37-183)</td>
<td>(37-55)</td>
<td>(91)</td>
<td>(128)</td>
<td>(128)</td>
<td>(128)</td>
</tr>
<tr>
<td>Plasma duty cycle (days on/days off)</td>
<td>0.33-0.95</td>
<td>0.33</td>
<td>0.67</td>
<td>0.91</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Operation / Maintenance per year (days)</td>
<td>111-165/254-200</td>
<td>137/228</td>
<td>141/224</td>
<td>135/230</td>
<td>135/230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End of Phase Peak Fluence</td>
<td>dpa</td>
<td>4.5-6.8</td>
<td>18.8</td>
<td>26.3</td>
<td>36.8</td>
<td>36.8</td>
<td></td>
</tr>
<tr>
<td>Cumulative peak fluence, MW-yr/m²</td>
<td>0.45-0.68</td>
<td>2.33-2.56</td>
<td>4.96-5.19</td>
<td>8.64-8.87</td>
<td>12.3-12.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using the FNSF Program Table – Begin Laying Out the Blanket Testing Plan

14 MeV neutron testing

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FNSF</td>
<td>5.5 dpa</td>
<td>11.0</td>
<td>16.5</td>
<td>22.0</td>
<td>27.5</td>
<td>33.0</td>
<td>38.5</td>
<td>44.0</td>
<td>49.5</td>
<td>55.0</td>
<td>60.5</td>
<td>66.0</td>
<td>66.0</td>
<td>33.0</td>
<td>55.0</td>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td>RAFM</td>
<td>5.5</td>
<td>11.0</td>
<td>16.5</td>
<td>22.0</td>
<td>27.5</td>
<td>33.0</td>
<td>38.5</td>
<td>44.0</td>
<td>49.5</td>
<td>55.0</td>
<td>60.5</td>
<td>66.0</td>
<td>66.0</td>
<td>33.0</td>
<td>55.0</td>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td>RAFM-ODS</td>
<td>16.5</td>
<td>22.0</td>
<td>27.5</td>
<td>33.0</td>
<td>49.5</td>
<td>55.0</td>
<td>60.5</td>
<td>66.0</td>
<td>33.0</td>
<td>55.0</td>
<td>60.5</td>
<td>66.0</td>
<td>66.0</td>
<td>33.0</td>
<td>55.0</td>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td>RAFM-nano</td>
<td>22.0</td>
<td>27.5</td>
<td>33.0</td>
<td>49.5</td>
<td>55.0</td>
<td>60.5</td>
<td>66.0</td>
<td>33.0</td>
<td>55.0</td>
<td>60.5</td>
<td>66.0</td>
<td>66.0</td>
<td>66.0</td>
<td>33.0</td>
<td>55.0</td>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td>FCI-SiC</td>
<td>11.0</td>
<td>16.5</td>
<td>22.0</td>
<td>27.5</td>
<td>33.0</td>
<td>49.5</td>
<td>55.0</td>
<td>60.5</td>
<td>66.0</td>
<td>33.0</td>
<td>55.0</td>
<td>60.5</td>
<td>66.0</td>
<td>33.0</td>
<td>55.0</td>
<td>55.0</td>
<td></td>
</tr>
</tbody>
</table>

Yearly blanket sector description

<table>
<thead>
<tr>
<th>Sector</th>
<th>Phase 3-A</th>
<th>Phase 3-B</th>
<th>Phase 3-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-1</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM – R1</td>
<td>DCLL 400C RAFM – R1</td>
</tr>
<tr>
<td>Y-2</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-3</td>
<td>DCLL 400C RAFM - LH</td>
<td>DCLL 400C RAFM - LH</td>
<td>DCLL 400C RAFM - LH</td>
</tr>
<tr>
<td>Y-4</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-5</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-6</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-7</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-8</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-9</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-10</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-11</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-12</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-13</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-14</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-15</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-16</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
<tr>
<td>Y-17</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
<td>DCLL 400C RAFM</td>
</tr>
</tbody>
</table>

Sector assignments in Phase 3

Each of 16 sectors has a blanket assignment

Offline 14 MeV neutron source provides exposure to materials ahead of use on the FNSF

Offline integrated blanket testing facility provides non-nuclear qualification
What is our backup blanket strategy?

The US power plant studies and TBM activities have gravitated toward the Dual Coolant Lead Lithium (DCLL) blanket concept

However, we have a very immature experimental database for fusion blankets of any kind

Maximum diversity to DCLL? Minimum effort to develop/carry along backup? Share R&D program with int’l parties?

We do have back-off capability (T, v,..) What are neutron synergies? Identify failure mechanisms
DEMO Program - Table

A tentative DEMO program has been outlined in order to establish

- Rampup neutron exposure to life-limiting level, 100 or 150 dpa? Rapid increase
- Very long plasma durations pushed toward power plant levels, months to year
- Operate at power plant exposures and maintenance repeated at least once
- Generating electricity throughout program

<table>
<thead>
<tr>
<th>He/H</th>
<th>DD</th>
<th>DT</th>
<th>DT</th>
<th>DT</th>
<th>DT</th>
<th>Power Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Phase time, yr</td>
<td>1</td>
<td>?</td>
<td>3</td>
<td>?</td>
<td>6</td>
<td>?</td>
</tr>
<tr>
<td>N_{W,peak} MW/m²</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.0-3.25</td>
</tr>
<tr>
<td>Plasma on-time per year (days)</td>
<td>35-75%</td>
<td>35%</td>
<td>50%</td>
<td>67%</td>
<td>75%</td>
<td>85%</td>
</tr>
<tr>
<td>Plasma on-time (128-274)</td>
<td>(128)</td>
<td>(183)</td>
<td>(245)</td>
<td>(274)</td>
<td>(308)</td>
<td></td>
</tr>
<tr>
<td>Plasma duty cycle (days on/days off)</td>
<td>0.95</td>
<td>0.95</td>
<td>0.98</td>
<td>0.98</td>
<td>0.99</td>
<td>1.0</td>
</tr>
<tr>
<td>Operation / Maintenance per year (days)</td>
<td>20-90/1</td>
<td>20/1</td>
<td>40/1</td>
<td>60/1</td>
<td>90/1</td>
<td></td>
</tr>
<tr>
<td>Operation / Maintenance (135/230)</td>
<td>188/7</td>
<td>249/116</td>
<td>277/88</td>
<td>308/56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End of phase peak fluence (MW-yr/m²)</td>
<td>5.25</td>
<td>7.5</td>
<td>13.4</td>
<td>15.0</td>
<td>15.0 to replace</td>
<td></td>
</tr>
<tr>
<td>Cumulative peak fluence, MW-yr/m²</td>
<td>5.25</td>
<td>12.75</td>
<td>26.15</td>
<td>41.15</td>
<td>60-130</td>
<td></td>
</tr>
</tbody>
</table>

Table continues
Ultimately, we need to extend the time between required action related to PFC/PMI

Design of PFCs, what are the simultaneous loading conditions?
Heat loads
Particle loads/erosion
Transients?
Operating history and material evolution
Several Material’s Issues are Arising in Examining the FNSF Program

What is the maximum allowable dpa we should assume for targeting the development program?

- Fast reactor program showed ~ 100-150 dpa for austenitic, Ni-alloys and ferritic steels at 500+ °C.....in fission spectrum, recommended value of ~ 100 dpa for fusion
- Impact on power plant economics, looking for the knee in the curve

The Reduced Activation Ferritic Martensitic (RAFM) steel “family”, what is the alloy evolution, how do we work this into the FNSF program?

- Generation I Reduced Activation Ferritic Martensitic (Gen I RAFM)
- Generation II RAFM (controlled thermo-mechanical processing, modifications to N, C, W, Ta, maintain strength at higher temperature, large number of nano-scale particles in matrix, helium trapping)
- ODS(NS) steel (mechanical alloying, Oxide Dispersion Strengthened, maintain strength at higher temperature)
 - ODS alloys with 9-12% Cr, EUROFER-97-ODS (0.3 wt.% Y₂O₃)
 - ODS alloys with >12% Cr, Fe(12-14)CrWTi-ODS (0.3 wt.% Y₂O₃)

→ Better determine the # samples, temperatures, materials, for fusion neutron testing....strong pace setting element of R&D program
→ What can facilities offer, IFMIF, accelerators?
Routine tritium behavior and accident analysis is needed to optimize the FNSF fusion core.

TMAP tritium inventory modeling – ARIES-CS
- More routine use of TMAP by generating required geometry in systems code
 - Impacts of materials, temperature, fluids and parameter choices
 - Also produce geometry input for MELCOR
- Establish a wider range of accidents to examine and assess
 - Standards like LOCA, LOFA, etc.
 - Include “smaller” accidents

MELCOR Accident modeling – ARIES-ACT1
Magnets...which kind? How do we obtain high reliability

Cu TF and PF coils have been proposed to allow a smaller device, and lower cost....is it all true?

- Cu coils likely do cost less to make than SC (LT or HT), but the cost to operate the Cu coils will likely nullify this...what do we learn from Cu coils?
- Can one really obtain smaller shielding of the magnets.....inorganic insulators have been proposed, but this insulator takes up too much volume, while organic insulators have lower dose capability....the Cu also has strong reduction in elongation if kept below water boiling temperature?

LTSC’s have a basis from ITER development

- Can we improve on it? The Koreans and EU next accelerator magnet developers think so, maybe up to 16 T at the TF coil
- Other options to optimize the ITER CICC for the FNSF application? Insulators, structural steel, conduit material

HTSC’s are becoming the focus of magnet development

- Do we need what they can offer, higher operating T, higher J-B combinations, work without He
- Can we make a fusion magnet, high field with large volume?

There are other magnets too, error field correction, vertical position feedback, other control magnets

We need to examine the Cu and LTSC trade-offs, and maintain an assessment of HTSC progress
Operating at higher β can allow higher neutron wall loads, but we need a robust operating point

Where can we operate the most robustly?

$$\beta_N < \beta_{N\text{ no wall}}$$
$$\beta_{N\text{ no wall}} < \beta_N < \beta_{N\text{ wall}}$$

This likely depends on other parameters, like q_{95}, conducting wall location, feedback coil locations

Feedback coils will need to be located behind the blanket and shield, and likely are normal Cu

What is the connection of the error fields, plasma response, static/dynamic error field control, resistive wall modes, resistive wall mode feedback, kinetic stabilization, and plasma rotation

Can we identify the hardware to access higher β?
Can we project the physics from present devices?
Can we establish a highly robust baseline, and possible extensions to higher β?
ACT2 (so-called conservative) power plant study examined beta limits without and with wall

Red points show no wall maximum beta-N

Green points show with wall maximum beta-N, b/a = 0.55, conductor behind shield

Ignore the others please

Preliminary systems analysis of FNSF are showing benefits to reaching $\beta_N \sim 3$

Tolerate lower peak B-fields at TF coil

Smaller major radii, smaller H/CD power

Higher $<N_w>$, shorter times to reach dpa limits

Easier to provide an electricity demonstration at smaller size

*does not include kinetic stabilization effects
Divertor solutions

The divertor will need both a physics and an engineering solution, this is a critical interface area on the FNSF.

Radiative standard divertors
- Slot geometry
- Detachment regime and stability

Advanced magnetic geometries
- Super-X
- Snowflake
- X-divertor

We need to get at PMI – erosion estimates

Is there a liquid metal design that fits in the typical envelope for a divertor? Can we do it on the top and the bottom?

Should we pursue SN or DN?
Heating and current drive systems will be driving a lot of the plasma current

Since \(f_{BS} \sim \beta_N q_{95} \), and we are targeting robust plasma scenarios, we typically have to drive 20-50% of Ip

I anticipate examining all sources, to get assessments of impacts on

- CD efficiency
- Impact on power balance
- Tritium breeding
- Neutron shielding/streaming

We will need real designs with the materials, operating temperatures, and loading conditions (PMI)

Solid – no LH
Short dash – 20 MW LH
Long dash – 40 MW LH

Since \(f_{BS} \sim \beta_N q_{95} \), and we are targeting robust plasma scenarios, we typically have to drive 20-50% of Ip

I anticipate examining all sources, to get assessments of impacts on

- CD efficiency
- Impact on power balance
- Tritium breeding
- Neutron shielding/streaming

We will need real designs with the materials, operating temperatures, and loading conditions (PMI)
What is the operating plasma scenario

In general, producing a wide range of plasma configurations is NOT the goal, but a small set of robust operating points, with margin to accommodate things that don’t go our way (B_T^{max} did not reach 16T, or SS β_N does not reach 3...)

The preferred operating mode is steady state, 100% non-inductive current (bootstrap + external CD)

Strong shaping is still desirable for margin to MHD limits, pedestal and transport benefits, and possible benefits to high density operation

High n/n_{Gr} fractions are likely, consistency with radiating divertor

What is the operating plan for the DD phase of the FNSF, plasma operations to establish ultra-long pulses (*without DT fusion*)

Preliminary systems analysis searching for operating points:

Provide $N_w^{\text{OB,peak}} = 1.5 \text{ MW/m}^2$

Assume:

- $88 \text{ cm IB build + 20 cm gaps}$
- LTSC ($B_t^{\text{max}} < 15.5 \text{ T}, <j> < 15 \text{ MA/m}^2$)

- $\beta_N^{\text{total}} < 2.5, q_{\text{div,peak}} < 10 \text{ MW/m}^2$
- $R \geq 4.5 \text{ m}$

- $\beta_N^{\text{total}} < 3.0, q_{\text{div,peak}} < 10 \text{ MW/m}^2$
- $R \geq 3.75-4.0 \text{ m}$

- $Q_{\text{engr}} > 1$ (electricity)
- $\beta_N^{\text{total}} < 2.5, q_{\text{div,peak}} < 10 \text{ MW/m}^2$
- $R \geq 4.5 \text{ m}$

- $\beta_N^{\text{total}} < 3.0, q_{\text{div,peak}} < 10 \text{ MW/m}^2$
- $R \geq 3.75-4.0 \text{ m}$
Fueling, pumping, particle control and vacuum systems

The VV in the FNSF and future devices becomes a large can inside which the blankets, divertors, and shield are placed.

As far as we know only a small fraction (5-15%) of the tritium and deuterium injected is consumed, the rest is exhausted, processed and re-injected....so we send A LOT of tritium through the fueling/exhaust system, about 10x what we consume (or breed).

The sectors are mounted next to each other, and come in contact when hot (and due to swelling over time)....what is going to be the particle behavior in this system.

Maintenance of the device plays a large role in the configuration shapes and components.

Need to establish a vacuum/fuel/exhaust design solution.
Disruptions

Although we will operate on the assumption that disruptions can and will be avoided to a significant extent, the FNSF will need to be designed to withstand them. At a minimum, the disruption cannot lead to an accident.

Disruption mitigation will be assumed to be available, based on experimental developments:
- Transfers thermal quench deposition (mostly) to first wall
- Electromagnetic forces of current quench remain (halo current loads reduced)
- Runaway electrons will be assumed to be quenched by mitigation scheme (we cannot use armor to withstand these due to tritium breeding)

Strong back or structural ring which surrounds each sector:
- Tungsten shells are used for vertical position stability and low-\(n\) kink (RWM) stability due to its good electrical conductivity and high temperature capability
- Modeling is going on for the electromagnetic forces, expanding the model to contain more elements like blanket box and divertors
What can we measure?

We need a CRITICAL assessment of measurements needed for the FNSF, with an eye to the environment they must withstand.

ITER already provides a challenging environment and difficult constraints on many diagnostics we use today...GOOD PLACE TO START, with hierarchy of priority for control and hardware protection to high fidelity physics measurements.

What simulations with synthetic diagnostics can replace or augment a measurement?

Can time-dependent simulations be used to track the plasma or engineering system in real-time?

Materials become a major development area for diagnostics, operation under neutron and gamma radiation, understanding the prompt irradiation signal pollution and long term damage signal modifications.

Performing measurement degradation experiments on present DD devices offers a way to understand the impacts and ability to replace or restore measurement capability.

Measurements of engineering systems have been barely examined, especially those that would be inside the first wall/blanket/shield.
The FNSF provides an important step on the pathway to fusion energy, but it is a significant change from ITER and present plasma facilities.

The facility’s missions focus is on nuclear science and the basis for fusion energy production...having only 2 devices weighs heavily on decisions for the FNSF.

HOWEVER, it is also the step where the plasma and nuclear science come together like never before...tremendous advances will have to take place.

Plasma performance is critical to delivering the nuclear mission, so that demonstrating the ultra-long pulses and robustly stable operating modes (and enabling systems that support it) is central to its mission.

Website: http://fess.pppl.gov