Fusion Nuclear Science Facility: Its Mission, Characteristics, etc.

Martin Peng, ORNL
Ron Stambaugh, GA

Report and Discussion
VLT Conference Call
April 21, 2010
A broadly defined “Fusion Materials and Fusion Nuclear Science R&D” strategy

Energy Technology Testing, Development & Demonstration (Application)

Energy Science Research (Discovery)

Requires Cost-effective Upgradability

ReNeW Themes 3 & 4 Thrusts (materials, fusion nuclear science basis for DEMO) →

CTF-Elec (8xJET)

CTF-AT (6xJET)

CTF (4xJET)

CTF (2xJET)

DEMO

ITER BP

JET DT

FNSF-DT (1xJET)

FNSF-DT (2xJET)

DD S/C Toks.

FNSF-DD (1xJET)

DD S/C Toks.
This strategy applies equally to FDF – $FDFS = FDF\ Science$
Aspect ratio is a key design tradeoff and optimization parameter

Energy Technology Testing, Development & Demonstration
(Application)

Energy Science Research (Discovery)

ReNeW Themes 3 & 4 Thrusts (materials, fusion nuclear science basis for DEMO) →

What should be the mission elements of FM&FNS R&D? Next: “FNSF” & “FDF” drafts

Peng, Stambaugh, VLT 20100421
Example: Conservative parameters are available for $R_0 = 1.3\text{m}$, $A = 1.7$ plasmas to address the FMFNS mission.

Disruption-minimized: $\beta_N \leq 0.75\beta_{N\text{-no-wall}}$; $HH \leq 1.25$; $q_{cyl} \geq 2\times\text{limit}$; $J_{\text{avgTF}} \leq 4 \text{ kA/cm}^2$

<table>
<thead>
<tr>
<th>Plasma Pressure</th>
<th>JET-DD</th>
<th>JET-DT</th>
<th>2xJET</th>
<th>4xJET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests enabled</td>
<td>PFC</td>
<td>FNS</td>
<td>FNS-CTF</td>
<td>CTF</td>
</tr>
<tr>
<td>W_L (MW/m2)</td>
<td>0.005</td>
<td>0.25</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Current, I_p (MA)</td>
<td>4.2</td>
<td>4.2</td>
<td>6.7</td>
<td>8.4</td>
</tr>
<tr>
<td>Field, B_T (T)</td>
<td>2.7</td>
<td>2.7</td>
<td>2.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Safety factor, q_{cyl}</td>
<td>6.0</td>
<td>6.0</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Toroidal beta, β_T (%)</td>
<td>4.4</td>
<td>4.4</td>
<td>10.1</td>
<td>10.8</td>
</tr>
<tr>
<td>$B_T^2\beta_T$ (T2-%)</td>
<td>32</td>
<td>32</td>
<td>85</td>
<td>140</td>
</tr>
<tr>
<td>Normal beta, β_N</td>
<td>2.1</td>
<td>2.1</td>
<td>3.3</td>
<td>3.5</td>
</tr>
<tr>
<td>Avg density, n_e (10^{20}/m3)</td>
<td>0.54</td>
<td>0.54</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Avg ion T_i (keV)</td>
<td>7.7</td>
<td>7.6</td>
<td>10.2</td>
<td>11.8</td>
</tr>
<tr>
<td>Avg electron T_e (keV)</td>
<td>4.2</td>
<td>4.3</td>
<td>5.7</td>
<td>7.2</td>
</tr>
<tr>
<td>BS current fraction</td>
<td>0.45</td>
<td>0.47</td>
<td>0.50</td>
<td>0.53</td>
</tr>
<tr>
<td>NBI H&CD power (MW)</td>
<td>26</td>
<td>22</td>
<td>44</td>
<td>61</td>
</tr>
<tr>
<td>Fusion power (MW)</td>
<td>0.2</td>
<td>19</td>
<td>76</td>
<td>152</td>
</tr>
<tr>
<td>NBI energy (kV)</td>
<td>120</td>
<td>120</td>
<td>235</td>
<td>330</td>
</tr>
</tbody>
</table>

Peng, Stambaugh, VLT 20100421
Fusion Material & Fusion Nuclear Science Program Mission – Draft

To answer the remaining challenges of fusion material & fusion nuclear science outside the ITER scope to complete the scientific basis for transition to a fusion energy development program.

Mission Components

1) Synergistic Effects and Integration – To elucidate and resolve, using a fusion nuclear science facility, the synergistic effects in multiple material interactions, fuel management, and power extraction – simultaneously encountering four phases of matter across the nuclear, atomic, nano, meso, and macroscopic scales for continuous durations of up to ~week, in an integrated fusion nuclear environment of substantial fusion neutron flux and fluence (1 MW-yr/m²), using stable operating plasmas with moderate fusion gains (0.8 – 3).

2) Toroidal & Burning Plasma – To

3) Plasma Enabler & Control – To develop the science needed to efficiently heat, maintain, fuel, and control the fusion plasma in FNSF toward energy applications.

4) Plasma Material Interaction – To decipher the evolution of the plasma-material interface in an integrated nuclear environment including: surface morphology, hydrogen retention and recombination, surface chemistry and mixing, and near-surface particle migration.

5) Material Irradiation & Damage – To investigate and understand the synergistic materials effects from the integrated tests on a FNSF for comparison with the simulated tests for up to 10 dpa.

6) Tritium Cycle – To develop the science and technology needed to properly supply and handle tritium in FNSF to enable energy applications.

7) Power Extraction – To develop the science and technology needed to properly extract useful power from fusion neutrons and plasma heat in FNSF to enable energy applications.

8) Measurement Science – To

9) Modeling, Computation & Validation – To develop a “virtual” FNSF using high-performance computing, accounting for the key scientific properties of interest to the preceding areas of research, for use to analyze, integrate, and optimize the fusion nuclear science facility concept and the supporting research and development activities.
Available and Potentially Needed Capabilities of A Fusion Nuclear Science Program

New Synergistic Effects and Integration Research
Using A Normal or Small Aspect Ratio Plasma

- Toroidal & Burning Plasma
- Plasma Enabler & Control
- Plasma Material Interaction
- Material Irradiation & Damage
- Tritium Cycle
- Power Extraction
- Measurement Science
- Modeling, Computation & Validation

- In Asia
 - SST-1
 - EAST
 - DIII-D
 - KSTAR
 - NSTX
 - JT-60SA
 - New High Gain Device?

- New Heat Flux Device?

- ITER Project R&D
- ITER TBM
- IFMIF
- HFIR
- PISCES
- MTF-1200
- MTOR
- Burning Plasma
- Plasma Material
- Material Irradiation
- Liquid Metal MHD
- Neutron Transport
The Fusion Development Facility Mission: Develop Fusion’s Energy Applications

• FDF will:
 – Close the fusion fuel cycle
 – Show electricity production from fusion.
 – Develop high temperature blankets for high efficiency electricity production.
 – Show hydrogen production from fusion.
 – Provide a materials irradiation facility to develop fusion materials.

• By using conservative Advanced Tokamak physics to run steady-state and produce 100-250 MW fusion power
 – Modest energy gain (Q<7)
 – Continuous operation for 30% of a year in 2 weeks periods
 – Test materials with high neutron fluence (3-6 MW-yr/m^2)
 – Further develop all elements of Advanced Tokamak physics, qualifying them for an advanced performance DEMO

• With ITER and IFMIF, provide the basis for a fusion DEMO Power Plant
Rebaselined FDF Incorporating Increased Blanket/Shield, Realistic Divertor Geometry, Plasma Wall Gaps
To Show Fusion Can Close its Fuel Cycle, FDF Will Demonstrate Efficient Net Tritium Production

- FDF will produce 0.4–1.3 kg of Tritium per year at its nominal duty factor of 0.3
- This amount should be sufficient for FDF and can build the T supply needed for DEMO
Port Sites Enable Nuclear and Materials Science.

- **DIII-D size neutral beams**
 - 3 Co 120 keV, rotation
 - 1 Counter, 80 keV for QH mode edge

Off-axis current profile control
- ECCD (170 GHz)
- Lower Hybrid
- NBCD

Port blanket sites for fusion materials development

Fusion Electric Blanket #1

Fusion Electric Blanket #2

Port blanket sites for fusion nuclear technology development
Teams of Universities, Labs, and Industry Will Work with the Site to Field Test Blanket Modules on FDF

- **Fusion electric blankets require**
 - High temperature (500-700 °C) heat extraction
 - Complex neutronics issues
 - Tritium breeding ratio > 1.0
 - Chemistry effects (hot, corrosive, neutrons)
 - Environmentally attractive materials
 - High reliability, (disruptions, off-normal events)

- **Fusion blanket development requires testing**
 - Solid breeders (3), Liquid breeders (2)
 - Various Coolants (2)
 - Advanced, Low Activation, Structural materials (2)

- **Desirable capabilities of a development facility**
 - 1–2 MW/m² 14 MeV neutron flux
 - 10 m² test area, relevant gradients (heat, neutrons)
 - Continuous on time of 1-2 weeks
 - Integrated testing with fluence 6 MW-yr/m²

- **FDF can deliver all the above testing requirements**
 - Test two blankets every two years
 - In ten years, test 10 blanket approaches

Produce 300 kW electricity from one port blanket
FDF will Motivate the Needed, Large, Supporting Fusion Nuclear Science Program

On Test Specimens and Components,

- Materials compositions
- Activation and transmutation
- Materials properties (irradiated)
- Thermo-hydraulics
- Thermal expansion and stress
- Mechanical and EM stresses
- Tritium breeding and retention
- Solubility, diffusivity, permeation
- Liquid metals crossing magnetic fields
- Coolant properties
- Chemistry
- and more…..
Teams of Universities, Labs, and Industries Will Conduct a National Program of Materials Irradiation

- Provides up to 60 dpa of DT fusion neutron irradiation in controlled environment materials test ports for:
 - First wall chamber materials
 - Structural materials
 - Breeders
 - Neutron multipliers
 - Tritium permeation barriers
 - Composites
 - Electrical and thermal insulators

- Materials compatibility tests in an integrated tokamak environment
 - Flow channel inserts for DCLL blanket option
 - Chamber components and diagnostics development
The U.S. Fusion Nuclear Science Community Suggested an Aggressive Phased Research Plan

<table>
<thead>
<tr>
<th></th>
<th>START UP</th>
<th>FIRST MAIN BLANKET</th>
<th>SECOND MAIN BLANKET</th>
<th>THIRD MAIN BLANKET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H D DT</td>
<td>H D DT</td>
<td>H D DT</td>
<td>H D DT</td>
</tr>
<tr>
<td>Fusion Power (MW)</td>
<td>0 0 125</td>
<td>125 250</td>
<td>250 250</td>
<td>250 400</td>
</tr>
<tr>
<td>P_N/A_{WALL} (MW/m²)</td>
<td>1 1 2</td>
<td>2 2</td>
<td>2 3.2</td>
<td></td>
</tr>
<tr>
<td>Pulse Length (Min)</td>
<td>1 10 SS SS</td>
<td>SS SS</td>
<td>SS SS</td>
<td></td>
</tr>
<tr>
<td>Duty Factor</td>
<td>0.01 0.04 0.1</td>
<td>0.2 0.3</td>
<td>0.3 0.3</td>
<td></td>
</tr>
<tr>
<td>T Burned/Year (kG)</td>
<td>0.28 0.7 2.8</td>
<td>2.8 4.2</td>
<td>4.2 5</td>
<td></td>
</tr>
<tr>
<td>Net Produced/Year (kG)</td>
<td>-0.14 0.56</td>
<td>0.56 0.84</td>
<td>0.84 1</td>
<td></td>
</tr>
<tr>
<td>Main Blanket</td>
<td>He Cooled Solid Breeder Ferritic Steel</td>
<td>Dual Coolant Pb-Li Ferritic Steel</td>
<td>Best of TBM SARFS?</td>
<td></td>
</tr>
<tr>
<td>TBR</td>
<td>0.8 1.2</td>
<td>1.2 1.2</td>
<td>1.2 1.2</td>
<td></td>
</tr>
<tr>
<td>Test Blankets</td>
<td>1,2</td>
<td>3,4 5,6</td>
<td>7,8 9,10</td>
<td></td>
</tr>
<tr>
<td>Accumulated Fluence (MW-yr/m²)</td>
<td>0.06 1.2</td>
<td>3.7</td>
<td>7.6</td>
<td></td>
</tr>
</tbody>
</table>
Goals and Objectives

Produce significant fusion power.

Make high performance, steady-state, burning plasmas.

Develop low activation, high strength, high temperature, radiation resistant materials for fusion.

Demonstrate the production of high grade process heat from fusion.

Demonstrate fusion fuel self-sufficiency.

Show fusion can produce electricity.

Show fusion can produce hydrogen.

Obtain first reliability, availability, and maintainability experience.
Fusion Nuclear Science Program (FNSP): The Scientific Basis for Fusion Energy Applications

- High Performance Plasma Research
- Plasma Material Interface Research
- Power Extraction and Fusion Fuel Production Research
- Tritium Processing Research
- Fusion Materials Research
- Nuclear Science Computation
- National Program in Measurement in Nuclear Environment
- Multi-Scale Neutron Transport
- Materials Damage and Evolution
- Plasma-Materials
- Instrumentation

US Tokamaks
- NSTX
- DIII-D
- Cmod

FNSF TBM

ITER TBM

Tritium Plant

Fission (HFIR)

Steady-State Heating and Current Drive
- NSTX
- DIII-D
- Cmod
- EAST
- KSTAR
- SST
- JT60-SA
- New High Flux Test Stand, PISCES
- New Tokamak
- FNSF TBM
- Laboratory Test Stands
- Plasma Fueling
- Computation
- Triple Ion Beam
- Hydrogen Plant
- IFMIF
- SNS
- LANSCE
- Burning Plasma
- Plasma-Materials
- Instrumentation
Issues worthy of further discussion

• Discuss and identify key characteristic for FM&FNS “Facility” and “Program”
• Vet mission components for VLT topical areas
• Outreach to vet mission components for burning plasma science topical areas
• Vet the mission component for “synergistic effects and integration”
• Move on to “programmatic needs” working with VLT and BP stakeholders
• Report results to community for feedback (a national workshop?)
• Other issues?